metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido[1,1′-di­benzyl-2,2′-(sulfane­diyl­di­methyl­ene)di-1H-benzimidazole]­cadmium(II) di­methyl­formamide solvate

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: wuhuilu@163.com

(Received 11 July 2010; accepted 16 July 2010; online 21 July 2010)

In the title compound, [CdBr2(C30H26N4S)]·C3H7NO, both the complex and solvent mol­ecule lie on a crystallographic mirror plane. The CdII ion is coordinated in a disorted square-pyramidal CdBr2N2S environment with one of the Br atoms in the apical site. In the crystal structure, the benzimidazole ring systems are involved in weak inter­molecular ππ stacking inter­actions [centroid–centroid distances = 3.606 (2) and 3.753 (2) Å]. Further stabilization is provided by weak inter­molecular C—H⋯O hydrogen bonds. The methyl H atoms of the dimethyl­formamide solvent mol­ecule are disordered about a mirror plane.

Related literature

For background to the synthesis and for related structures of 1,3-bis­(benzimidazol-2-yl)-2-thia­propane and its derivatives, see: Dagdigian et al. (1979[Dagdigian, J. V. & Reed, C. A. (1979). Inorg. Chem. 18, 2624-2626.]); Agh-Atabay et al.(2004[Agh-Atabay, N. M., Baykal, A. & Somer, M. (2004). Transition Met. Chem. 29, 159-163.]); Wu et al. (2009[Wu, H. L., Wang, K. T., Yun, R. R. & Huang, X. C. (2009). Synth. React. Inorg. Met.-Org. Chem. 39, 629-632.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C30H26N4S)]·C3H7NO

  • Mr = 819.92

  • Monoclinic, P 21 /m

  • a = 9.7437 (8) Å

  • b = 16.7792 (14) Å

  • c = 10.5931 (9) Å

  • β = 110.029 (1)°

  • V = 1627.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 296 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.390, Tmax = 0.465

  • 9062 measured reflections

  • 3305 independent reflections

  • 2742 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.05

  • 3305 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.97 2.38 3.004 (5) 122
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title complex is shown in Fig. 1. The CdII ion is coordinated by one tridentate 1,3-bis(1-benzylbenzimidazol-2-yl)-2-thiapropane ligand and two bromide ions in a distorted square-pyramidal geometry. In the crystal structure, the benzimidazole ring systems are involved in weak intermolecular ππ stacking interactions [centroid–centroid distances = 3.606 (2) and 3.753 (2) Å].

Related literature top

For background to the synthesis and for related structures of 1,3-bis(benzimidazol-2-yl)-2-thiapropane and its derivatives, see: Dagdigian et al. (1979); Agh-Atabay et al.(2004); Wu et al. (2009).

Experimental top

To a stirred solution of 1,3-bis(1-benzylbenzimidazol-2-yl)-2-thiapropane (0.237 g, 0.50 mmol) in hot MeOH (10 ml) was added Cd(C6H2N3O7)2 (0.154 g, 0.25 mmol) and KBr(0.059 g, 0.50 mmol) in MeOH (5 ml). A yellow crystalline product formed rapidly. The precipitate was filtered off, washed with MeOH and absolute Et2O, and dried in vacuo. The dried precipitate was dissolved in DMF resulting in a yellow solution. The deep yellow crystals suitable for X-ray diffraction studies were obtained by ether diffusion into a solution of the title compound in DMF after several days at room temperature. Yield, 0.29 g (73%). (found: C, 54.16; H, 4.49; N,9.63. Calcd.: C, 54.22; H, 4.55; N, 9.58)

Refinement top

All H atoms were visible in difference Fourier maps and were subsequently refined in a riding-model approximation with C—H distances ranging from 0.93 to 0.97Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

The asymmetric unit of the title complex is shown in Fig. 1. The CdII ion is coordinated by one tridentate 1,3-bis(1-benzylbenzimidazol-2-yl)-2-thiapropane ligand and two bromide ions in a distorted square-pyramidal geometry. In the crystal structure, the benzimidazole ring systems are involved in weak intermolecular ππ stacking interactions [centroid–centroid distances = 3.606 (2) and 3.753 (2) Å].

For background to the synthesis and for related structures of 1,3-bis(benzimidazol-2-yl)-2-thiapropane and its derivatives, see: Dagdigian et al. (1979); Agh-Atabay et al.(2004); Wu et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity [symmetry code (A): x, -y+1/2, z].
Dibromido[1,1'-dibenzyl-2,2'-(sulfanediyldimethylene)di-1H- benzimidazole]cadmium(II) dimethylformamide solvate top
Crystal data top
[CdBr2(C30H26N4S)]·C3H7NOF(000) = 816
Mr = 819.92Dx = 1.674 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 3975 reflections
a = 9.7437 (8) Åθ = 2.2–27.3°
b = 16.7792 (14) ŵ = 3.23 mm1
c = 10.5931 (9) ÅT = 296 K
β = 110.029 (1)°Block, yellow
V = 1627.1 (2) Å30.36 × 0.32 × 0.28 mm
Z = 2
Data collection top
Bruker APEXII area-detector
diffractometer
3305 independent reflections
Radiation source: fine-focus sealed tube2742 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1112
Tmin = 0.390, Tmax = 0.465k = 2020
9062 measured reflectionsl = 136
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.7961P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3305 reflectionsΔρmax = 0.78 e Å3
211 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (4)
Crystal data top
[CdBr2(C30H26N4S)]·C3H7NOV = 1627.1 (2) Å3
Mr = 819.92Z = 2
Monoclinic, P21/mMo Kα radiation
a = 9.7437 (8) ŵ = 3.23 mm1
b = 16.7792 (14) ÅT = 296 K
c = 10.5931 (9) Å0.36 × 0.32 × 0.28 mm
β = 110.029 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3305 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2742 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.465Rint = 0.027
9062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.05Δρmax = 0.78 e Å3
3305 reflectionsΔρmin = 0.64 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.53761 (5)0.25000.42042 (5)0.05529 (15)
Br20.95622 (6)0.25000.72708 (5)0.05828 (15)
C11.0172 (3)0.16482 (17)0.2726 (3)0.0434 (7)
H1A0.95620.18320.18440.052*
H1B1.10100.13770.26300.052*
C20.9329 (3)0.10786 (16)0.3253 (3)0.0343 (6)
C30.9688 (3)0.01196 (18)0.1929 (3)0.0410 (7)
H3A1.01530.06200.22950.049*
H3B1.04000.02070.17140.049*
C40.8399 (3)0.02804 (19)0.0656 (3)0.0444 (7)
C50.7349 (5)0.0278 (3)0.0121 (4)0.0949 (16)
H50.74290.07770.05230.114*
C60.6156 (6)0.0109 (4)0.1025 (5)0.117 (2)
H60.54390.04930.13760.140*
C70.6033 (5)0.0607 (3)0.1629 (4)0.0825 (13)
H70.52340.07160.23950.099*
C80.7068 (5)0.1163 (3)0.1119 (3)0.0691 (11)
H80.69850.16560.15390.083*
C90.8260 (4)0.1008 (2)0.0029 (3)0.0545 (8)
H90.89670.13980.03760.065*
C100.8378 (3)0.00630 (16)0.3597 (3)0.0343 (6)
C110.7924 (3)0.08440 (17)0.3631 (3)0.0432 (7)
H110.81860.12480.31570.052*
C120.7067 (3)0.09879 (19)0.4403 (3)0.0491 (7)
H120.67210.15010.44360.059*
C130.6703 (3)0.03818 (19)0.5139 (3)0.0468 (7)
H130.61360.05060.56620.056*
C140.7157 (3)0.03915 (18)0.5110 (3)0.0421 (7)
H140.69120.07910.56030.051*
C150.8005 (3)0.05523 (17)0.4308 (3)0.0351 (6)
C160.6054 (6)0.25001.0757 (6)0.0683 (14)
H160.53340.25001.11480.082*
C170.4073 (8)0.25000.8662 (7)0.111 (3)
H17A0.39120.27630.78190.166*0.50
H17B0.35530.27760.91520.166*0.50
H17C0.37280.19610.85020.166*0.50
C180.6637 (11)0.25000.8761 (10)0.133 (3)
H18A0.65470.20140.82600.199*0.50
H18B0.76070.25400.94050.199*0.50
H18C0.64520.29460.81580.199*0.50
Cd10.81788 (3)0.25000.46873 (3)0.04091 (11)
N10.8612 (2)0.12589 (13)0.4073 (2)0.0359 (5)
N20.9223 (2)0.02893 (13)0.2940 (2)0.0355 (5)
N30.5618 (5)0.25000.9435 (5)0.0682 (12)
O10.7309 (5)0.25001.1506 (5)0.1167 (18)
S11.07918 (11)0.25000.38353 (10)0.0414 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0422 (3)0.0582 (3)0.0688 (3)0.0000.0232 (2)0.000
Br20.0716 (3)0.0552 (3)0.0480 (3)0.0000.0204 (2)0.000
C10.0503 (17)0.0394 (16)0.0495 (16)0.0028 (13)0.0285 (14)0.0058 (13)
C20.0313 (13)0.0363 (15)0.0343 (13)0.0002 (11)0.0099 (11)0.0025 (11)
C30.0445 (16)0.0412 (16)0.0406 (15)0.0036 (13)0.0189 (13)0.0089 (12)
C40.0488 (17)0.0510 (18)0.0343 (15)0.0001 (14)0.0156 (13)0.0017 (12)
C50.096 (3)0.082 (3)0.070 (3)0.035 (3)0.018 (2)0.023 (2)
C60.099 (4)0.139 (5)0.071 (3)0.049 (4)0.023 (3)0.013 (3)
C70.067 (3)0.132 (4)0.041 (2)0.013 (3)0.0088 (18)0.010 (2)
C80.083 (3)0.081 (3)0.0469 (19)0.034 (2)0.027 (2)0.0184 (19)
C90.066 (2)0.055 (2)0.0441 (17)0.0117 (16)0.0214 (16)0.0056 (14)
C100.0282 (13)0.0381 (14)0.0342 (14)0.0013 (11)0.0075 (11)0.0008 (11)
C110.0428 (16)0.0383 (16)0.0468 (16)0.0023 (13)0.0131 (13)0.0017 (13)
C120.0426 (16)0.0401 (17)0.0612 (19)0.0004 (13)0.0134 (15)0.0135 (14)
C130.0357 (15)0.0560 (19)0.0510 (18)0.0053 (14)0.0179 (14)0.0176 (14)
C140.0362 (14)0.0488 (17)0.0434 (16)0.0070 (13)0.0164 (13)0.0046 (13)
C150.0268 (13)0.0409 (15)0.0353 (14)0.0014 (11)0.0077 (11)0.0006 (11)
C160.049 (3)0.071 (4)0.077 (4)0.0000.011 (3)0.000
C170.075 (5)0.161 (8)0.077 (4)0.0000.001 (4)0.000
C180.134 (8)0.157 (9)0.136 (7)0.0000.083 (6)0.000
Cd10.04412 (19)0.03567 (18)0.0520 (2)0.0000.02820 (15)0.000
N10.0345 (12)0.0377 (12)0.0394 (12)0.0018 (10)0.0175 (10)0.0041 (10)
N20.0356 (12)0.0363 (12)0.0355 (12)0.0006 (10)0.0132 (10)0.0036 (9)
N30.057 (3)0.073 (3)0.073 (3)0.0000.020 (2)0.000
O10.062 (3)0.149 (5)0.116 (4)0.0000.002 (3)0.000
S10.0379 (5)0.0342 (5)0.0486 (6)0.0000.0104 (4)0.000
Geometric parameters (Å, º) top
Br1—Cd12.6004 (6)C10—C151.397 (4)
Br2—Cd12.6038 (6)C11—C121.376 (4)
C1—C21.488 (4)C11—H110.9300
C1—S11.817 (3)C12—C131.399 (5)
C1—H1A0.9700C12—H120.9300
C1—H1B0.9700C13—C141.375 (4)
C2—N11.322 (3)C13—H130.9300
C2—N21.360 (3)C14—C151.399 (4)
C3—N21.468 (3)C14—H140.9300
C3—C41.519 (4)C15—N11.385 (3)
C3—H3A0.9700C16—O11.208 (7)
C3—H3B0.9700C16—N31.316 (7)
C4—C51.360 (5)C16—H160.9300
C4—C91.374 (4)C17—N31.446 (8)
C5—C61.393 (6)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C71.347 (7)C17—H17C0.9600
C6—H60.9300C18—N31.408 (9)
C7—C81.344 (6)C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C8—C91.389 (5)C18—H18C0.9600
C8—H80.9300Cd1—N12.264 (2)
C9—H90.9300Cd1—N1i2.264 (2)
C10—N21.380 (3)Cd1—S12.9784 (11)
C10—C111.387 (4)S1—C1i1.817 (3)
C2—C1—S1111.48 (19)C12—C13—H13119.1
C2—C1—H1A109.3C13—C14—C15117.2 (3)
S1—C1—H1A109.3C13—C14—H14121.4
C2—C1—H1B109.3C15—C14—H14121.4
S1—C1—H1B109.3N1—C15—C10109.2 (2)
H1A—C1—H1B108.0N1—C15—C14130.7 (3)
N1—C2—N2111.7 (2)C10—C15—C14120.1 (3)
N1—C2—C1125.7 (2)O1—C16—N3125.8 (6)
N2—C2—C1122.6 (2)O1—C16—H16117.1
N2—C3—C4111.3 (2)N3—C16—H16117.1
N2—C3—H3A109.4N3—C17—H17A109.5
C4—C3—H3A109.4N3—C17—H17B109.5
N2—C3—H3B109.4H17A—C17—H17B109.5
C4—C3—H3B109.4N3—C17—H17C109.5
H3A—C3—H3B108.0H17A—C17—H17C109.5
C5—C4—C9118.4 (3)H17B—C17—H17C109.5
C5—C4—C3121.5 (3)N3—C18—H18A109.5
C9—C4—C3120.1 (3)N3—C18—H18B109.5
C4—C5—C6120.4 (4)H18A—C18—H18B109.5
C4—C5—H5119.8N3—C18—H18C109.5
C6—C5—H5119.8H18A—C18—H18C109.5
C7—C6—C5120.6 (5)H18B—C18—H18C109.5
C7—C6—H6119.7N1—Cd1—N1i133.74 (11)
C5—C6—H6119.7N1—Cd1—Br1103.31 (6)
C8—C7—C6119.7 (4)N1i—Cd1—Br1103.31 (6)
C8—C7—H7120.2N1—Cd1—Br2102.82 (6)
C6—C7—H7120.2N1i—Cd1—Br2102.82 (6)
C7—C8—C9120.6 (4)Br1—Cd1—Br2109.732 (19)
C7—C8—H8119.7N1—Cd1—S169.50 (5)
C9—C8—H8119.7N1i—Cd1—S169.50 (5)
C4—C9—C8120.3 (4)Br1—Cd1—S1152.80 (3)
C4—C9—H9119.9Br2—Cd1—S197.46 (3)
C8—C9—H9119.9C2—N1—C15106.0 (2)
N2—C10—C11131.9 (3)C2—N1—Cd1126.29 (18)
N2—C10—C15105.4 (2)C15—N1—Cd1127.02 (17)
C11—C10—C15122.7 (3)C2—N2—C10107.6 (2)
C12—C11—C10116.4 (3)C2—N2—C3128.0 (2)
C12—C11—H11121.8C10—N2—C3123.7 (2)
C10—C11—H11121.8C16—N3—C18120.8 (6)
C11—C12—C13121.7 (3)C16—N3—C17119.8 (5)
C11—C12—H12119.2C18—N3—C17119.4 (6)
C13—C12—H12119.2C1i—S1—C1103.7 (2)
C14—C13—C12121.9 (3)C1i—S1—Cd193.83 (10)
C14—C13—H13119.1C1—S1—Cd193.83 (10)
S1—C1—C2—N125.0 (4)N1i—Cd1—N1—C25.0 (3)
S1—C1—C2—N2154.3 (2)Br1—Cd1—N1—C2128.6 (2)
N2—C3—C4—C542.8 (5)Br2—Cd1—N1—C2117.2 (2)
N2—C3—C4—C9136.2 (3)S1—Cd1—N1—C223.9 (2)
C9—C4—C5—C60.8 (7)N1i—Cd1—N1—C15164.51 (14)
C3—C4—C5—C6178.2 (5)Br1—Cd1—N1—C1540.9 (2)
C4—C5—C6—C70.8 (9)Br2—Cd1—N1—C1573.3 (2)
C5—C6—C7—C80.2 (9)S1—Cd1—N1—C15166.6 (2)
C6—C7—C8—C90.4 (7)N1—C2—N2—C100.2 (3)
C5—C4—C9—C80.3 (5)C1—C2—N2—C10179.7 (2)
C3—C4—C9—C8178.7 (3)N1—C2—N2—C3170.8 (2)
C7—C8—C9—C40.3 (5)C1—C2—N2—C39.7 (4)
N2—C10—C11—C12179.7 (3)C11—C10—N2—C2179.8 (3)
C15—C10—C11—C120.4 (4)C15—C10—N2—C20.3 (3)
C10—C11—C12—C131.4 (4)C11—C10—N2—C38.7 (4)
C11—C12—C13—C141.2 (5)C15—C10—N2—C3171.4 (2)
C12—C13—C14—C150.1 (4)C4—C3—N2—C2100.7 (3)
N2—C10—C15—N10.3 (3)C4—C3—N2—C1068.5 (3)
C11—C10—C15—N1179.8 (2)O1—C16—N3—C180.000 (6)
N2—C10—C15—C14179.0 (2)O1—C16—N3—C17180.000 (4)
C11—C10—C15—C140.9 (4)C2—C1—S1—C1i128.05 (17)
C13—C14—C15—N1179.8 (3)C2—C1—S1—Cd133.2 (2)
C13—C14—C15—C101.1 (4)N1—Cd1—S1—C1i131.08 (12)
N2—C2—N1—C150.0 (3)N1i—Cd1—S1—C1i27.04 (12)
C1—C2—N1—C15179.5 (3)Br1—Cd1—S1—C1i52.02 (10)
N2—C2—N1—Cd1171.33 (16)Br2—Cd1—S1—C1i127.98 (10)
C1—C2—N1—Cd19.2 (4)N1—Cd1—S1—C127.03 (12)
C10—C15—N1—C20.2 (3)N1i—Cd1—S1—C1131.08 (12)
C14—C15—N1—C2179.0 (3)Br1—Cd1—S1—C152.02 (10)
C10—C15—N1—Cd1171.06 (17)Br2—Cd1—S1—C1127.98 (10)
C14—C15—N1—Cd19.8 (4)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1ii0.972.383.004 (5)122
Symmetry code: (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula[CdBr2(C30H26N4S)]·C3H7NO
Mr819.92
Crystal system, space groupMonoclinic, P21/m
Temperature (K)296
a, b, c (Å)9.7437 (8), 16.7792 (14), 10.5931 (9)
β (°) 110.029 (1)
V3)1627.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.23
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.390, 0.465
No. of measured, independent and
observed [I > 2σ(I)] reflections
9062, 3305, 2742
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.05
No. of reflections3305
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.64

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.972.383.004 (5)121.6
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors acknowledge financial support and a grant from the Qing Lan Talent Engineering Funds of Lanzhou Jiaotong University.

References

First citationAgh-Atabay, N. M., Baykal, A. & Somer, M. (2004). Transition Met. Chem. 29, 159–163.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDagdigian, J. V. & Reed, C. A. (1979). Inorg. Chem. 18, 2624–2626.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H. L., Wang, K. T., Yun, R. R. & Huang, X. C. (2009). Synth. React. Inorg. Met.-Org. Chem. 39, 629–632.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds