metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[2-(Iso­propyl­amino)­ethyl­imino­meth­yl]-5-meth­­oxy­phenolato}(thio­cyanato­-κN)nickel(II)

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 6 July 2010; accepted 8 July 2010; online 14 July 2010)

In the title mononuclear complex, [Ni(C13H19N2O2)(NCS)], the NiII ion is coordinated by one phenolate O atom, one imine N atom, and one amine N atom of a 2-[2-(isopropyl­amino)­ethyl­imino­meth­yl]-5-meth­oxy­phenolate Schiff base ligand, and by one N atom of a thio­cyanate ligand, forming a slightly distorted square-planar geometry.

Related literature

For background to the study of complexes with Schiff bases, see: Hamaker et al. (2010[Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34-39.]); Wang et al. (2010[Wang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33-36.]); Mirkhani et al. (2010[Mirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81-87.]); Liu & Yang (2009[Liu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080-5089.]); Keypour et al. (2009[Keypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem. 34, 835-839.]); Adhikary et al. (2009[Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573-3582.]); Peng et al. (2009[Peng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 39, 462-466.]). For related nickel complexes, see: Wang & Wei (2006[Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m599-m600.]); Wang (2007[Wang, S.-X. (2007). Acta Cryst. E63, m1946.]); Arıcı et al. (1999[Arıcı, C., Ercan, F., Atakol, O., Akay, A. & Ülkü, D. (1999). Acta Cryst. C55, 928-930.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H19N2O2)(NCS)]

  • Mr = 352.09

  • Monoclinic, P 21 /c

  • a = 12.5653 (10) Å

  • b = 11.5197 (9) Å

  • c = 12.6916 (10) Å

  • β = 119.393 (4)°

  • V = 1600.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 298 K

  • 0.25 × 0.23 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.729, Tmax = 0.756

  • 9225 measured reflections

  • 3458 independent reflections

  • 2494 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.160

  • S = 1.07

  • 3458 reflections

  • 196 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.830 (3)
Ni1—N1 1.846 (4)
Ni1—N3 1.876 (4)
Ni1—N2 1.949 (4)
O1—Ni1—N1 94.39 (16)
O1—Ni1—N3 89.12 (16)
N1—Ni1—N3 176.32 (19)
O1—Ni1—N2 175.67 (17)
N1—Ni1—N2 87.39 (19)
N3—Ni1—N2 89.03 (19)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have often been used as chelating ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A great number of complexes with Schiff bases have been reported for their interesting structures and applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title complex.

The NiII ion in the title complex is four-coordinated by one phenolate O atom, one imine N atom, and one amine N atom of a Schiff base ligand, and by one N atom of a thiocyanate ligand, forming a slightly distorted square planar geometry (Fig. 1). The bond lengths (Table 1) involving the Ni atom are comparable to those observed in similar nickel complexes (Wang & Wei, 2006; Wang, 2007).

Related literature top

For background to the study of complexes with Schiff bases, see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009); Keypour et al. (2009); Adhikary et al. (2009); Peng et al. (2009). For related nickel complexes, see: Wang & Wei (2006); Wang (2007); Arıcı et al. (1999).

Experimental top

4-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg) and N-isopropylethane-1,2-diamine (0.1 mmol, 10.2 mg) were mixed and stirred in methanol (10 ml) for 30 min. Then a methanol solution (5 ml) of nickel nitrate (0.1 mmol, 29.1 mg) was added to the mixture. The final mixture was stirred for another 30 min to give a red solution. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution at room temperature.

Refinement top

Atom H2 was located from a difference Fourier map and refined with an N—H distance restraint of 0.90 (1) Å and Uiso(H) = 0.08Å2. Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). Rotating models were used for the methyl groups.

Structure description top

Schiff bases have often been used as chelating ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A great number of complexes with Schiff bases have been reported for their interesting structures and applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title complex.

The NiII ion in the title complex is four-coordinated by one phenolate O atom, one imine N atom, and one amine N atom of a Schiff base ligand, and by one N atom of a thiocyanate ligand, forming a slightly distorted square planar geometry (Fig. 1). The bond lengths (Table 1) involving the Ni atom are comparable to those observed in similar nickel complexes (Wang & Wei, 2006; Wang, 2007).

For background to the study of complexes with Schiff bases, see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009); Keypour et al. (2009); Adhikary et al. (2009); Peng et al. (2009). For related nickel complexes, see: Wang & Wei (2006); Wang (2007); Arıcı et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
{2-[2-(Isopropylamino)ethyliminomethyl]-5-methoxyphenolato} (thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(C13H19N2O2)(NCS)]F(000) = 736
Mr = 352.09Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2662 reflections
a = 12.5653 (10) Åθ = 2.5–25.3°
b = 11.5197 (9) ŵ = 1.35 mm1
c = 12.6916 (10) ÅT = 298 K
β = 119.393 (4)°Block, red
V = 1600.6 (2) Å30.25 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3458 independent reflections
Radiation source: fine-focus sealed tube2494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1516
Tmin = 0.729, Tmax = 0.756k = 1412
9225 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0583P)2 + 2.8719P]
where P = (Fo2 + 2Fc2)/3
3458 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 0.60 e Å3
Crystal data top
[Ni(C13H19N2O2)(NCS)]V = 1600.6 (2) Å3
Mr = 352.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5653 (10) ŵ = 1.35 mm1
b = 11.5197 (9) ÅT = 298 K
c = 12.6916 (10) Å0.25 × 0.23 × 0.22 mm
β = 119.393 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3458 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2494 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.756Rint = 0.026
9225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.75 e Å3
3458 reflectionsΔρmin = 0.60 e Å3
196 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.94253 (5)0.61180 (5)0.55042 (5)0.0531 (2)
N10.8398 (4)0.6742 (3)0.4000 (3)0.0593 (10)
N21.0753 (4)0.6959 (4)0.5468 (4)0.0646 (11)
N31.0554 (4)0.5515 (4)0.7021 (4)0.0636 (11)
O10.8235 (3)0.5227 (3)0.5535 (3)0.0610 (8)
O20.4509 (3)0.3133 (4)0.4042 (3)0.0836 (12)
S11.24390 (18)0.4763 (2)0.92183 (14)0.1086 (7)
C10.6645 (4)0.5528 (4)0.3496 (4)0.0545 (11)
C20.7132 (4)0.5012 (4)0.4638 (4)0.0530 (11)
C30.6407 (4)0.4205 (4)0.4841 (4)0.0560 (11)
H30.67050.38690.56000.067*
C40.5259 (5)0.3910 (5)0.3922 (5)0.0639 (13)
C50.4792 (5)0.4400 (6)0.2774 (5)0.0773 (16)
H50.40260.41860.21520.093*
C60.5467 (5)0.5184 (5)0.2584 (5)0.0713 (15)
H60.51490.55170.18210.086*
C70.7299 (5)0.6411 (4)0.3259 (4)0.0621 (13)
H70.68990.67770.25100.075*
C80.8943 (6)0.7672 (5)0.3645 (5)0.0822 (17)
H8A0.88160.84160.39250.099*
H8B0.85810.77000.27720.099*
C91.0311 (6)0.7397 (6)0.4236 (5)0.0834 (18)
H9A1.04480.68180.37600.100*
H9B1.07580.80930.42620.100*
C101.1434 (5)0.7834 (5)0.6505 (5)0.0723 (15)
H101.15690.74370.72430.087*
C111.0702 (9)0.8835 (7)0.6392 (8)0.131 (3)
H11A1.11270.93150.70960.196*
H11B0.99380.85900.63170.196*
H11C1.05540.92690.56860.196*
C121.2673 (6)0.8053 (8)0.6660 (6)0.107 (2)
H12A1.25950.83620.59230.161*
H12B1.31220.73380.68540.161*
H12C1.30990.86010.73030.161*
C130.4892 (6)0.2617 (6)0.5198 (6)0.093 (2)
H13A0.56020.21460.54210.139*
H13B0.42460.21420.51590.139*
H13C0.50860.32160.57900.139*
C141.1335 (5)0.5202 (5)0.7934 (5)0.0619 (12)
H21.138 (3)0.645 (4)0.570 (5)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0558 (4)0.0484 (3)0.0500 (3)0.0051 (3)0.0219 (3)0.0044 (3)
N10.074 (3)0.046 (2)0.053 (2)0.0041 (19)0.028 (2)0.0084 (17)
N20.077 (3)0.053 (2)0.072 (3)0.005 (2)0.043 (2)0.005 (2)
N30.057 (2)0.064 (3)0.056 (2)0.006 (2)0.018 (2)0.006 (2)
O10.0469 (17)0.074 (2)0.0515 (17)0.0055 (16)0.0156 (14)0.0116 (16)
O20.065 (2)0.101 (3)0.075 (2)0.028 (2)0.0270 (19)0.026 (2)
S10.1005 (13)0.1439 (17)0.0576 (8)0.0531 (12)0.0204 (8)0.0087 (10)
C10.049 (2)0.061 (3)0.050 (2)0.011 (2)0.021 (2)0.004 (2)
C20.048 (2)0.058 (3)0.052 (2)0.008 (2)0.023 (2)0.006 (2)
C30.052 (3)0.063 (3)0.051 (2)0.003 (2)0.024 (2)0.002 (2)
C40.053 (3)0.073 (3)0.064 (3)0.005 (3)0.028 (2)0.020 (3)
C50.052 (3)0.097 (4)0.061 (3)0.005 (3)0.011 (2)0.016 (3)
C60.063 (3)0.084 (4)0.053 (3)0.009 (3)0.017 (2)0.005 (3)
C70.071 (3)0.057 (3)0.050 (3)0.022 (2)0.024 (2)0.012 (2)
C80.112 (5)0.059 (3)0.074 (4)0.006 (3)0.044 (3)0.012 (3)
C90.104 (5)0.076 (4)0.072 (4)0.026 (3)0.044 (3)0.004 (3)
C100.082 (4)0.058 (3)0.078 (3)0.021 (3)0.040 (3)0.010 (3)
C110.164 (8)0.104 (6)0.106 (6)0.043 (6)0.052 (5)0.027 (5)
C120.086 (5)0.146 (7)0.093 (5)0.027 (5)0.047 (4)0.015 (5)
C130.086 (4)0.110 (5)0.085 (4)0.042 (4)0.044 (4)0.022 (4)
C140.064 (3)0.063 (3)0.059 (3)0.002 (2)0.030 (3)0.006 (2)
Geometric parameters (Å, º) top
Ni1—O11.830 (3)C5—C61.340 (8)
Ni1—N11.846 (4)C5—H50.9300
Ni1—N31.876 (4)C6—H60.9300
Ni1—N21.949 (4)C7—H70.9300
N1—C71.290 (6)C8—C91.534 (8)
N1—C81.457 (7)C8—H8A0.9700
N2—C91.469 (7)C8—H8B0.9700
N2—C101.541 (6)C9—H9A0.9700
N2—H20.91 (5)C9—H9B0.9700
N3—C141.148 (6)C10—C111.436 (9)
O1—C21.315 (5)C10—C121.492 (8)
O2—C41.361 (6)C10—H100.9800
O2—C131.430 (7)C11—H11A0.9600
S1—C141.618 (5)C11—H11B0.9600
C1—C21.400 (6)C11—H11C0.9600
C1—C61.416 (7)C12—H12A0.9600
C1—C71.429 (7)C12—H12B0.9600
C2—C31.411 (7)C12—H12C0.9600
C3—C41.380 (7)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.395 (8)C13—H13C0.9600
O1—Ni1—N194.39 (16)C1—C7—H7117.4
O1—Ni1—N389.12 (16)N1—C8—C9106.3 (4)
N1—Ni1—N3176.32 (19)N1—C8—H8A110.5
O1—Ni1—N2175.67 (17)C9—C8—H8A110.5
N1—Ni1—N287.39 (19)N1—C8—H8B110.5
N3—Ni1—N289.03 (19)C9—C8—H8B110.5
C7—N1—C8119.3 (4)H8A—C8—H8B108.7
C7—N1—Ni1126.5 (4)N2—C9—C8109.8 (5)
C8—N1—Ni1114.2 (4)N2—C9—H9A109.7
C9—N2—C10116.5 (4)C8—C9—H9A109.7
C9—N2—Ni1108.3 (3)N2—C9—H9B109.7
C10—N2—Ni1115.3 (3)C8—C9—H9B109.7
C9—N2—H2113 (4)H9A—C9—H9B108.2
C10—N2—H297 (4)C11—C10—C12116.9 (7)
Ni1—N2—H2106 (4)C11—C10—N2112.3 (5)
C14—N3—Ni1173.1 (4)C12—C10—N2109.2 (5)
C2—O1—Ni1127.7 (3)C11—C10—H10105.8
C4—O2—C13119.0 (4)C12—C10—H10105.8
C2—C1—C6118.6 (5)N2—C10—H10105.8
C2—C1—C7121.1 (4)C10—C11—H11A109.5
C6—C1—C7120.3 (4)C10—C11—H11B109.5
O1—C2—C1123.8 (4)H11A—C11—H11B109.5
O1—C2—C3117.8 (4)C10—C11—H11C109.5
C1—C2—C3118.4 (4)H11A—C11—H11C109.5
C4—C3—C2120.6 (5)H11B—C11—H11C109.5
C4—C3—H3119.7C10—C12—H12A109.5
C2—C3—H3119.7C10—C12—H12B109.5
O2—C4—C3124.2 (5)H12A—C12—H12B109.5
O2—C4—C5115.1 (5)C10—C12—H12C109.5
C3—C4—C5120.8 (5)H12A—C12—H12C109.5
C6—C5—C4118.8 (5)H12B—C12—H12C109.5
C6—C5—H5120.6O2—C13—H13A109.5
C4—C5—H5120.6O2—C13—H13B109.5
C5—C6—C1122.8 (5)H13A—C13—H13B109.5
C5—C6—H6118.6O2—C13—H13C109.5
C1—C6—H6118.6H13A—C13—H13C109.5
N1—C7—C1125.2 (4)H13B—C13—H13C109.5
N1—C7—H7117.4N3—C14—S1179.7 (6)

Experimental details

Crystal data
Chemical formula[Ni(C13H19N2O2)(NCS)]
Mr352.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.5653 (10), 11.5197 (9), 12.6916 (10)
β (°) 119.393 (4)
V3)1600.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.25 × 0.23 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.729, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
9225, 3458, 2494
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.160, 1.07
No. of reflections3458
No. of parameters196
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.60

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O11.830 (3)Ni1—N31.876 (4)
Ni1—N11.846 (4)Ni1—N21.949 (4)
O1—Ni1—N194.39 (16)O1—Ni1—N2175.67 (17)
O1—Ni1—N389.12 (16)N1—Ni1—N287.39 (19)
N1—Ni1—N3176.32 (19)N3—Ni1—N289.03 (19)
 

Acknowledgements

The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.

References

First citationAdhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573–3582.  Web of Science CSD CrossRef CAS Google Scholar
First citationArıcı, C., Ercan, F., Atakol, O., Akay, A. & Ülkü, D. (1999). Acta Cryst. C55, 928–930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationKeypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem. 34, 835–839.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080–5089.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 39, 462–466.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-X. (2007). Acta Cryst. E63, m1946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m599–m600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33–36.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds