organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[6-Chloro-4-(2-chloro­phen­yl)-2-methyl-3-quinol­yl]ethanone

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 July 2010; accepted 8 July 2010; online 14 July 2010)

The title compound, C18H13Cl2NO, features an essentially planar quinoline ring system (r.m.s. deviation = 0.023 Å) with the acetyl [C—C—C—O torsion angle = −78.27 (17)°] and benzene [C—C—C—C torsion angle = 110.11 (14)°] substituents being twisted out of the plane; the dihedral angle formed between the mean planes of these two substituents is 58.01 (8)°. The acetyl O and benzene-bound Cl atoms lie to opposite sides of the mol­ecule. Centrosymmetric aggregates mediated by pairs of C—H⋯O contacts are found in the crystal structure, and these are connected into a two-dimensional array in the ([\overline{1}]01) plane via Cl⋯O [3.0508 (11) Å] inter­actions.

Related literature

For background to the pharmaceutical potential of quinoline derivatives, see: Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]). For related structures, see: Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]); Viji et al. (2010[Viji, A. J., Sarveswari, S., Vijayakumar, V., Tan, K. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1780.]). For a review on halogen bonding, including short halogen⋯oxygen inter­actions, see: Fourmigué (2009[Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36-45.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Cl2NO

  • Mr = 330.22

  • Monoclinic, P 21 /n

  • a = 10.3105 (6) Å

  • b = 12.8882 (7) Å

  • c = 11.7968 (7) Å

  • β = 93.367 (1)°

  • V = 1564.90 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 100 K

  • 0.29 × 0.24 × 0.19 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.933, Tmax = 1.000

  • 14786 measured reflections

  • 3594 independent reflections

  • 3189 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.03

  • 3594 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.95 2.59 3.2460 (17) 127
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

On-going structural studies of quinoline derivatives (Kaiser et al., 2009; Viji et al., 2010) are motivated by their potential pharmacological properties (Musiol et al., 2006). Herein, the crystal and molecular structure of the title compound (I) is described.

The non-hydrogen atoms comprising the quinoline nucleus in (I) are planar [r.m.s. deviation = 0.023 Å]. Each of the attached acetyl and benzene groups are twisted out of the plane of the quinoline residue as seen in the values of the C1–C2–C11–O1 and C2–C3–C13–C14 torsion angles of -78.27 (17) and 110.11 (14) °, respectively. The acetyl group and benzene ring are non-parallel with the dihedral angle between their least-squares planes being 58.01 (8) °. The acetyl-O and benzene-Cl atoms lie to opposite sides of the molecule.

The most prominent intermolecular interactions in the crystal structure are of the type C–H···O, Table 1, and Cl···O (Fourmigué, 2009). The C–H···O contacts lead to the formation of centrosymmetric dimers and these are connected into a 2-D array in the (1 0 1) plane by Cl···O interactions [Cl2···O1i = 3.0508 (11) Å for -1/2 + x, 3/2 - y, -1/2 + z].

Related literature top

For background to the pharmaceutical potential of quinoline derivatives, see: Musiol et al. (2006). For related structures, see: Kaiser et al. (2009); Viji et al. (2010). For a review on halogen bonding, including short halogen···oxygen interactions, see: Fourmigué (2009).

Experimental top

A mixture of 2-amino-2',5-dichlorobenzophenone (0.01 M), acetylacetone (0.01 M) and a catalytic amount of conc. HCl was irradiated under 240 W for about 6 min. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and petroleum ether and recrystallized using ethanol. M. pt. 389 K. Yield: 58%

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Structure description top

On-going structural studies of quinoline derivatives (Kaiser et al., 2009; Viji et al., 2010) are motivated by their potential pharmacological properties (Musiol et al., 2006). Herein, the crystal and molecular structure of the title compound (I) is described.

The non-hydrogen atoms comprising the quinoline nucleus in (I) are planar [r.m.s. deviation = 0.023 Å]. Each of the attached acetyl and benzene groups are twisted out of the plane of the quinoline residue as seen in the values of the C1–C2–C11–O1 and C2–C3–C13–C14 torsion angles of -78.27 (17) and 110.11 (14) °, respectively. The acetyl group and benzene ring are non-parallel with the dihedral angle between their least-squares planes being 58.01 (8) °. The acetyl-O and benzene-Cl atoms lie to opposite sides of the molecule.

The most prominent intermolecular interactions in the crystal structure are of the type C–H···O, Table 1, and Cl···O (Fourmigué, 2009). The C–H···O contacts lead to the formation of centrosymmetric dimers and these are connected into a 2-D array in the (1 0 1) plane by Cl···O interactions [Cl2···O1i = 3.0508 (11) Å for -1/2 + x, 3/2 - y, -1/2 + z].

For background to the pharmaceutical potential of quinoline derivatives, see: Musiol et al. (2006). For related structures, see: Kaiser et al. (2009); Viji et al. (2010). For a review on halogen bonding, including short halogen···oxygen interactions, see: Fourmigué (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. 2-D array formed in the (1 0 1) plane in (I) mediated by C–H···O and Cl···O contacts shown as orange and purple dashed lines, respectively.
1-[6-Chloro-4-(2-chlorophenyl)-2-methyl-3-quinolyl]ethanone top
Crystal data top
C18H13Cl2NOF(000) = 680
Mr = 330.22Dx = 1.402 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6804 reflections
a = 10.3105 (6) Åθ = 2.3–28.2°
b = 12.8882 (7) ŵ = 0.42 mm1
c = 11.7968 (7) ÅT = 100 K
β = 93.367 (1)°Block, colourless
V = 1564.90 (16) Å30.29 × 0.24 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3594 independent reflections
Radiation source: fine-focus sealed tube3189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.933, Tmax = 1.000k = 1616
14786 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.6548P]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H13Cl2NOV = 1564.90 (16) Å3
Mr = 330.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3105 (6) ŵ = 0.42 mm1
b = 12.8882 (7) ÅT = 100 K
c = 11.7968 (7) Å0.29 × 0.24 × 0.19 mm
β = 93.367 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3594 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3189 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 1.000Rint = 0.025
14786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
3594 reflectionsΔρmin = 0.24 e Å3
201 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23962 (3)1.07600 (3)0.72582 (3)0.02312 (9)
Cl20.13655 (3)0.82921 (3)0.61673 (3)0.02099 (9)
O10.46437 (10)0.84047 (8)1.00816 (9)0.0300 (2)
N10.04450 (12)0.78055 (9)1.02995 (9)0.0227 (2)
C10.17096 (14)0.76859 (10)1.02455 (11)0.0212 (3)
C20.24419 (13)0.82174 (10)0.94326 (10)0.0175 (3)
C30.18344 (12)0.88978 (9)0.86805 (10)0.0150 (2)
C40.04755 (12)0.90673 (9)0.87489 (10)0.0155 (2)
C50.02314 (12)0.97804 (10)0.80428 (10)0.0160 (2)
H50.01991.01860.75070.019*
C60.15383 (12)0.98816 (10)0.81377 (10)0.0179 (3)
C70.22160 (13)0.92969 (11)0.89191 (11)0.0224 (3)
H70.31280.93740.89590.027*
C80.15385 (14)0.86143 (11)0.96212 (11)0.0234 (3)
H80.19870.82201.01550.028*
C90.01808 (13)0.84880 (10)0.95623 (10)0.0187 (3)
C100.23720 (17)0.69329 (11)1.10655 (12)0.0294 (3)
H10A0.17170.65651.14810.044*
H10B0.29570.73121.16040.044*
H10C0.28740.64321.06460.044*
C110.38793 (14)0.80115 (10)0.93929 (11)0.0209 (3)
C120.42837 (16)0.72882 (13)0.84825 (13)0.0326 (4)
H12A0.52190.71570.85840.049*
H12B0.40850.76030.77360.049*
H12C0.38110.66320.85320.049*
C130.25864 (12)0.94625 (10)0.78298 (10)0.0148 (2)
C140.24475 (12)0.92459 (10)0.66698 (10)0.0159 (2)
C150.31894 (13)0.97515 (10)0.58914 (11)0.0197 (3)
H150.30910.95840.51070.024*
C160.40740 (13)1.05034 (11)0.62726 (11)0.0208 (3)
H160.45821.08550.57470.025*
C170.42194 (13)1.07433 (10)0.74183 (12)0.0200 (3)
H170.48181.12650.76750.024*
C180.34908 (12)1.02213 (10)0.81890 (11)0.0173 (3)
H180.36081.03820.89740.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01579 (16)0.03008 (18)0.02304 (17)0.00616 (12)0.00267 (12)0.00421 (13)
Cl20.02021 (17)0.02349 (17)0.01915 (15)0.00465 (12)0.00013 (12)0.00655 (12)
O10.0281 (6)0.0284 (5)0.0319 (5)0.0051 (4)0.0132 (4)0.0042 (4)
N10.0347 (7)0.0172 (5)0.0166 (5)0.0016 (5)0.0055 (5)0.0005 (4)
C10.0338 (8)0.0147 (6)0.0150 (6)0.0018 (5)0.0001 (5)0.0009 (5)
C20.0224 (7)0.0147 (6)0.0152 (6)0.0014 (5)0.0015 (5)0.0043 (5)
C30.0174 (6)0.0141 (5)0.0133 (5)0.0003 (5)0.0004 (4)0.0027 (4)
C40.0173 (6)0.0146 (6)0.0148 (5)0.0012 (5)0.0015 (5)0.0031 (4)
C50.0158 (6)0.0169 (6)0.0157 (6)0.0009 (5)0.0028 (4)0.0017 (5)
C60.0163 (6)0.0211 (6)0.0159 (6)0.0010 (5)0.0009 (5)0.0056 (5)
C70.0155 (6)0.0306 (7)0.0217 (6)0.0043 (5)0.0059 (5)0.0076 (5)
C80.0248 (7)0.0261 (7)0.0204 (6)0.0070 (6)0.0097 (5)0.0034 (5)
C90.0246 (7)0.0162 (6)0.0157 (6)0.0026 (5)0.0045 (5)0.0029 (5)
C100.0456 (9)0.0204 (7)0.0217 (7)0.0052 (6)0.0018 (6)0.0041 (5)
C110.0242 (7)0.0172 (6)0.0207 (6)0.0055 (5)0.0039 (5)0.0016 (5)
C120.0279 (8)0.0373 (9)0.0320 (8)0.0138 (7)0.0028 (6)0.0102 (7)
C130.0122 (6)0.0159 (6)0.0163 (6)0.0035 (4)0.0007 (4)0.0002 (4)
C140.0138 (6)0.0163 (6)0.0174 (6)0.0010 (5)0.0009 (5)0.0028 (5)
C150.0192 (6)0.0242 (7)0.0160 (6)0.0026 (5)0.0021 (5)0.0002 (5)
C160.0174 (6)0.0223 (7)0.0232 (6)0.0006 (5)0.0058 (5)0.0027 (5)
C170.0138 (6)0.0194 (6)0.0270 (7)0.0009 (5)0.0021 (5)0.0031 (5)
C180.0142 (6)0.0194 (6)0.0181 (6)0.0019 (5)0.0005 (5)0.0031 (5)
Geometric parameters (Å, º) top
Cl1—C61.7415 (14)C8—H80.9500
Cl2—C141.7405 (13)C10—H10A0.9800
O1—C111.2095 (17)C10—H10B0.9800
N1—C11.3181 (19)C10—H10C0.9800
N1—C91.3713 (17)C11—C121.4996 (19)
C1—C21.4297 (18)C12—H12A0.9800
C1—C101.5055 (19)C12—H12B0.9800
C2—C31.3722 (17)C12—H12C0.9800
C2—C111.5091 (19)C13—C141.3956 (17)
C3—C41.4250 (17)C13—C181.3997 (18)
C3—C131.4932 (17)C14—C151.3912 (18)
C4—C51.4137 (17)C15—C161.3874 (19)
C4—C91.4186 (17)C15—H150.9500
C5—C61.3649 (17)C16—C171.3860 (19)
C5—H50.9500C16—H160.9500
C6—C71.4077 (18)C17—C181.3871 (18)
C7—C81.371 (2)C17—H170.9500
C7—H70.9500C18—H180.9500
C8—C91.4150 (19)
C1—N1—C9118.31 (11)C1—C10—H10C109.5
N1—C1—C2122.63 (12)H10A—C10—H10C109.5
N1—C1—C10117.20 (13)H10B—C10—H10C109.5
C2—C1—C10120.16 (13)O1—C11—C12122.95 (13)
C3—C2—C1120.06 (12)O1—C11—C2120.52 (12)
C3—C2—C11120.27 (12)C12—C11—C2116.51 (12)
C1—C2—C11119.66 (11)C11—C12—H12A109.5
C2—C3—C4118.32 (11)C11—C12—H12B109.5
C2—C3—C13120.71 (11)H12A—C12—H12B109.5
C4—C3—C13120.96 (11)C11—C12—H12C109.5
C5—C4—C9119.40 (12)H12A—C12—H12C109.5
C5—C4—C3122.74 (11)H12B—C12—H12C109.5
C9—C4—C3117.86 (11)C14—C13—C18117.70 (11)
C6—C5—C4119.41 (12)C14—C13—C3122.28 (11)
C6—C5—H5120.3C18—C13—C3120.00 (11)
C4—C5—H5120.3C15—C14—C13121.65 (12)
C5—C6—C7122.21 (12)C15—C14—Cl2118.18 (10)
C5—C6—Cl1118.85 (10)C13—C14—Cl2120.13 (10)
C7—C6—Cl1118.94 (10)C16—C15—C14119.32 (12)
C8—C7—C6118.96 (12)C16—C15—H15120.3
C8—C7—H7120.5C14—C15—H15120.3
C6—C7—H7120.5C17—C16—C15120.22 (12)
C7—C8—C9120.97 (12)C17—C16—H16119.9
C7—C8—H8119.5C15—C16—H16119.9
C9—C8—H8119.5C16—C17—C18119.95 (12)
N1—C9—C8118.21 (12)C16—C17—H17120.0
N1—C9—C4122.76 (12)C18—C17—H17120.0
C8—C9—C4119.03 (12)C17—C18—C13121.15 (12)
C1—C10—H10A109.5C17—C18—H18119.4
C1—C10—H10B109.5C13—C18—H18119.4
H10A—C10—H10B109.5
C9—N1—C1—C21.68 (19)C7—C8—C9—C41.06 (19)
C9—N1—C1—C10179.92 (11)C5—C4—C9—N1178.00 (11)
N1—C1—C2—C31.17 (19)C3—C4—C9—N12.15 (18)
C10—C1—C2—C3179.53 (12)C5—C4—C9—C82.05 (18)
N1—C1—C2—C11177.73 (12)C3—C4—C9—C8177.80 (11)
C10—C1—C2—C110.63 (18)C3—C2—C11—O1102.83 (15)
C1—C2—C3—C41.04 (17)C1—C2—C11—O178.27 (17)
C11—C2—C3—C4179.94 (11)C3—C2—C11—C1278.41 (16)
C1—C2—C3—C13179.73 (11)C1—C2—C11—C12100.49 (15)
C11—C2—C3—C131.37 (18)C2—C3—C13—C14110.11 (14)
C2—C3—C4—C5177.58 (11)C4—C3—C13—C1471.23 (16)
C13—C3—C4—C51.11 (18)C2—C3—C13—C1868.30 (16)
C2—C3—C4—C92.57 (17)C4—C3—C13—C18110.35 (14)
C13—C3—C4—C9178.74 (11)C18—C13—C14—C150.86 (18)
C9—C4—C5—C61.52 (18)C3—C13—C14—C15177.59 (12)
C3—C4—C5—C6178.33 (11)C18—C13—C14—Cl2178.64 (9)
C4—C5—C6—C70.03 (19)C3—C13—C14—Cl20.19 (17)
C4—C5—C6—Cl1179.77 (9)C13—C14—C15—C161.16 (19)
C5—C6—C7—C81.0 (2)Cl2—C14—C15—C16178.98 (10)
Cl1—C6—C7—C8179.22 (10)C14—C15—C16—C170.3 (2)
C6—C7—C8—C90.5 (2)C15—C16—C17—C180.8 (2)
C1—N1—C9—C8179.94 (12)C16—C17—C18—C131.13 (19)
C1—N1—C9—C40.02 (19)C14—C13—C18—C170.29 (18)
C7—C8—C9—N1178.98 (12)C3—C13—C18—C17178.78 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.593.2460 (17)127
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC18H13Cl2NO
Mr330.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.3105 (6), 12.8882 (7), 11.7968 (7)
β (°) 93.367 (1)
V3)1564.90 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.29 × 0.24 × 0.19
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.933, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14786, 3594, 3189
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.03
No. of reflections3594
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.593.2460 (17)127
Symmetry code: (i) x+1, y+2, z+2.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45.  Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViji, A. J., Sarveswari, S., Vijayakumar, V., Tan, K. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1780.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds