organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic form I of clopidogrel hydrogen sulfate from powder diffraction data

aDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation, and bJSC "Active Component", bld. 5A, Road to Metallostroy, Metallostroy, Saint Petersburg, 196641, Russian Federation
*Correspondence e-mail: vladimir@struct.chem.msu.ru

(Received 6 July 2010; accepted 19 July 2010; online 24 July 2010)

The asymmetric unit of the title compound, C16H17ClNO2S+·HSO4, (I) [systematic name: (+)-(S)-5-[(2-chloro­phen­yl)(meth­oxy­carbon­yl)meth­yl]-4,5,6,7-tetra­hydro­thieno[3,2-c]pyridin-5-ium hydrogen sulfate], contains two independent cations of clopidogrel and two independent hydrogensulfate anions. The two independent cations are of similar conformation; however, this differs from that observed in ortho­rhom­bic form (II) [Bousquet et al. (2003[Bousquet, A., Castro, B. & Germain, J. S. (2003). US Patent No. 6 504 030.]). US Patent No. 6 504 030]. The H—N—Cchiral—H fragment shows a trans conformation in both independent cations in (I) and a gauche conformation in (II). In (I), classical inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link two independent cations and two independent anions into an isolated cluster, in which two cations inter­act with one anion only via N—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯O hydrogen bonds further consolidate the crystal packing.

Related literature

For the characterization of six polymorphic forms of Clopidogrel hydrogensulfate, see: Badorc & Frehel (1989[Badorc, A. & Frehel, D. (1989). US Patent No. 4 847 265.]) (form I); Bousquet et al. (2003[Bousquet, A., Castro, B. & Germain, J. S. (2003). US Patent No. 6 504 030.]) (ortho­rhom­bic form II); Lifshitz-Liron et al. (2006[Lifshitz-Liron, R., Kovalevski-Ishai, E., Wizel, S., Avhar-Maydan, S. & Lidor-Hadas, R. (2006). US Patent No. 7 074 928.]) (forms III-VI). For recent studies of forms I and II, see: Raijada et al. (2010[Raijada, D. K., Prasad, B., Paudel, A., Shah, R. P. & Singh, S. (2010). J. Pharm. Biomed. Anal. 52, 332-344.]); Zupancic et al. (2010[Zupancic, V., Kotar-Jordan, B., Plevnik, M., Smrkolj, M. & Vrecer, F. (2010). Pharmazie, 65, 388-389.]); Srivastava et al. (2010[Srivastava, A., Mishra, S., Tandon, P., Patel, S., Ayala, A. P., Bansal, A. K. & Siesler, H. W. (2010). J. Mol. Struct. 964, 88-96.]); Song et al. (2010[Song, L., Li, M. & Gong, J. (2010). J. Chem. Eng. Data. DOI:10.1021/je100022w. ]). For details of the indexing algorithm, see: Werner et al. (1985[Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.]). The methodology of the refinement (including applied restraints and constraints) was described in detail by Chernyshev et al. (2009[Chernyshev, V. V., Machula, A. A., Kukushkin, S. Y. & Velikodny, Y. A. (2009). Acta Cryst. E65, o2020-o2021.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17ClNO2S+·HSO4

  • Mr = 419.89

  • Monoclinic, P 21

  • a = 10.4315 (12) Å

  • b = 15.3345 (18) Å

  • c = 12.6320 (16) Å

  • β = 113.28 (2)°

  • V = 1856.1 (5) Å3

  • Z = 4

  • Cu Kα1 radiation, λ = 1.54059 Å

  • μ = 4.23 mm−1

  • T = 295 K

  • Flat sheet, 15 × 1 mm

Data collection
  • Guinier camera G670 diffractometer

  • Specimen mounting: thin layer in the specimen holder of the camera

  • Data collection mode: transmission

  • Scan method: continuous

  • 2θmin = 4.00°, 2θmax = 90.00°, 2θstep = 0.01°

Refinement
  • Rp = 0.019

  • Rwp = 0.025

  • Rexp = 0.015

  • RBragg = 0.049

  • χ2 = 2.982

  • 8601 data points

  • 205 parameters

  • 155 restraints

  • H-atom parameters not refined

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5A—H5A⋯O3A 0.91 1.91 2.785 (16) 161
N5B—H5B⋯O6A 0.91 1.94 2.795 (19) 157
O5A—H51⋯O6B 0.82 1.85 2.640 (17) 161
O5B—H52⋯O4A 0.82 1.82 2.567 (17) 152
C4A—H4A1⋯O4Bi 0.97 2.35 3.17 (2) 142
C4A—H4A2⋯O1B 0.97 2.52 3.225 (17) 129
C3B—H3B⋯O4Bii 0.93 2.41 3.28 (2) 154
C6A—H6A2⋯O3Bi 0.97 2.31 3.175 (19) 149
C4B—H4B2⋯O3Biii 0.97 2.23 3.13 (2) 154
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+2]; (ii) x, y, z-1; (iii) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002[Huber (2002). G670 Imaging Plate Guinier Camera Software. Huber Diffraktionstechnik GmbH, Rimsting, Germany.]); cell refinement: MRIA (Zlokazov & Chernyshev, 1992[Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.]); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001[Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5-9.]); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Clopidogrel hydrogensulfate is an antiplatelet drug, which acts by selective and irreversible inhibition of ADP-induced platelet aggregation. The drug is available in the market as oral solid dosage form. Six different polymorphs are known for the drug - I (Badorc & Frehel, 1989), II (Bousquet et al., 2003) and III-VI (Lifshitz-Liron et al., 2006). However, only polymorphs I and II are used in pharmaceutical formulations (Bousquet et al., 2003), and, therefore, they are under intensive studies (Raijada et al., 2010; Zupan˘ci˘c et al., 2010; Srivastava et al., 2010; Song et al., 2010). The crystal structure of orthorhombic polymorph II has been reported by Bousquet et al. (2003). Herewith we report the crystal structure of the monoclinic polymorph I.

The asymmetric unit of I (Fig. 1), contains two independent cations of clopidogrel and two independent hydrogensulfate anions. The two independent cations are of similar conformation, which, however, differs from that observed in II. The H–N—Cchiral–H fragment shows a trans conformation in both independent cations in I and a gauche conformation in II.

The hydrogen-bonding motifs in I and II are essentially different too. In I, the classical intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link two independent cations and two independent anions into isolated cluster, where two cations interact with one anion only via N—H···O hydrogen bonds (Fig. 1). Weak intermolecular C—H···O hydrogen bonds (Table 1) consolidate further the crystal packing of I. In II, O—H···O hydrogen bonds link anions into linear chains, while N—H···O hydrogen bond attach one cation to one anion. These differences in crystal packings of Forms I and II may explain why II exhibits a lower solubility (and is more stable) than I.

Related literature top

For the characterization of six polymorphic forms of Clopidogrel hydrogensulfate, see: Badorc & Frehel (1989) (form I); Bousquet et al. (2003) (orthorhombic form II); Lifshitz-Liron et al. (2006) (forms III-VI). For recent studies of forms I and II, see: Raijada et al. (2010); Zupan˘ci˘c et al. (2010); Srivastava et al. (2010); Song et al. (2010). For details of the indexing algorithm, see: Werner et al. (1985). The methodology of the refinement (including applied restraints and constraints) was described in detail by Chernyshev et al. (2009).

Experimental top

The title compound I was synthesized in accordance with the known procedure (Badorc & Frehel, 1989), and obtained as a white polycrystalline powder. Optical rotation [α]D +53.8° (c<ι> 1.9, CH3OH).

Refinement top

During the exposure, the specimen was spun in its plane to improve particle statistics. The monoclinic unit-cell dimensions were determined with the indexing program TREOR (Werner et al., 1985), M20=37, using the first 30 peak positions. The same monoclinic unit-cell dimensions were reported in 2003 by Martin Vickers at http://img.chem.ucl.ac.uk/www/reports/clopi/clopi.htm.

The structure of was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in (Chernyshev et al., 2009). For non-H atoms, ten independent Uiso parameters were refined - six for six independent Cl and S atoms, two common Uiso for two groups of anion' oxygen atoms, and two common Uiso for the rest atoms in independent cations. H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Structure description top

Clopidogrel hydrogensulfate is an antiplatelet drug, which acts by selective and irreversible inhibition of ADP-induced platelet aggregation. The drug is available in the market as oral solid dosage form. Six different polymorphs are known for the drug - I (Badorc & Frehel, 1989), II (Bousquet et al., 2003) and III-VI (Lifshitz-Liron et al., 2006). However, only polymorphs I and II are used in pharmaceutical formulations (Bousquet et al., 2003), and, therefore, they are under intensive studies (Raijada et al., 2010; Zupan˘ci˘c et al., 2010; Srivastava et al., 2010; Song et al., 2010). The crystal structure of orthorhombic polymorph II has been reported by Bousquet et al. (2003). Herewith we report the crystal structure of the monoclinic polymorph I.

The asymmetric unit of I (Fig. 1), contains two independent cations of clopidogrel and two independent hydrogensulfate anions. The two independent cations are of similar conformation, which, however, differs from that observed in II. The H–N—Cchiral–H fragment shows a trans conformation in both independent cations in I and a gauche conformation in II.

The hydrogen-bonding motifs in I and II are essentially different too. In I, the classical intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link two independent cations and two independent anions into isolated cluster, where two cations interact with one anion only via N—H···O hydrogen bonds (Fig. 1). Weak intermolecular C—H···O hydrogen bonds (Table 1) consolidate further the crystal packing of I. In II, O—H···O hydrogen bonds link anions into linear chains, while N—H···O hydrogen bond attach one cation to one anion. These differences in crystal packings of Forms I and II may explain why II exhibits a lower solubility (and is more stable) than I.

For the characterization of six polymorphic forms of Clopidogrel hydrogensulfate, see: Badorc & Frehel (1989) (form I); Bousquet et al. (2003) (orthorhombic form II); Lifshitz-Liron et al. (2006) (forms III-VI). For recent studies of forms I and II, see: Raijada et al. (2010); Zupan˘ci˘c et al. (2010); Srivastava et al. (2010); Song et al. (2010). For details of the indexing algorithm, see: Werner et al. (1985). The methodology of the refinement (including applied restraints and constraints) was described in detail by Chernyshev et al. (2009).

Computing details top

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software (Huber, 2002); program(s) used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of I showing the atomic labeling and 40% probability displacement spheres. Dashed lines denote classical N—H···O and O—H···O hydrogen bonds.
[Figure 2] Fig. 2. The Rietveld plot, showing the observed and difference profiles for I. The reflection positions are shown above the difference profile.
(+)-(S)-5-[(2-chlorophenyl)(methoxycarbonyl)methyl]-4,5,6,7- tetrahydrothieno[3,2-c]pyridin-5-ium hydrogen sulfate] top
Crystal data top
C16H17ClNO2S+·HSO4Dx = 1.503 Mg m3
Mr = 419.89Melting point: 455(3) K
Monoclinic, P21Cu Kα1 radiation, λ = 1.54059 Å
a = 10.4315 (12) ŵ = 4.23 mm1
b = 15.3345 (18) ÅT = 295 K
c = 12.6320 (16) ÅParticle morphology: plate
β = 113.28 (2)°white
V = 1856.1 (5) Å3flat sheet, 15 × 1 mm
Z = 4Specimen preparation: Prepared at 295 K and 101 kPa
F(000) = 872
Data collection top
Guinier camera G670
diffractometer
Data collection mode: transmission
Radiation source: line-focus sealed tubeScan method: continuous
Curved Germanium (111) monochromator2θmin = 4.00°, 2θmax = 90.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera
Refinement top
Refinement on Inet205 parameters
Least-squares matrix: full with fixed elements per cycle155 restraints
Rp = 0.01942 constraints
Rwp = 0.025H-atom parameters not refined
Rexp = 0.015Weighting scheme based on measured s.u.'s
RBragg = 0.049(Δ/σ)max = 0.001
8601 data pointsBackground function: Chebyshev polynomial up to the 5th order
Excluded region(s): nonePreferred orientation correction: none
Profile function: split-type pseudo-Voigt (Toraya, 1986)
Crystal data top
C16H17ClNO2S+·HSO4V = 1856.1 (5) Å3
Mr = 419.89Z = 4
Monoclinic, P21Cu Kα1 radiation, λ = 1.54059 Å
a = 10.4315 (12) ŵ = 4.23 mm1
b = 15.3345 (18) ÅT = 295 K
c = 12.6320 (16) Åflat sheet, 15 × 1 mm
β = 113.28 (2)°
Data collection top
Guinier camera G670
diffractometer
Scan method: continuous
Specimen mounting: thin layer in the specimen holder of the camera2θmin = 4.00°, 2θmax = 90.00°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Rp = 0.0198601 data points
Rwp = 0.025205 parameters
Rexp = 0.015155 restraints
RBragg = 0.049H-atom parameters not refined
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.4095 (4)0.6092 (3)1.1269 (4)0.0731 (15)*
S1A0.2971 (4)0.6556 (3)0.6216 (4)0.0642 (15)*
O1A0.2960 (8)0.9086 (7)0.9643 (8)0.065 (3)*
O2A0.2551 (8)0.8678 (6)1.1168 (7)0.065 (4)*
C2A0.2033 (15)0.5796 (11)0.5834 (13)0.066 (6)*
H2A0.24060.54480.51810.079*
C3A0.0682 (14)0.5760 (10)0.6594 (12)0.065 (6)*
H3A0.00300.53650.65470.078*
C4A0.1068 (13)0.6546 (11)0.8382 (12)0.065 (5)*
H4A10.12570.61250.89990.078*
H4A20.17510.64630.80480.078*
N5A0.1194 (10)0.7458 (9)0.8865 (9)0.065 (4)*
H5A0.12120.78310.83100.078*
C6A0.0077 (15)0.7685 (9)0.9103 (12)0.066 (6)*
H6A10.00630.82550.94640.079*
H6A20.01610.72660.96470.079*
C7A0.1428 (14)0.7696 (10)0.8044 (12)0.065 (6)*
H7A10.22140.77280.82690.078*
H7A20.14550.82010.75740.078*
C8A0.2536 (14)0.7586 (10)0.9906 (12)0.065 (6)*
H8A0.24910.72621.05590.078*
C9A0.3733 (14)0.7242 (10)0.9634 (12)0.065 (6)*
C10A0.4519 (12)0.6534 (11)1.0198 (12)0.065 (6)*
C11A0.5690 (13)0.6242 (10)1.0020 (12)0.065 (6)*
H11A0.62230.57661.04060.078*
C12A0.5986 (14)0.6727 (11)0.9213 (12)0.065 (6)*
H12A0.67030.65290.90130.078*
C13A0.5311 (13)0.7470 (11)0.8691 (12)0.065 (5)*
H13A0.56170.77920.82130.078*
C14A0.4160 (14)0.7729 (9)0.8893 (12)0.065 (6)*
H14A0.36690.82260.85360.078*
C15A0.2739 (15)0.8538 (10)1.0203 (12)0.065 (5)*
C16A0.2910 (14)0.9531 (10)1.1684 (13)0.066 (6)*
H16A0.27310.95531.23730.098*
H16B0.23570.99641.11510.098*
H16C0.38810.96421.18730.098*
C17A0.1513 (14)0.6881 (10)0.7374 (12)0.065 (6)*
C18A0.0391 (13)0.6396 (10)0.7466 (12)0.065 (6)*
Cl1B0.4361 (4)0.7397 (3)0.3437 (4)0.0692 (14)*
S1B0.3489 (4)0.8614 (3)0.1741 (4)0.0670 (16)*
O1B0.1492 (9)0.6692 (7)0.5994 (8)0.072 (4)*
O2B0.3318 (9)0.6156 (6)0.5793 (8)0.072 (4)*
C2B0.2713 (14)0.9258 (11)0.1059 (12)0.072 (6)*
H2B0.31890.96640.04930.086*
C3B0.1318 (13)0.9106 (12)0.1440 (12)0.072 (6)*
H3B0.07320.93780.11460.087*
C4B0.0592 (15)0.8170 (11)0.2903 (13)0.072 (6)*
H4B10.12220.86650.31240.086*
H4B20.08220.78190.23630.086*
N5B0.0783 (11)0.7634 (8)0.3955 (10)0.072 (5)*
H5B0.06690.80060.44720.086*
C6B0.0383 (15)0.6974 (10)0.3650 (13)0.072 (6)*
H6B10.01910.65780.42930.086*
H6B20.04110.66340.29930.086*
C7B0.1796 (14)0.7400 (12)0.3363 (12)0.072 (6)*
H7B10.25350.69850.29740.086*
H7B20.18830.75870.40650.086*
C8B0.2241 (14)0.7255 (10)0.4537 (13)0.072 (6)*
H8B0.24380.68820.39890.086*
C9B0.3321 (15)0.7989 (10)0.4937 (13)0.071 (6)*
C10B0.4343 (15)0.8091 (11)0.4515 (13)0.072 (6)*
C11B0.5344 (14)0.8730 (10)0.4922 (12)0.072 (6)*
H11B0.60130.87960.46130.087*
C12B0.5345 (15)0.9267 (11)0.5787 (12)0.072 (6)*
H12B0.60450.96830.60830.086*
C13B0.4337 (13)0.9206 (11)0.6231 (13)0.072 (6)*
H13B0.43100.95990.67830.086*
C14B0.3367 (14)0.8543 (11)0.5828 (13)0.072 (6)*
H14B0.27240.84640.61620.087*
C15B0.2303 (14)0.6716 (12)0.5555 (13)0.072 (6)*
C16B0.3275 (14)0.5400 (11)0.6458 (12)0.072 (6)*
H16D0.40710.50380.65790.108*
H16E0.24360.50760.60490.108*
H16F0.32890.55830.71900.108*
C17B0.1919 (15)0.8163 (11)0.2605 (13)0.072 (6)*
C18B0.0874 (14)0.8485 (11)0.2336 (12)0.072 (6)*
S2A0.0232 (4)0.9234 (3)0.6166 (4)0.0572 (13)*
O3A0.0642 (12)0.8444 (8)0.6881 (9)0.115 (5)*
O4A0.1156 (11)0.9512 (8)0.6065 (10)0.115 (5)*
O5A0.1279 (11)0.9964 (8)0.6804 (10)0.115 (5)*
H510.12601.00450.74390.173*
O6A0.0282 (11)0.9101 (10)0.5049 (10)0.115 (4)*
S2B0.0311 (5)1.0685 (3)0.8780 (4)0.0692 (16)*
O3B0.0818 (11)1.1589 (9)0.8583 (11)0.132 (5)*
O4B0.0199 (13)1.0398 (9)0.9921 (11)0.133 (5)*
O5B0.1420 (12)1.0105 (9)0.7869 (10)0.133 (5)*
H520.12641.00870.72830.200*
O6B0.1001 (12)1.0588 (9)0.8650 (10)0.133 (5)*
Geometric parameters (Å, º) top
Cl1A—C10A1.721 (17)O2B—C16B1.44 (2)
S1A—C2A1.709 (18)C2B—C3B1.359 (19)
S1A—C17A1.716 (13)C2B—H2B0.9313
O1A—C15A1.18 (2)C3B—C18B1.41 (2)
O2A—C15A1.33 (2)C3B—H3B0.9305
O2A—C16A1.443 (18)C4B—C18B1.49 (2)
C2A—C3A1.357 (17)C4B—N5B1.51 (2)
C2A—H2A0.9313C4B—H4B10.9717
C3A—C18A1.41 (2)C4B—H4B20.9710
C3A—H3A0.9304N5B—C6B1.511 (19)
C4A—N5A1.51 (2)N5B—C8B1.519 (17)
C4A—C18A1.522 (16)N5B—H5B0.9092
C4A—H4A10.9699C6B—C7B1.52 (2)
C4A—H4A20.9674C6B—H6B10.9690
N5A—C8A1.508 (15)C6B—H6B20.9711
N5A—C6A1.51 (2)C7B—C17B1.49 (2)
N5A—H5A0.9102C7B—H7B10.9698
C6A—C7A1.512 (17)C7B—H7B20.9703
C6A—H6A10.9690C8B—C15B1.51 (2)
C6A—H6A20.9712C8B—C9B1.53 (2)
C7A—C17A1.49 (2)C8B—H8B0.9795
C7A—H7A10.9694C9B—C10B1.38 (3)
C7A—H7A20.9697C9B—C14B1.40 (2)
C8A—C15A1.50 (2)C10B—C11B1.37 (2)
C8A—C9A1.52 (2)C11B—C12B1.37 (2)
C8A—H8A0.9803C11B—H11B0.9312
C9A—C10A1.38 (2)C12B—C13B1.38 (3)
C9A—C14A1.40 (2)C12B—H12B0.9299
C10A—C11A1.40 (2)C13B—C14B1.38 (2)
C11A—C12A1.39 (2)C13B—H13B0.9301
C11A—H11A0.9303C14B—H14B0.9306
C12A—C13A1.36 (2)C16B—H16D0.9596
C12A—H12A0.9298C16B—H16E0.9613
C13A—C14A1.38 (2)C16B—H16F0.9609
C13A—H13A0.9307C17B—C18B1.36 (2)
C14A—H14A0.9297S2A—O6A1.447 (14)
C16A—H16A0.9589S2A—O4A1.466 (13)
C16A—H16B0.9591S2A—O3A1.470 (13)
C16A—H16C0.9607S2A—O5A1.549 (12)
C17A—C18A1.35 (2)O5A—H510.8200
Cl1B—C10B1.733 (18)S2B—O6B1.449 (15)
S1B—C2B1.710 (18)S2B—O4B1.468 (15)
S1B—C17B1.714 (14)S2B—O3B1.469 (15)
O1B—C15B1.18 (2)S2B—O5B1.549 (12)
O2B—C15B1.302 (19)O5B—H520.8200
C2A—S1A—C17A91.5 (7)C18B—C3B—H3B124.2
C15A—O2A—C16A117.1 (12)C18B—C4B—N5B110.7 (14)
C3A—C2A—S1A112.3 (12)C18B—C4B—H4B1109.4
C3A—C2A—H2A123.8N5B—C4B—H4B1109.6
S1A—C2A—H2A123.9C18B—C4B—H4B2109.5
C2A—C3A—C18A111.5 (14)N5B—C4B—H4B2109.7
C2A—C3A—H3A124.3H4B1—C4B—H4B2107.9
C18A—C3A—H3A124.2C4B—N5B—C6B109.1 (10)
N5A—C4A—C18A110.4 (11)C4B—N5B—C8B113.2 (13)
N5A—C4A—H4A1109.4C6B—N5B—C8B114.7 (11)
C18A—C4A—H4A1109.5C4B—N5B—H5B106.5
N5A—C4A—H4A2109.6C6B—N5B—H5B106.4
C18A—C4A—H4A2109.7C8B—N5B—H5B106.4
H4A1—C4A—H4A2108.3N5B—C6B—C7B112.3 (13)
C4A—N5A—C8A112.0 (10)N5B—C6B—H6B1109.2
C4A—N5A—C6A110.4 (11)C7B—C6B—H6B1109.2
C8A—N5A—C6A112.4 (11)N5B—C6B—H6B2109.0
C4A—N5A—H5A107.1C7B—C6B—H6B2109.1
C8A—N5A—H5A107.3H6B1—C6B—H6B2107.9
C6A—N5A—H5A107.2C17B—C7B—C6B108.7 (14)
N5A—C6A—C7A114.3 (13)C17B—C7B—H7B1109.9
N5A—C6A—H6A1108.7C6B—C7B—H7B1110.0
C7A—C6A—H6A1108.7C17B—C7B—H7B2109.9
N5A—C6A—H6A2108.6C6B—C7B—H7B2109.9
C7A—C6A—H6A2108.7H7B1—C7B—H7B2108.3
H6A1—C6A—H6A2107.6C15B—C8B—N5B108.6 (13)
C17A—C7A—C6A108.6 (12)C15B—C8B—C9B110.1 (12)
C17A—C7A—H7A1109.9N5B—C8B—C9B110.1 (12)
C6A—C7A—H7A1110.1C15B—C8B—H8B109.3
C17A—C7A—H7A2109.9N5B—C8B—H8B109.3
C6A—C7A—H7A2110.0C9B—C8B—H8B109.4
H7A1—C7A—H7A2108.4C10B—C9B—C14B117.3 (14)
C15A—C8A—N5A109.6 (11)C10B—C9B—C8B122.5 (15)
C15A—C8A—C9A110.4 (13)C14B—C9B—C8B120.0 (16)
N5A—C8A—C9A108.7 (12)C11B—C10B—C9B121.7 (16)
C15A—C8A—H8A109.3C11B—C10B—Cl1B119.3 (14)
N5A—C8A—H8A109.5C9B—C10B—Cl1B119.0 (11)
C9A—C8A—H8A109.4C12B—C11B—C10B119.3 (16)
C10A—C9A—C14A119.0 (15)C12B—C11B—H11B120.4
C10A—C9A—C8A122.2 (15)C10B—C11B—H11B120.3
C14A—C9A—C8A118.3 (13)C11B—C12B—C13B121.7 (14)
C9A—C10A—C11A123.2 (16)C11B—C12B—H12B119.3
C9A—C10A—Cl1A115.6 (12)C13B—C12B—H12B119.0
C11A—C10A—Cl1A120.8 (11)C12B—C13B—C14B117.8 (16)
C12A—C11A—C10A114.0 (13)C12B—C13B—H13B121.1
C12A—C11A—H11A122.8C14B—C13B—H13B121.1
C10A—C11A—H11A123.2C13B—C14B—C9B122.1 (16)
C13A—C12A—C11A125.4 (16)C13B—C14B—H14B118.9
C13A—C12A—H12A117.3C9B—C14B—H14B119.1
C11A—C12A—H12A117.3O1B—C15B—O2B122.7 (16)
C12A—C13A—C14A118.2 (16)O1B—C15B—C8B128.3 (14)
C12A—C13A—H13A121.0O2B—C15B—C8B108.3 (14)
C14A—C13A—H13A120.8O2B—C16B—H16D109.6
C13A—C14A—C9A119.9 (13)O2B—C16B—H16E109.5
C13A—C14A—H14A120.0H16D—C16B—H16E109.4
C9A—C14A—H14A120.1O2B—C16B—H16F109.6
O1A—C15A—O2A124.9 (15)H16D—C16B—H16F109.4
O1A—C15A—C8A125.7 (15)H16E—C16B—H16F109.3
O2A—C15A—C8A109.3 (14)C18B—C17B—C7B125.1 (13)
O2A—C16A—H16A109.5C18B—C17B—S1B110.7 (12)
O2A—C16A—H16B109.4C7B—C17B—S1B123.0 (12)
H16A—C16A—H16B109.6C17B—C18B—C3B113.9 (13)
O2A—C16A—H16C109.3C17B—C18B—C4B122.3 (14)
H16A—C16A—H16C109.5C3B—C18B—C4B123.7 (15)
H16B—C16A—H16C109.5O6A—S2A—O4A111.8 (7)
C18A—C17A—C7A123.8 (12)O6A—S2A—O3A111.7 (8)
C18A—C17A—S1A111.0 (12)O4A—S2A—O3A109.3 (8)
C7A—C17A—S1A124.1 (11)O6A—S2A—O5A108.6 (8)
C17A—C18A—C3A113.7 (11)O4A—S2A—O5A107.7 (7)
C17A—C18A—C4A123.6 (14)O3A—S2A—O5A107.6 (6)
C3A—C18A—C4A122.7 (13)S2A—O5A—H51109.5
C2B—S1B—C17B91.7 (8)O6B—S2B—O4B111.6 (7)
C15B—O2B—C16B117.0 (13)O6B—S2B—O3B111.8 (8)
C3B—C2B—S1B112.1 (12)O4B—S2B—O3B109.5 (8)
C3B—C2B—H2B123.8O6B—S2B—O5B108.6 (8)
S1B—C2B—H2B124.0O4B—S2B—O5B107.6 (8)
C2B—C3B—C18B111.5 (15)O3B—S2B—O5B107.6 (7)
C2B—C3B—H3B124.3S2B—O5B—H52109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5A—H5A···O3A0.911.912.785 (16)161
N5B—H5B···O6A0.911.942.795 (19)157
O5A—H51···O6B0.821.852.640 (17)161
O5B—H52···O4A0.821.822.567 (17)152
C4A—H4A1···O4Bi0.972.353.17 (2)142
C4A—H4A2···O1B0.972.523.225 (17)129
C3B—H3B···O4Bii0.932.413.28 (2)154
C6A—H6A2···O3Bi0.972.313.175 (19)149
C4B—H4B2···O3Biii0.972.233.13 (2)154
Symmetry codes: (i) x, y1/2, z+2; (ii) x, y, z1; (iii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H17ClNO2S+·HSO4
Mr419.89
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)10.4315 (12), 15.3345 (18), 12.6320 (16)
β (°) 113.28 (2)
V3)1856.1 (5)
Z4
Radiation typeCu Kα1, λ = 1.54059 Å
µ (mm1)4.23
Specimen shape, size (mm)Flat sheet, 15 × 1
Data collection
DiffractometerGuinier camera G670
Specimen mountingThin layer in the specimen holder of the camera
Data collection modeTransmission
Scan methodContinuous
2θ values (°)2θmin = 4.00 2θmax = 90.00 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.019, Rwp = 0.025, Rexp = 0.015, RBragg = 0.049, χ2 = 2.982
No. of parameters205
No. of restraints155
H-atom treatmentH-atom parameters not refined

Computer programs: G670 Imaging Plate Guinier Camera Software (Huber, 2002), simulated annealing (Zhukov et al., 2001), PLATON (Spek, 2009), MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5A—H5A···O3A0.911.912.785 (16)161
N5B—H5B···O6A0.911.942.795 (19)157
O5A—H51···O6B0.821.852.640 (17)161
O5B—H52···O4A0.821.822.567 (17)152
C4A—H4A1···O4Bi0.972.353.17 (2)142
C4A—H4A2···O1B0.972.523.225 (17)129
C3B—H3B···O4Bii0.932.413.28 (2)154
C6A—H6A2···O3Bi0.972.313.175 (19)149
C4B—H4B2···O3Biii0.972.233.13 (2)154
Symmetry codes: (i) x, y1/2, z+2; (ii) x, y, z1; (iii) x, y1/2, z+1.
 

References

First citationBadorc, A. & Frehel, D. (1989). US Patent No. 4 847 265.  Google Scholar
First citationBousquet, A., Castro, B. & Germain, J. S. (2003). US Patent No. 6 504 030.  Google Scholar
First citationChernyshev, V. V., Machula, A. A., Kukushkin, S. Y. & Velikodny, Y. A. (2009). Acta Cryst. E65, o2020–o2021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuber (2002). G670 Imaging Plate Guinier Camera Software. Huber Diffraktionstechnik GmbH, Rimsting, Germany.  Google Scholar
First citationLifshitz-Liron, R., Kovalevski-Ishai, E., Wizel, S., Avhar-Maydan, S. & Lidor-Hadas, R. (2006). US Patent No. 7 074 928.  Google Scholar
First citationRaijada, D. K., Prasad, B., Paudel, A., Shah, R. P. & Singh, S. (2010). J. Pharm. Biomed. Anal. 52, 332–344.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L., Li, M. & Gong, J. (2010). J. Chem. Eng. Data. DOI:10.1021/je100022w.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, A., Mishra, S., Tandon, P., Patel, S., Ayala, A. P., Bansal, A. K. & Siesler, H. W. (2010). J. Mol. Struct. 964, 88–96.  Web of Science CrossRef CAS Google Scholar
First citationToraya, H. (1986). J. Appl. Cryst. 19, 440–447.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWerner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367–370.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9.  Web of Science CrossRef CAS Google Scholar
First citationZlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451.  CrossRef Web of Science IUCr Journals Google Scholar
First citationZupancic, V., Kotar-Jordan, B., Plevnik, M., Smrkolj, M. & Vrecer, F. (2010). Pharmazie, 65, 388–389.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds