organic compounds
1-[6-Chloro-4-(2-chlorophenyl)-2-methyl-3-quinolyl]ethanone
aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The title compound, C18H13Cl2NO, features an essentially planar quinoline ring system (r.m.s. deviation = 0.023 Å) with the acetyl [C—C—C—O torsion angle = −78.27 (17)°] and benzene [C—C—C—C torsion angle = 110.11 (14)°] substituents being twisted out of the plane; the dihedral angle formed between the mean planes of these two substituents is 58.01 (8)°. The acetyl O and benzene-bound Cl atoms lie to opposite sides of the molecule. Centrosymmetric aggregates mediated by pairs of C—H⋯O contacts are found in the and these are connected into a two-dimensional array in the (01) plane via Cl⋯O [3.0508 (11) Å] interactions.
Related literature
For background to the pharmaceutical potential of quinoline derivatives, see: Musiol et al. (2006). For related structures, see: Kaiser et al. (2009); Viji et al. (2010). For a review on halogen bonding, including short halogen⋯oxygen interactions, see: Fourmigué (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810026991/lh5080sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810026991/lh5080Isup2.hkl
A mixture of 2-amino-2',5-dichlorobenzophenone (0.01 M), acetylacetone (0.01 M) and a catalytic amount of conc. HCl was irradiated under 240 W for about 6 min. The resultant solid was filtered, dried and purified by
using a 1:1 mixture of ethyl acetate and petroleum ether and recrystallized using ethanol. M. pt. 389 K. Yield: 58%Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the
in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).On-going structural studies of quinoline derivatives (Kaiser et al., 2009; Viji et al., 2010) are motivated by their potential pharmacological properties (Musiol et al., 2006). Herein, the crystal and molecular structure of the title compound (I) is described.
The non-hydrogen atoms comprising the quinoline nucleus in (I) are planar [r.m.s. deviation = 0.023 Å]. Each of the attached acetyl and benzene groups are twisted out of the plane of the quinoline residue as seen in the values of the C1–C2–C11–O1 and C2–C3–C13–C14 torsion angles of -78.27 (17) and 110.11 (14) °, respectively. The acetyl group and benzene ring are non-parallel with the dihedral angle between their least-squares planes being 58.01 (8) °. The acetyl-O and benzene-Cl atoms lie to opposite sides of the molecule.
The most prominent intermolecular interactions in the 1 0 1) plane by Cl···O interactions [Cl2···O1i = 3.0508 (11) Å for -1/2 + x, 3/2 - y, -1/2 + z].
are of the type C–H···O, Table 1, and Cl···O (Fourmigué, 2009). The C–H···O contacts lead to the formation of centrosymmetric dimers and these are connected into a 2-D array in the (For background to the pharmaceutical potential of quinoline derivatives, see: Musiol et al. (2006). For related structures, see: Kaiser et al. (2009); Viji et al. (2010). For a review on halogen bonding, including short halogen···oxygen interactions, see: Fourmigué (2009).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C18H13Cl2NO | F(000) = 680 |
Mr = 330.22 | Dx = 1.402 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6804 reflections |
a = 10.3105 (6) Å | θ = 2.3–28.2° |
b = 12.8882 (7) Å | µ = 0.42 mm−1 |
c = 11.7968 (7) Å | T = 100 K |
β = 93.367 (1)° | Block, colourless |
V = 1564.90 (16) Å3 | 0.29 × 0.24 × 0.19 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 3594 independent reflections |
Radiation source: fine-focus sealed tube | 3189 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→13 |
Tmin = 0.933, Tmax = 1.000 | k = −16→16 |
14786 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0409P)2 + 0.6548P] where P = (Fo2 + 2Fc2)/3 |
3594 reflections | (Δ/σ)max = 0.001 |
201 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C18H13Cl2NO | V = 1564.90 (16) Å3 |
Mr = 330.22 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.3105 (6) Å | µ = 0.42 mm−1 |
b = 12.8882 (7) Å | T = 100 K |
c = 11.7968 (7) Å | 0.29 × 0.24 × 0.19 mm |
β = 93.367 (1)° |
Bruker SMART APEX diffractometer | 3594 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3189 reflections with I > 2σ(I) |
Tmin = 0.933, Tmax = 1.000 | Rint = 0.025 |
14786 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.38 e Å−3 |
3594 reflections | Δρmin = −0.24 e Å−3 |
201 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.23962 (3) | 1.07600 (3) | 0.72582 (3) | 0.02312 (9) | |
Cl2 | 0.13655 (3) | 0.82921 (3) | 0.61673 (3) | 0.02099 (9) | |
O1 | 0.46437 (10) | 0.84047 (8) | 1.00816 (9) | 0.0300 (2) | |
N1 | 0.04450 (12) | 0.78055 (9) | 1.02995 (9) | 0.0227 (2) | |
C1 | 0.17096 (14) | 0.76859 (10) | 1.02455 (11) | 0.0212 (3) | |
C2 | 0.24419 (13) | 0.82174 (10) | 0.94326 (10) | 0.0175 (3) | |
C3 | 0.18344 (12) | 0.88978 (9) | 0.86805 (10) | 0.0150 (2) | |
C4 | 0.04755 (12) | 0.90673 (9) | 0.87489 (10) | 0.0155 (2) | |
C5 | −0.02314 (12) | 0.97804 (10) | 0.80428 (10) | 0.0160 (2) | |
H5 | 0.0199 | 1.0186 | 0.7507 | 0.019* | |
C6 | −0.15383 (12) | 0.98816 (10) | 0.81377 (10) | 0.0179 (3) | |
C7 | −0.22160 (13) | 0.92969 (11) | 0.89191 (11) | 0.0224 (3) | |
H7 | −0.3128 | 0.9374 | 0.8959 | 0.027* | |
C8 | −0.15385 (14) | 0.86143 (11) | 0.96212 (11) | 0.0234 (3) | |
H8 | −0.1987 | 0.8220 | 1.0155 | 0.028* | |
C9 | −0.01808 (13) | 0.84880 (10) | 0.95623 (10) | 0.0187 (3) | |
C10 | 0.23720 (17) | 0.69329 (11) | 1.10655 (12) | 0.0294 (3) | |
H10A | 0.1717 | 0.6565 | 1.1481 | 0.044* | |
H10B | 0.2957 | 0.7312 | 1.1604 | 0.044* | |
H10C | 0.2874 | 0.6432 | 1.0646 | 0.044* | |
C11 | 0.38793 (14) | 0.80115 (10) | 0.93929 (11) | 0.0209 (3) | |
C12 | 0.42837 (16) | 0.72882 (13) | 0.84825 (13) | 0.0326 (4) | |
H12A | 0.5219 | 0.7157 | 0.8584 | 0.049* | |
H12B | 0.4085 | 0.7603 | 0.7736 | 0.049* | |
H12C | 0.3811 | 0.6632 | 0.8532 | 0.049* | |
C13 | 0.25864 (12) | 0.94625 (10) | 0.78298 (10) | 0.0148 (2) | |
C14 | 0.24475 (12) | 0.92459 (10) | 0.66698 (10) | 0.0159 (2) | |
C15 | 0.31894 (13) | 0.97515 (10) | 0.58914 (11) | 0.0197 (3) | |
H15 | 0.3091 | 0.9584 | 0.5107 | 0.024* | |
C16 | 0.40740 (13) | 1.05034 (11) | 0.62726 (11) | 0.0208 (3) | |
H16 | 0.4582 | 1.0855 | 0.5747 | 0.025* | |
C17 | 0.42194 (13) | 1.07433 (10) | 0.74183 (12) | 0.0200 (3) | |
H17 | 0.4818 | 1.1265 | 0.7675 | 0.024* | |
C18 | 0.34908 (12) | 1.02213 (10) | 0.81890 (11) | 0.0173 (3) | |
H18 | 0.3608 | 1.0382 | 0.8974 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01579 (16) | 0.03008 (18) | 0.02304 (17) | 0.00616 (12) | −0.00267 (12) | −0.00421 (13) |
Cl2 | 0.02021 (17) | 0.02349 (17) | 0.01915 (15) | −0.00465 (12) | 0.00013 (12) | −0.00655 (12) |
O1 | 0.0281 (6) | 0.0284 (5) | 0.0319 (5) | 0.0051 (4) | −0.0132 (4) | −0.0042 (4) |
N1 | 0.0347 (7) | 0.0172 (5) | 0.0166 (5) | −0.0016 (5) | 0.0055 (5) | 0.0005 (4) |
C1 | 0.0338 (8) | 0.0147 (6) | 0.0150 (6) | 0.0018 (5) | −0.0001 (5) | −0.0009 (5) |
C2 | 0.0224 (7) | 0.0147 (6) | 0.0152 (6) | 0.0014 (5) | −0.0015 (5) | −0.0043 (5) |
C3 | 0.0174 (6) | 0.0141 (5) | 0.0133 (5) | −0.0003 (5) | 0.0004 (4) | −0.0027 (4) |
C4 | 0.0173 (6) | 0.0146 (6) | 0.0148 (5) | −0.0012 (5) | 0.0015 (5) | −0.0031 (4) |
C5 | 0.0158 (6) | 0.0169 (6) | 0.0157 (6) | −0.0009 (5) | 0.0028 (4) | −0.0017 (5) |
C6 | 0.0163 (6) | 0.0211 (6) | 0.0159 (6) | 0.0010 (5) | −0.0009 (5) | −0.0056 (5) |
C7 | 0.0155 (6) | 0.0306 (7) | 0.0217 (6) | −0.0043 (5) | 0.0059 (5) | −0.0076 (5) |
C8 | 0.0248 (7) | 0.0261 (7) | 0.0204 (6) | −0.0070 (6) | 0.0097 (5) | −0.0034 (5) |
C9 | 0.0246 (7) | 0.0162 (6) | 0.0157 (6) | −0.0026 (5) | 0.0045 (5) | −0.0029 (5) |
C10 | 0.0456 (9) | 0.0204 (7) | 0.0217 (7) | 0.0052 (6) | −0.0018 (6) | 0.0041 (5) |
C11 | 0.0242 (7) | 0.0172 (6) | 0.0207 (6) | 0.0055 (5) | −0.0039 (5) | 0.0016 (5) |
C12 | 0.0279 (8) | 0.0373 (9) | 0.0320 (8) | 0.0138 (7) | −0.0028 (6) | −0.0102 (7) |
C13 | 0.0122 (6) | 0.0159 (6) | 0.0163 (6) | 0.0035 (4) | 0.0007 (4) | −0.0002 (4) |
C14 | 0.0138 (6) | 0.0163 (6) | 0.0174 (6) | 0.0010 (5) | −0.0009 (5) | −0.0028 (5) |
C15 | 0.0192 (6) | 0.0242 (7) | 0.0160 (6) | 0.0026 (5) | 0.0021 (5) | −0.0002 (5) |
C16 | 0.0174 (6) | 0.0223 (7) | 0.0232 (6) | 0.0006 (5) | 0.0058 (5) | 0.0027 (5) |
C17 | 0.0138 (6) | 0.0194 (6) | 0.0270 (7) | −0.0009 (5) | 0.0021 (5) | −0.0031 (5) |
C18 | 0.0142 (6) | 0.0194 (6) | 0.0181 (6) | 0.0019 (5) | −0.0005 (5) | −0.0031 (5) |
Cl1—C6 | 1.7415 (14) | C8—H8 | 0.9500 |
Cl2—C14 | 1.7405 (13) | C10—H10A | 0.9800 |
O1—C11 | 1.2095 (17) | C10—H10B | 0.9800 |
N1—C1 | 1.3181 (19) | C10—H10C | 0.9800 |
N1—C9 | 1.3713 (17) | C11—C12 | 1.4996 (19) |
C1—C2 | 1.4297 (18) | C12—H12A | 0.9800 |
C1—C10 | 1.5055 (19) | C12—H12B | 0.9800 |
C2—C3 | 1.3722 (17) | C12—H12C | 0.9800 |
C2—C11 | 1.5091 (19) | C13—C14 | 1.3956 (17) |
C3—C4 | 1.4250 (17) | C13—C18 | 1.3997 (18) |
C3—C13 | 1.4932 (17) | C14—C15 | 1.3912 (18) |
C4—C5 | 1.4137 (17) | C15—C16 | 1.3874 (19) |
C4—C9 | 1.4186 (17) | C15—H15 | 0.9500 |
C5—C6 | 1.3649 (17) | C16—C17 | 1.3860 (19) |
C5—H5 | 0.9500 | C16—H16 | 0.9500 |
C6—C7 | 1.4077 (18) | C17—C18 | 1.3871 (18) |
C7—C8 | 1.371 (2) | C17—H17 | 0.9500 |
C7—H7 | 0.9500 | C18—H18 | 0.9500 |
C8—C9 | 1.4150 (19) | ||
C1—N1—C9 | 118.31 (11) | C1—C10—H10C | 109.5 |
N1—C1—C2 | 122.63 (12) | H10A—C10—H10C | 109.5 |
N1—C1—C10 | 117.20 (13) | H10B—C10—H10C | 109.5 |
C2—C1—C10 | 120.16 (13) | O1—C11—C12 | 122.95 (13) |
C3—C2—C1 | 120.06 (12) | O1—C11—C2 | 120.52 (12) |
C3—C2—C11 | 120.27 (12) | C12—C11—C2 | 116.51 (12) |
C1—C2—C11 | 119.66 (11) | C11—C12—H12A | 109.5 |
C2—C3—C4 | 118.32 (11) | C11—C12—H12B | 109.5 |
C2—C3—C13 | 120.71 (11) | H12A—C12—H12B | 109.5 |
C4—C3—C13 | 120.96 (11) | C11—C12—H12C | 109.5 |
C5—C4—C9 | 119.40 (12) | H12A—C12—H12C | 109.5 |
C5—C4—C3 | 122.74 (11) | H12B—C12—H12C | 109.5 |
C9—C4—C3 | 117.86 (11) | C14—C13—C18 | 117.70 (11) |
C6—C5—C4 | 119.41 (12) | C14—C13—C3 | 122.28 (11) |
C6—C5—H5 | 120.3 | C18—C13—C3 | 120.00 (11) |
C4—C5—H5 | 120.3 | C15—C14—C13 | 121.65 (12) |
C5—C6—C7 | 122.21 (12) | C15—C14—Cl2 | 118.18 (10) |
C5—C6—Cl1 | 118.85 (10) | C13—C14—Cl2 | 120.13 (10) |
C7—C6—Cl1 | 118.94 (10) | C16—C15—C14 | 119.32 (12) |
C8—C7—C6 | 118.96 (12) | C16—C15—H15 | 120.3 |
C8—C7—H7 | 120.5 | C14—C15—H15 | 120.3 |
C6—C7—H7 | 120.5 | C17—C16—C15 | 120.22 (12) |
C7—C8—C9 | 120.97 (12) | C17—C16—H16 | 119.9 |
C7—C8—H8 | 119.5 | C15—C16—H16 | 119.9 |
C9—C8—H8 | 119.5 | C16—C17—C18 | 119.95 (12) |
N1—C9—C8 | 118.21 (12) | C16—C17—H17 | 120.0 |
N1—C9—C4 | 122.76 (12) | C18—C17—H17 | 120.0 |
C8—C9—C4 | 119.03 (12) | C17—C18—C13 | 121.15 (12) |
C1—C10—H10A | 109.5 | C17—C18—H18 | 119.4 |
C1—C10—H10B | 109.5 | C13—C18—H18 | 119.4 |
H10A—C10—H10B | 109.5 | ||
C9—N1—C1—C2 | −1.68 (19) | C7—C8—C9—C4 | −1.06 (19) |
C9—N1—C1—C10 | 179.92 (11) | C5—C4—C9—N1 | −178.00 (11) |
N1—C1—C2—C3 | 1.17 (19) | C3—C4—C9—N1 | 2.15 (18) |
C10—C1—C2—C3 | 179.53 (12) | C5—C4—C9—C8 | 2.05 (18) |
N1—C1—C2—C11 | −177.73 (12) | C3—C4—C9—C8 | −177.80 (11) |
C10—C1—C2—C11 | 0.63 (18) | C3—C2—C11—O1 | 102.83 (15) |
C1—C2—C3—C4 | 1.04 (17) | C1—C2—C11—O1 | −78.27 (17) |
C11—C2—C3—C4 | 179.94 (11) | C3—C2—C11—C12 | −78.41 (16) |
C1—C2—C3—C13 | 179.73 (11) | C1—C2—C11—C12 | 100.49 (15) |
C11—C2—C3—C13 | −1.37 (18) | C2—C3—C13—C14 | 110.11 (14) |
C2—C3—C4—C5 | 177.58 (11) | C4—C3—C13—C14 | −71.23 (16) |
C13—C3—C4—C5 | −1.11 (18) | C2—C3—C13—C18 | −68.30 (16) |
C2—C3—C4—C9 | −2.57 (17) | C4—C3—C13—C18 | 110.35 (14) |
C13—C3—C4—C9 | 178.74 (11) | C18—C13—C14—C15 | 0.86 (18) |
C9—C4—C5—C6 | −1.52 (18) | C3—C13—C14—C15 | −177.59 (12) |
C3—C4—C5—C6 | 178.33 (11) | C18—C13—C14—Cl2 | 178.64 (9) |
C4—C5—C6—C7 | −0.03 (19) | C3—C13—C14—Cl2 | 0.19 (17) |
C4—C5—C6—Cl1 | −179.77 (9) | C13—C14—C15—C16 | −1.16 (19) |
C5—C6—C7—C8 | 1.0 (2) | Cl2—C14—C15—C16 | −178.98 (10) |
Cl1—C6—C7—C8 | −179.22 (10) | C14—C15—C16—C17 | 0.3 (2) |
C6—C7—C8—C9 | −0.5 (2) | C15—C16—C17—C18 | 0.8 (2) |
C1—N1—C9—C8 | 179.94 (12) | C16—C17—C18—C13 | −1.13 (19) |
C1—N1—C9—C4 | −0.02 (19) | C14—C13—C18—C17 | 0.29 (18) |
C7—C8—C9—N1 | 178.98 (12) | C3—C13—C18—C17 | 178.78 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···O1i | 0.95 | 2.59 | 3.2460 (17) | 127 |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C18H13Cl2NO |
Mr | 330.22 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 10.3105 (6), 12.8882 (7), 11.7968 (7) |
β (°) | 93.367 (1) |
V (Å3) | 1564.90 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.42 |
Crystal size (mm) | 0.29 × 0.24 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.933, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14786, 3594, 3189 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.079, 1.03 |
No. of reflections | 3594 |
No. of parameters | 201 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.24 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···O1i | 0.95 | 2.59 | 3.2460 (17) | 127 |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Footnotes
‡Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.
Acknowledgements
VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45. Google Scholar
Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140. Web of Science CSD CrossRef CAS Google Scholar
Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Viji, A. J., Sarveswari, S., Vijayakumar, V., Tan, K. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1780. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
On-going structural studies of quinoline derivatives (Kaiser et al., 2009; Viji et al., 2010) are motivated by their potential pharmacological properties (Musiol et al., 2006). Herein, the crystal and molecular structure of the title compound (I) is described.
The non-hydrogen atoms comprising the quinoline nucleus in (I) are planar [r.m.s. deviation = 0.023 Å]. Each of the attached acetyl and benzene groups are twisted out of the plane of the quinoline residue as seen in the values of the C1–C2–C11–O1 and C2–C3–C13–C14 torsion angles of -78.27 (17) and 110.11 (14) °, respectively. The acetyl group and benzene ring are non-parallel with the dihedral angle between their least-squares planes being 58.01 (8) °. The acetyl-O and benzene-Cl atoms lie to opposite sides of the molecule.
The most prominent intermolecular interactions in the crystal structure are of the type C–H···O, Table 1, and Cl···O (Fourmigué, 2009). The C–H···O contacts lead to the formation of centrosymmetric dimers and these are connected into a 2-D array in the (1 0 1) plane by Cl···O interactions [Cl2···O1i = 3.0508 (11) Å for -1/2 + x, 3/2 - y, -1/2 + z].