metal-organic compounds
{2-[2-(Isopropylamino)ethyliminomethyl]-5-methoxyphenolato}(thiocyanato-κN)nickel(II)
aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com
In the title mononuclear complex, [Ni(C13H19N2O2)(NCS)], the NiII ion is coordinated by one phenolate O atom, one imine N atom, and one amine N atom of a 2-[2-(isopropylamino)ethyliminomethyl]-5-methoxyphenolate Schiff base ligand, and by one N atom of a thiocyanate ligand, forming a slightly distorted square-planar geometry.
Related literature
For background to the study of complexes with et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009); Keypour et al. (2009); Adhikary et al. (2009); Peng et al. (2009). For related nickel complexes, see: Wang & Wei (2006); Wang (2007); Arıcı et al. (1999).
see: HamakerExperimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810027236/lh5081sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810027236/lh5081Isup2.hkl
4-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg) and N-isopropylethane-1,2-diamine (0.1 mmol, 10.2 mg) were mixed and stirred in methanol (10 ml) for 30 min. Then a methanol solution (5 ml) of nickel nitrate (0.1 mmol, 29.1 mg) was added to the mixture. The final mixture was stirred for another 30 min to give a red solution. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution at room temperature.
Atom H2 was located from a difference Fourier map and refined with an N—H distance restraint of 0.90 (1) Å and Uiso(H) = 0.08Å2. Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). Rotating models were used for the methyl groups.
Schiff bases have often been used as chelating ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A great number of complexes with
have been reported for their interesting structures and applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the of the title complex.The NiII ion in the title complex is four-coordinated by one phenolate O atom, one imine N atom, and one amine N atom of a Schiff base ligand, and by one N atom of a thiocyanate ligand, forming a slightly distorted square planar geometry (Fig. 1). The bond lengths (Table 1) involving the Ni atom are comparable to those observed in similar nickel complexes (Wang & Wei, 2006; Wang, 2007).
For background to the study of complexes with
see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009); Keypour et al. (2009); Adhikary et al. (2009); Peng et al. (2009). For related nickel complexes, see: Wang & Wei (2006); Wang (2007); Arıcı et al. (1999).Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. |
[Ni(C13H19N2O2)(NCS)] | F(000) = 736 |
Mr = 352.09 | Dx = 1.461 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2662 reflections |
a = 12.5653 (10) Å | θ = 2.5–25.3° |
b = 11.5197 (9) Å | µ = 1.35 mm−1 |
c = 12.6916 (10) Å | T = 298 K |
β = 119.393 (4)° | Block, red |
V = 1600.6 (2) Å3 | 0.25 × 0.23 × 0.22 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 3458 independent reflections |
Radiation source: fine-focus sealed tube | 2494 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 27.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→16 |
Tmin = 0.729, Tmax = 0.756 | k = −14→12 |
9225 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0583P)2 + 2.8719P] where P = (Fo2 + 2Fc2)/3 |
3458 reflections | (Δ/σ)max < 0.001 |
196 parameters | Δρmax = 0.75 e Å−3 |
1 restraint | Δρmin = −0.60 e Å−3 |
[Ni(C13H19N2O2)(NCS)] | V = 1600.6 (2) Å3 |
Mr = 352.09 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.5653 (10) Å | µ = 1.35 mm−1 |
b = 11.5197 (9) Å | T = 298 K |
c = 12.6916 (10) Å | 0.25 × 0.23 × 0.22 mm |
β = 119.393 (4)° |
Bruker APEXII CCD area-detector diffractometer | 3458 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2494 reflections with I > 2σ(I) |
Tmin = 0.729, Tmax = 0.756 | Rint = 0.026 |
9225 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 1 restraint |
wR(F2) = 0.160 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.75 e Å−3 |
3458 reflections | Δρmin = −0.60 e Å−3 |
196 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.94253 (5) | 0.61180 (5) | 0.55042 (5) | 0.0531 (2) | |
N1 | 0.8398 (4) | 0.6742 (3) | 0.4000 (3) | 0.0593 (10) | |
N2 | 1.0753 (4) | 0.6959 (4) | 0.5468 (4) | 0.0646 (11) | |
N3 | 1.0554 (4) | 0.5515 (4) | 0.7021 (4) | 0.0636 (11) | |
O1 | 0.8235 (3) | 0.5227 (3) | 0.5535 (3) | 0.0610 (8) | |
O2 | 0.4509 (3) | 0.3133 (4) | 0.4042 (3) | 0.0836 (12) | |
S1 | 1.24390 (18) | 0.4763 (2) | 0.92183 (14) | 0.1086 (7) | |
C1 | 0.6645 (4) | 0.5528 (4) | 0.3496 (4) | 0.0545 (11) | |
C2 | 0.7132 (4) | 0.5012 (4) | 0.4638 (4) | 0.0530 (11) | |
C3 | 0.6407 (4) | 0.4205 (4) | 0.4841 (4) | 0.0560 (11) | |
H3 | 0.6705 | 0.3869 | 0.5600 | 0.067* | |
C4 | 0.5259 (5) | 0.3910 (5) | 0.3922 (5) | 0.0639 (13) | |
C5 | 0.4792 (5) | 0.4400 (6) | 0.2774 (5) | 0.0773 (16) | |
H5 | 0.4026 | 0.4186 | 0.2152 | 0.093* | |
C6 | 0.5467 (5) | 0.5184 (5) | 0.2584 (5) | 0.0713 (15) | |
H6 | 0.5149 | 0.5517 | 0.1821 | 0.086* | |
C7 | 0.7299 (5) | 0.6411 (4) | 0.3259 (4) | 0.0621 (13) | |
H7 | 0.6899 | 0.6777 | 0.2510 | 0.075* | |
C8 | 0.8943 (6) | 0.7672 (5) | 0.3645 (5) | 0.0822 (17) | |
H8A | 0.8816 | 0.8416 | 0.3925 | 0.099* | |
H8B | 0.8581 | 0.7700 | 0.2772 | 0.099* | |
C9 | 1.0311 (6) | 0.7397 (6) | 0.4236 (5) | 0.0834 (18) | |
H9A | 1.0448 | 0.6818 | 0.3760 | 0.100* | |
H9B | 1.0758 | 0.8093 | 0.4262 | 0.100* | |
C10 | 1.1434 (5) | 0.7834 (5) | 0.6505 (5) | 0.0723 (15) | |
H10 | 1.1569 | 0.7437 | 0.7243 | 0.087* | |
C11 | 1.0702 (9) | 0.8835 (7) | 0.6392 (8) | 0.131 (3) | |
H11A | 1.1127 | 0.9315 | 0.7096 | 0.196* | |
H11B | 0.9938 | 0.8590 | 0.6317 | 0.196* | |
H11C | 1.0554 | 0.9269 | 0.5686 | 0.196* | |
C12 | 1.2673 (6) | 0.8053 (8) | 0.6660 (6) | 0.107 (2) | |
H12A | 1.2595 | 0.8362 | 0.5923 | 0.161* | |
H12B | 1.3122 | 0.7338 | 0.6854 | 0.161* | |
H12C | 1.3099 | 0.8601 | 0.7303 | 0.161* | |
C13 | 0.4892 (6) | 0.2617 (6) | 0.5198 (6) | 0.093 (2) | |
H13A | 0.5602 | 0.2146 | 0.5421 | 0.139* | |
H13B | 0.4246 | 0.2142 | 0.5159 | 0.139* | |
H13C | 0.5086 | 0.3216 | 0.5790 | 0.139* | |
C14 | 1.1335 (5) | 0.5202 (5) | 0.7934 (5) | 0.0619 (12) | |
H2 | 1.138 (3) | 0.645 (4) | 0.570 (5) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0558 (4) | 0.0484 (3) | 0.0500 (3) | −0.0051 (3) | 0.0219 (3) | 0.0044 (3) |
N1 | 0.074 (3) | 0.046 (2) | 0.053 (2) | 0.0041 (19) | 0.028 (2) | 0.0084 (17) |
N2 | 0.077 (3) | 0.053 (2) | 0.072 (3) | −0.005 (2) | 0.043 (2) | −0.005 (2) |
N3 | 0.057 (2) | 0.064 (3) | 0.056 (2) | −0.006 (2) | 0.018 (2) | 0.006 (2) |
O1 | 0.0469 (17) | 0.074 (2) | 0.0515 (17) | −0.0055 (16) | 0.0156 (14) | 0.0116 (16) |
O2 | 0.065 (2) | 0.101 (3) | 0.075 (2) | −0.028 (2) | 0.0270 (19) | −0.026 (2) |
S1 | 0.1005 (13) | 0.1439 (17) | 0.0576 (8) | 0.0531 (12) | 0.0204 (8) | 0.0087 (10) |
C1 | 0.049 (2) | 0.061 (3) | 0.050 (2) | 0.011 (2) | 0.021 (2) | 0.004 (2) |
C2 | 0.048 (2) | 0.058 (3) | 0.052 (2) | 0.008 (2) | 0.023 (2) | −0.006 (2) |
C3 | 0.052 (3) | 0.063 (3) | 0.051 (2) | −0.003 (2) | 0.024 (2) | −0.002 (2) |
C4 | 0.053 (3) | 0.073 (3) | 0.064 (3) | −0.005 (3) | 0.028 (2) | −0.020 (3) |
C5 | 0.052 (3) | 0.097 (4) | 0.061 (3) | 0.005 (3) | 0.011 (2) | −0.016 (3) |
C6 | 0.063 (3) | 0.084 (4) | 0.053 (3) | 0.009 (3) | 0.017 (2) | 0.005 (3) |
C7 | 0.071 (3) | 0.057 (3) | 0.050 (3) | 0.022 (2) | 0.024 (2) | 0.012 (2) |
C8 | 0.112 (5) | 0.059 (3) | 0.074 (4) | −0.006 (3) | 0.044 (3) | 0.012 (3) |
C9 | 0.104 (5) | 0.076 (4) | 0.072 (4) | −0.026 (3) | 0.044 (3) | 0.004 (3) |
C10 | 0.082 (4) | 0.058 (3) | 0.078 (3) | −0.021 (3) | 0.040 (3) | −0.010 (3) |
C11 | 0.164 (8) | 0.104 (6) | 0.106 (6) | 0.043 (6) | 0.052 (5) | −0.027 (5) |
C12 | 0.086 (5) | 0.146 (7) | 0.093 (5) | −0.027 (5) | 0.047 (4) | −0.015 (5) |
C13 | 0.086 (4) | 0.110 (5) | 0.085 (4) | −0.042 (4) | 0.044 (4) | −0.022 (4) |
C14 | 0.064 (3) | 0.063 (3) | 0.059 (3) | 0.002 (2) | 0.030 (3) | −0.006 (2) |
Ni1—O1 | 1.830 (3) | C5—C6 | 1.340 (8) |
Ni1—N1 | 1.846 (4) | C5—H5 | 0.9300 |
Ni1—N3 | 1.876 (4) | C6—H6 | 0.9300 |
Ni1—N2 | 1.949 (4) | C7—H7 | 0.9300 |
N1—C7 | 1.290 (6) | C8—C9 | 1.534 (8) |
N1—C8 | 1.457 (7) | C8—H8A | 0.9700 |
N2—C9 | 1.469 (7) | C8—H8B | 0.9700 |
N2—C10 | 1.541 (6) | C9—H9A | 0.9700 |
N2—H2 | 0.91 (5) | C9—H9B | 0.9700 |
N3—C14 | 1.148 (6) | C10—C11 | 1.436 (9) |
O1—C2 | 1.315 (5) | C10—C12 | 1.492 (8) |
O2—C4 | 1.361 (6) | C10—H10 | 0.9800 |
O2—C13 | 1.430 (7) | C11—H11A | 0.9600 |
S1—C14 | 1.618 (5) | C11—H11B | 0.9600 |
C1—C2 | 1.400 (6) | C11—H11C | 0.9600 |
C1—C6 | 1.416 (7) | C12—H12A | 0.9600 |
C1—C7 | 1.429 (7) | C12—H12B | 0.9600 |
C2—C3 | 1.411 (7) | C12—H12C | 0.9600 |
C3—C4 | 1.380 (7) | C13—H13A | 0.9600 |
C3—H3 | 0.9300 | C13—H13B | 0.9600 |
C4—C5 | 1.395 (8) | C13—H13C | 0.9600 |
O1—Ni1—N1 | 94.39 (16) | C1—C7—H7 | 117.4 |
O1—Ni1—N3 | 89.12 (16) | N1—C8—C9 | 106.3 (4) |
N1—Ni1—N3 | 176.32 (19) | N1—C8—H8A | 110.5 |
O1—Ni1—N2 | 175.67 (17) | C9—C8—H8A | 110.5 |
N1—Ni1—N2 | 87.39 (19) | N1—C8—H8B | 110.5 |
N3—Ni1—N2 | 89.03 (19) | C9—C8—H8B | 110.5 |
C7—N1—C8 | 119.3 (4) | H8A—C8—H8B | 108.7 |
C7—N1—Ni1 | 126.5 (4) | N2—C9—C8 | 109.8 (5) |
C8—N1—Ni1 | 114.2 (4) | N2—C9—H9A | 109.7 |
C9—N2—C10 | 116.5 (4) | C8—C9—H9A | 109.7 |
C9—N2—Ni1 | 108.3 (3) | N2—C9—H9B | 109.7 |
C10—N2—Ni1 | 115.3 (3) | C8—C9—H9B | 109.7 |
C9—N2—H2 | 113 (4) | H9A—C9—H9B | 108.2 |
C10—N2—H2 | 97 (4) | C11—C10—C12 | 116.9 (7) |
Ni1—N2—H2 | 106 (4) | C11—C10—N2 | 112.3 (5) |
C14—N3—Ni1 | 173.1 (4) | C12—C10—N2 | 109.2 (5) |
C2—O1—Ni1 | 127.7 (3) | C11—C10—H10 | 105.8 |
C4—O2—C13 | 119.0 (4) | C12—C10—H10 | 105.8 |
C2—C1—C6 | 118.6 (5) | N2—C10—H10 | 105.8 |
C2—C1—C7 | 121.1 (4) | C10—C11—H11A | 109.5 |
C6—C1—C7 | 120.3 (4) | C10—C11—H11B | 109.5 |
O1—C2—C1 | 123.8 (4) | H11A—C11—H11B | 109.5 |
O1—C2—C3 | 117.8 (4) | C10—C11—H11C | 109.5 |
C1—C2—C3 | 118.4 (4) | H11A—C11—H11C | 109.5 |
C4—C3—C2 | 120.6 (5) | H11B—C11—H11C | 109.5 |
C4—C3—H3 | 119.7 | C10—C12—H12A | 109.5 |
C2—C3—H3 | 119.7 | C10—C12—H12B | 109.5 |
O2—C4—C3 | 124.2 (5) | H12A—C12—H12B | 109.5 |
O2—C4—C5 | 115.1 (5) | C10—C12—H12C | 109.5 |
C3—C4—C5 | 120.8 (5) | H12A—C12—H12C | 109.5 |
C6—C5—C4 | 118.8 (5) | H12B—C12—H12C | 109.5 |
C6—C5—H5 | 120.6 | O2—C13—H13A | 109.5 |
C4—C5—H5 | 120.6 | O2—C13—H13B | 109.5 |
C5—C6—C1 | 122.8 (5) | H13A—C13—H13B | 109.5 |
C5—C6—H6 | 118.6 | O2—C13—H13C | 109.5 |
C1—C6—H6 | 118.6 | H13A—C13—H13C | 109.5 |
N1—C7—C1 | 125.2 (4) | H13B—C13—H13C | 109.5 |
N1—C7—H7 | 117.4 | N3—C14—S1 | 179.7 (6) |
Experimental details
Crystal data | |
Chemical formula | [Ni(C13H19N2O2)(NCS)] |
Mr | 352.09 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 12.5653 (10), 11.5197 (9), 12.6916 (10) |
β (°) | 119.393 (4) |
V (Å3) | 1600.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.35 |
Crystal size (mm) | 0.25 × 0.23 × 0.22 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.729, 0.756 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9225, 3458, 2494 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.160, 1.07 |
No. of reflections | 3458 |
No. of parameters | 196 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.75, −0.60 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ni1—O1 | 1.830 (3) | Ni1—N3 | 1.876 (4) |
Ni1—N1 | 1.846 (4) | Ni1—N2 | 1.949 (4) |
O1—Ni1—N1 | 94.39 (16) | O1—Ni1—N2 | 175.67 (17) |
O1—Ni1—N3 | 89.12 (16) | N1—Ni1—N2 | 87.39 (19) |
N1—Ni1—N3 | 176.32 (19) | N3—Ni1—N2 | 89.03 (19) |
Acknowledgements
The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.
References
Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573–3582. Web of Science CSD CrossRef CAS Google Scholar
Arıcı, C., Ercan, F., Atakol, O., Akay, A. & Ülkü, D. (1999). Acta Cryst. C55, 928–930. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34–39. Web of Science CSD CrossRef CAS Google Scholar
Keypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem. 34, 835–839. Web of Science CSD CrossRef CAS Google Scholar
Liu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080–5089. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81–87. Web of Science CSD CrossRef CAS Google Scholar
Peng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 39, 462–466. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, S.-X. (2007). Acta Cryst. E63, m1946. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m599–m600. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33–36. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have often been used as chelating ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A great number of complexes with Schiff bases have been reported for their interesting structures and applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title complex.
The NiII ion in the title complex is four-coordinated by one phenolate O atom, one imine N atom, and one amine N atom of a Schiff base ligand, and by one N atom of a thiocyanate ligand, forming a slightly distorted square planar geometry (Fig. 1). The bond lengths (Table 1) involving the Ni atom are comparable to those observed in similar nickel complexes (Wang & Wei, 2006; Wang, 2007).