metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[tris­­(benzimidazol-2-ylmeth­yl)amine]­indium(III) chloride ethanol solvate dihydrate

aSchool of Chemical Engineering and Food Science, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: blueice8250@yahoo.com.cn

(Received 21 July 2010; accepted 27 July 2010; online 31 July 2010)

In the title complex, [InCl2(C24H21N7)]Cl·C2H5OH·2H2O, the InIII ion is coordinated by four N atoms from the tris­(benz­imidazol-2-ylmeth­yl)amine (NTB) ligand and two Cl atoms in a distorted octa­hedral environment. In the crystal structure, inter­molecular N—H⋯O, O—H⋯O, O—H⋯Cl and weak C—H⋯Cl hydrogen bonds connect the cations, anions and solvent mol­ecules into a three-dimensional network. The ethanol solvent mol­ecule is disordered over two sites with refined occupancies of 0.54 (2) and 0.46 (2).

Related literature

For background information and the applications of indium complexes, see: Green et al. (2005[Green, D. E., Ferreira, C. L., Stick, R. V., Patrick, B. O., Adam, M. J. & Orvig, C. (2005). Bioconjugate Chem. 16, 1597-1609.]); Krivokapic et al. (2001[Krivokapic, A., Anderson, H. L., Bourhill, G., Ives, R., Clark, S., McEwan, K. J., Kenneth, (2001). Adv. Mater. 13, 652-656.]); Lu et al. (2005[Lu, J., Ji, S., Teo, Y. & Loh, T. (2005). Org. Lett. 7, 159-161.]); Sun et al. (2009[Sun, Q., Liu, Y., Li, H. & Luo, Z. (2009). Acta Cryst. E65, m394-m395.]); Vagin et al. (2003[Vagin, S., Barthel, M., Dini, D. & Hanack, M. (2003). Inorg. Chem. 42, 2683-2694.]). For the synthetic procedure, see: Hendriks et al. (1982[Hendriks, H. M. J., Birker, P. J. M. W. L., Rijn, J., Verschoor, G. C. & Reedijk, J. (1982). J. Am. Chem. Soc. 104, 3607-3617.]).

[Scheme 1]

Experimental

Crystal data
  • [InCl2(C24H21N7)]Cl·C2H6O·2H2O

  • Mr = 710.75

  • Monoclinic, P 21 /c

  • a = 10.4152 (10) Å

  • b = 13.7394 (13) Å

  • c = 21.903 (2) Å

  • β = 103.75°

  • V = 3044.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 298 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.846, Tmax = 0.900

  • 22634 measured reflections

  • 7526 independent reflections

  • 6941 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.089

  • S = 1.15

  • 7526 reflections

  • 403 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Cl3i 0.97 2.70 3.655 (3) 168
C1—H1A⋯Cl3ii 0.97 2.74 3.558 (3) 142
N7—H7A⋯O3ii 0.86 2.01 2.826 (4) 158
N5—H5A⋯O2i 0.86 1.99 2.818 (4) 161
O3—H3B⋯Cl3iii 0.83 (2) 2.35 (2) 3.144 (3) 161 (4)
O3—H3A⋯O2 0.82 (2) 2.05 (2) 2.861 (4) 166 (4)
N3—H3⋯O1 0.86 1.90 2.745 (12) 169
N3—H3⋯O1′ 0.86 1.89 2.718 (12) 160
O2—H2B⋯Cl2 0.83 (2) 2.41 (2) 3.171 (3) 154 (3)
O2—H2A⋯Cl3 0.82 (2) 2.34 (2) 3.108 (3) 155 (3)
O1—H1⋯Cl3iv 0.82 2.32 3.127 (11) 167
O1′—H1′⋯Cl3iv 0.82 2.49 3.178 (11) 143
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Indium complexes are widely used as radiopharmaceuticals, photoelectronic materials and catalysts (Green et al., 2005; Lu et al., 2005; Sun et al., 2009). In the past few years, there has been considerable effort in designing Indium complexes because of their good optical properties applied in optical limiting materials (Vagin et al., 2003; Krivokapic et al., 2001). With this mind, the title compound, (I), was prepared and we report the crystal stucture herein.

In the molecular structure of (I), the InIII ion is coordinated by four N atoms from the NTB ligand and and two Cl atoms, forming a distorted octahedral coordination environmemt (Fig.1). Two benzimidazole(bzim)-N atoms (N2 and N6) occupy the axial positions, one bzim-N atom (N4), one amino N atom (N1) and two Cl atoms are located in the equatorial plane. In the crystal structure, intermolecular N—H···O, O—H···O, O—H···Cl and weak C—H···Cl hydrogen bonds form a three-dimensional network (Fig.2).

Related literature top

For background information and the applications of indium complexes, see: Green et al. (2005); Krivokapic et al. (2001); Lu et al. (2005); Sun et al. (2009); Vagin et al. (2003). For the synthetic procedure, see: Hendriks, et al. (1982).

Experimental top

The NTB ligand was prepared according to literature methods (Hendriks, et al., 1982). InCl3.4H2O (0.29 g,1 mmol) was added to a solution of NTB (0.41 g,1 mmol) in hot alcohol (50 ml) and refluxed for 1 h. The solution was filtered, then the filtrate was placed at room temperature and colorless single crystals suitable for an X-ray diffraction study were obtained by slow evaporation of the solvent for five days.

Refinement top

The ethanol molecule is disordered with occupancies of 0.54 (2) and 0.46 (2) for the major and minor components, respectively. H atoms bonded to C atoms were placed in idealized positions [CH(methyl) = 0.96 Å, 0.97Å (methylene) and 0.93 Å (aromatic), with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(other C). N-bound hydrogen atoms were initially located from a difference Fourier map and then placed in ideal positions with N—H = 0.86Å and Uiso(H) = 1.2 Ueq(N). H atoms bonded to methanol O atoms were included with O-H = 0.82Å and Uiso(H) = 1.5Ueq(O). H atoms bonded to water O atoms were located from difference maps and refined with distance restraints of O-H = 0.82 (1) and H···H = 1.35 (2) Å and with Uiso(H) = 1.2Ueq(O).

Structure description top

Indium complexes are widely used as radiopharmaceuticals, photoelectronic materials and catalysts (Green et al., 2005; Lu et al., 2005; Sun et al., 2009). In the past few years, there has been considerable effort in designing Indium complexes because of their good optical properties applied in optical limiting materials (Vagin et al., 2003; Krivokapic et al., 2001). With this mind, the title compound, (I), was prepared and we report the crystal stucture herein.

In the molecular structure of (I), the InIII ion is coordinated by four N atoms from the NTB ligand and and two Cl atoms, forming a distorted octahedral coordination environmemt (Fig.1). Two benzimidazole(bzim)-N atoms (N2 and N6) occupy the axial positions, one bzim-N atom (N4), one amino N atom (N1) and two Cl atoms are located in the equatorial plane. In the crystal structure, intermolecular N—H···O, O—H···O, O—H···Cl and weak C—H···Cl hydrogen bonds form a three-dimensional network (Fig.2).

For background information and the applications of indium complexes, see: Green et al. (2005); Krivokapic et al. (2001); Lu et al. (2005); Sun et al. (2009); Vagin et al. (2003). For the synthetic procedure, see: Hendriks, et al. (1982).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. The disorder is not shown. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
Dichlorido[tris(benzimidazol-2-ylmethyl)amine]indium(III) chloride ethanol solvate dihydrate top
Crystal data top
[InCl2(C24H21N7)]Cl·C2H6O·2H2OF(000) = 1440
Mr = 710.75Dx = 1.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5767 reflections
a = 10.4152 (10) Åθ = 2.4–28.3°
b = 13.7394 (13) ŵ = 1.08 mm1
c = 21.903 (2) ÅT = 298 K
β = 103.75°Block, colorless
V = 3044.4 (5) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
7526 independent reflections
Radiation source: fine-focus sealed tube6941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1313
Tmin = 0.846, Tmax = 0.900k = 1318
22634 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0382P)2 + 1.3452P]
where P = (Fo2 + 2Fc2)/3
7526 reflections(Δ/σ)max < 0.001
403 parametersΔρmax = 0.95 e Å3
6 restraintsΔρmin = 0.55 e Å3
Crystal data top
[InCl2(C24H21N7)]Cl·C2H6O·2H2OV = 3044.4 (5) Å3
Mr = 710.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4152 (10) ŵ = 1.08 mm1
b = 13.7394 (13) ÅT = 298 K
c = 21.903 (2) Å0.26 × 0.22 × 0.20 mm
β = 103.75°
Data collection top
Bruker SMART CCD
diffractometer
7526 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
6941 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.900Rint = 0.033
22634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.95 e Å3
7526 reflectionsΔρmin = 0.55 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
In10.447613 (16)0.710677 (12)0.302721 (8)0.02890 (6)
C10.6729 (2)0.85480 (19)0.37586 (13)0.0380 (6)
H1A0.72090.88730.41370.046*
H1B0.67740.89500.34000.046*
C20.7324 (2)0.7572 (2)0.37027 (12)0.0354 (5)
C30.7475 (2)0.6060 (2)0.34430 (12)0.0352 (5)
C40.7229 (3)0.5111 (2)0.32325 (13)0.0419 (6)
H40.63930.49150.30110.050*
C50.8274 (3)0.4474 (2)0.33659 (15)0.0547 (8)
H50.81430.38300.32340.066*
C60.9521 (3)0.4770 (3)0.36927 (18)0.0671 (10)
H61.02060.43180.37690.081*
C70.9781 (3)0.5705 (3)0.39078 (17)0.0615 (9)
H71.06210.58960.41270.074*
C80.8723 (3)0.6355 (2)0.37807 (13)0.0422 (6)
C90.5226 (3)0.8079 (2)0.44197 (12)0.0395 (6)
H9A0.47540.85720.45960.047*
H9B0.61070.80250.46910.047*
C100.4529 (3)0.71260 (19)0.44155 (12)0.0352 (5)
C110.3720 (2)0.5684 (2)0.41656 (12)0.0354 (5)
C120.3344 (3)0.4790 (2)0.38883 (14)0.0432 (6)
H120.34040.46550.34800.052*
C130.2875 (3)0.4107 (2)0.42440 (16)0.0521 (8)
H130.26170.34990.40720.063*
C140.2782 (3)0.4307 (3)0.48525 (17)0.0551 (8)
H140.24490.38310.50740.066*
C150.3163 (3)0.5182 (3)0.51383 (15)0.0521 (8)
H150.31010.53100.55470.063*
C160.3648 (3)0.5868 (2)0.47842 (13)0.0397 (6)
C170.4499 (3)0.92644 (19)0.35714 (13)0.0383 (6)
H17A0.48070.96000.32440.046*
H17B0.45540.97100.39200.046*
C180.3108 (3)0.8943 (2)0.33274 (12)0.0363 (5)
C190.1407 (3)0.8058 (2)0.28851 (12)0.0366 (6)
C200.0541 (3)0.7343 (2)0.25857 (15)0.0478 (7)
H200.08430.67350.24950.057*
C210.0787 (3)0.7572 (3)0.24282 (16)0.0566 (8)
H210.13900.71090.22250.068*
C220.1246 (3)0.8477 (3)0.25658 (16)0.0566 (9)
H220.21480.86040.24480.068*
C230.0411 (3)0.9185 (3)0.28691 (15)0.0526 (8)
H230.07260.97840.29670.063*
C240.0937 (3)0.8965 (2)0.30258 (13)0.0408 (6)
C251.061 (3)0.7795 (16)0.5779 (14)0.163 (9)0.54 (2)
H25A1.07510.72030.55720.244*0.54 (2)
H25B1.00140.76720.60450.244*0.54 (2)
H25C1.14350.80280.60290.244*0.54 (2)
C261.0026 (12)0.8538 (10)0.5302 (6)0.101 (5)0.54 (2)
H26A0.90710.84880.52240.121*0.54 (2)
H26B1.02710.91740.54850.121*0.54 (2)
C25'1.058 (3)0.8492 (17)0.5828 (15)0.140 (9)0.46 (2)
H25D1.13510.85610.61660.209*0.46 (2)
H25E0.98430.82980.59930.209*0.46 (2)
H25F1.03830.91040.56130.209*0.46 (2)
C26'1.0832 (19)0.7717 (14)0.5365 (8)0.115 (7)0.46 (2)
H26C1.17100.74490.55220.138*0.46 (2)
H26D1.02010.71920.53460.138*0.46 (2)
Cl10.35306 (7)0.57777 (5)0.23656 (3)0.04797 (17)
Cl20.49870 (7)0.81165 (5)0.21877 (3)0.04437 (16)
Cl30.30232 (9)0.53452 (6)0.00493 (4)0.0574 (2)
N10.53335 (19)0.83983 (15)0.37826 (9)0.0316 (4)
N20.6621 (2)0.68466 (16)0.34018 (10)0.0341 (5)
N30.8591 (2)0.73183 (19)0.39420 (12)0.0431 (6)
H30.92040.76860.41550.052*
N40.4266 (2)0.65021 (16)0.39445 (10)0.0339 (5)
N50.4164 (2)0.67908 (18)0.49227 (11)0.0412 (5)
H5A0.42380.70950.52720.049*
N60.2781 (2)0.80711 (16)0.30802 (10)0.0350 (5)
N70.2042 (2)0.95009 (17)0.33077 (11)0.0421 (5)
H7A0.20451.00870.34460.050*
O20.4684 (3)0.6888 (2)0.09360 (12)0.0655 (7)
H2A0.416 (3)0.644 (2)0.0807 (16)0.079*
H2B0.460 (4)0.706 (3)0.1286 (11)0.079*
O30.7331 (3)0.6250 (2)0.10069 (13)0.0683 (7)
H3A0.662 (3)0.653 (3)0.0997 (17)0.082*
H3B0.726 (4)0.595 (3)0.0673 (13)0.082*
O11.0355 (12)0.8506 (10)0.4735 (6)0.079 (3)0.54 (2)
H11.10260.88280.47530.118*0.54 (2)
O1'1.0731 (18)0.8074 (14)0.4765 (8)0.097 (5)0.46 (2)
H1'1.09880.86390.47870.146*0.46 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.02836 (9)0.02947 (10)0.02775 (10)0.00063 (6)0.00442 (6)0.00344 (6)
C10.0342 (13)0.0353 (14)0.0431 (15)0.0046 (10)0.0066 (11)0.0048 (11)
C20.0305 (12)0.0396 (14)0.0356 (13)0.0011 (10)0.0065 (10)0.0018 (11)
C30.0306 (12)0.0425 (15)0.0323 (12)0.0054 (10)0.0071 (10)0.0006 (11)
C40.0411 (14)0.0450 (16)0.0378 (14)0.0049 (12)0.0054 (11)0.0067 (12)
C50.0592 (19)0.0491 (19)0.0544 (19)0.0177 (15)0.0111 (15)0.0086 (15)
C60.0522 (19)0.066 (2)0.079 (3)0.0278 (17)0.0071 (18)0.0071 (19)
C70.0341 (15)0.074 (2)0.070 (2)0.0131 (15)0.0005 (15)0.0025 (19)
C80.0337 (13)0.0485 (17)0.0437 (15)0.0030 (12)0.0080 (11)0.0016 (13)
C90.0470 (15)0.0390 (15)0.0315 (13)0.0032 (12)0.0076 (11)0.0066 (11)
C100.0343 (12)0.0371 (14)0.0329 (13)0.0027 (10)0.0052 (10)0.0017 (10)
C110.0311 (12)0.0368 (14)0.0372 (13)0.0009 (10)0.0058 (10)0.0053 (11)
C120.0445 (15)0.0382 (15)0.0450 (16)0.0008 (12)0.0066 (12)0.0024 (12)
C130.0454 (16)0.0393 (17)0.068 (2)0.0067 (13)0.0066 (15)0.0069 (15)
C140.0465 (17)0.053 (2)0.065 (2)0.0027 (14)0.0120 (15)0.0229 (16)
C150.0501 (17)0.064 (2)0.0441 (16)0.0020 (15)0.0152 (14)0.0172 (15)
C160.0370 (13)0.0422 (15)0.0389 (14)0.0023 (11)0.0067 (11)0.0070 (12)
C170.0402 (14)0.0308 (13)0.0423 (15)0.0016 (11)0.0066 (11)0.0046 (11)
C180.0373 (13)0.0352 (14)0.0353 (13)0.0056 (10)0.0066 (10)0.0017 (11)
C190.0321 (12)0.0443 (16)0.0340 (13)0.0044 (11)0.0088 (10)0.0032 (11)
C200.0416 (15)0.0513 (18)0.0489 (17)0.0063 (13)0.0074 (13)0.0049 (14)
C210.0365 (15)0.078 (2)0.0540 (19)0.0108 (15)0.0074 (14)0.0010 (17)
C220.0332 (14)0.081 (3)0.0549 (19)0.0072 (15)0.0090 (13)0.0102 (17)
C230.0444 (16)0.062 (2)0.0530 (18)0.0169 (14)0.0144 (14)0.0100 (15)
C240.0380 (14)0.0466 (16)0.0379 (14)0.0071 (12)0.0095 (11)0.0036 (12)
C250.186 (19)0.160 (19)0.153 (19)0.005 (18)0.063 (15)0.027 (19)
C260.097 (7)0.124 (10)0.081 (9)0.009 (7)0.022 (6)0.021 (6)
C25'0.132 (14)0.16 (2)0.14 (2)0.010 (17)0.058 (13)0.017 (18)
C26'0.114 (12)0.120 (14)0.102 (12)0.042 (10)0.010 (9)0.017 (10)
Cl10.0516 (4)0.0418 (4)0.0476 (4)0.0079 (3)0.0061 (3)0.0161 (3)
Cl20.0537 (4)0.0435 (4)0.0372 (3)0.0036 (3)0.0134 (3)0.0040 (3)
Cl30.0627 (5)0.0534 (5)0.0556 (5)0.0060 (4)0.0133 (4)0.0069 (4)
N10.0316 (10)0.0297 (11)0.0327 (11)0.0017 (8)0.0060 (8)0.0022 (8)
N20.0304 (10)0.0347 (11)0.0360 (11)0.0009 (8)0.0053 (9)0.0045 (9)
N30.0291 (11)0.0495 (15)0.0471 (14)0.0048 (10)0.0015 (10)0.0036 (11)
N40.0365 (11)0.0338 (12)0.0309 (11)0.0014 (9)0.0071 (9)0.0001 (9)
N50.0473 (13)0.0463 (14)0.0311 (11)0.0003 (11)0.0113 (10)0.0002 (10)
N60.0323 (10)0.0351 (12)0.0365 (11)0.0030 (9)0.0057 (9)0.0032 (9)
N70.0437 (12)0.0378 (13)0.0440 (13)0.0089 (10)0.0090 (10)0.0048 (10)
O20.087 (2)0.0677 (18)0.0421 (13)0.0024 (13)0.0163 (13)0.0034 (12)
O30.0772 (17)0.0528 (16)0.0736 (18)0.0008 (13)0.0156 (15)0.0047 (13)
O10.073 (5)0.092 (8)0.068 (5)0.036 (5)0.010 (4)0.017 (5)
O1'0.092 (9)0.094 (10)0.087 (6)0.042 (7)0.015 (6)0.005 (8)
Geometric parameters (Å, º) top
In1—N22.218 (2)C17—N11.481 (3)
In1—N42.232 (2)C17—C181.487 (4)
In1—N62.233 (2)C17—H17A0.9700
In1—Cl12.3928 (7)C17—H17B0.9700
In1—N12.446 (2)C18—N61.326 (3)
In1—Cl22.4604 (7)C18—N71.341 (3)
C1—N11.481 (3)C19—C201.389 (4)
C1—C21.495 (4)C19—N61.392 (3)
C1—H1A0.9700C19—C241.399 (4)
C1—H1B0.9700C20—C211.380 (4)
C2—N21.317 (3)C20—H200.9300
C2—N31.344 (3)C21—C221.391 (5)
C3—C41.386 (4)C21—H210.9300
C3—N21.390 (3)C22—C231.367 (5)
C3—C81.394 (4)C22—H220.9300
C4—C51.374 (4)C23—C241.397 (4)
C4—H40.9300C23—H230.9300
C5—C61.386 (5)C24—N71.383 (4)
C5—H50.9300C25—C261.48 (3)
C6—C71.374 (5)C25—H25A0.9600
C6—H60.9300C25—H25B0.9600
C7—C81.393 (4)C25—H25C0.9600
C7—H70.9300C26—O11.366 (17)
C8—N31.386 (4)C26—H26A0.9700
C9—N11.492 (3)C26—H26B0.9700
C9—C101.495 (4)C25'—C26'1.54 (4)
C9—H9A0.9700C25'—H25D0.9600
C9—H9B0.9700C25'—H25E0.9600
C10—N41.319 (3)C25'—H25F0.9600
C10—N51.338 (3)C26'—O1'1.38 (2)
C11—C121.385 (4)C26'—H26C0.9700
C11—N41.397 (3)C26'—H26D0.9700
C11—C161.398 (4)N3—H30.8600
C12—C131.380 (4)N5—H5A0.8600
C12—H120.9300N7—H7A0.8600
C13—C141.387 (5)O2—H2A0.823 (17)
C13—H130.9300O2—H2B0.825 (18)
C14—C151.369 (5)O3—H3A0.823 (18)
C14—H140.9300O3—H3B0.829 (18)
C15—C161.390 (4)O1—H10.8200
C15—H150.9300O1'—H1'0.8195
C16—N51.382 (4)
N2—In1—N484.98 (8)C21—C20—C19117.1 (3)
N2—In1—N6144.67 (8)C21—C20—H20121.4
N4—In1—N685.77 (8)C19—C20—H20121.4
N2—In1—Cl1109.53 (6)C20—C21—C22121.7 (3)
N4—In1—Cl198.44 (6)C20—C21—H21119.1
N6—In1—Cl1105.52 (6)C22—C21—H21119.1
N2—In1—N172.12 (7)C23—C22—C21122.0 (3)
N4—In1—N176.07 (7)C23—C22—H22119.0
N6—In1—N172.56 (7)C21—C22—H22119.0
Cl1—In1—N1174.22 (5)C22—C23—C24116.8 (3)
N2—In1—Cl289.41 (6)C22—C23—H23121.6
N4—In1—Cl2165.30 (6)C24—C23—H23121.6
N6—In1—Cl291.06 (6)N7—C24—C23132.5 (3)
Cl1—In1—Cl296.24 (3)N7—C24—C19105.9 (2)
N1—In1—Cl289.28 (5)C23—C24—C19121.5 (3)
N1—C1—C2107.9 (2)O1—C26—C25118.0 (15)
N1—C1—H1A110.1O1—C26—H26A107.8
C2—C1—H1A110.1C25—C26—H26A107.8
N1—C1—H1B110.1O1—C26—H26B107.8
C2—C1—H1B110.1C25—C26—H26B107.8
H1A—C1—H1B108.4H26A—C26—H26B107.1
N2—C2—N3112.1 (2)C26'—C25'—H25D109.5
N2—C2—C1121.8 (2)C26'—C25'—H25E109.5
N3—C2—C1126.0 (2)H25D—C25'—H25E109.5
C4—C3—N2130.2 (2)C26'—C25'—H25F109.5
C4—C3—C8121.7 (2)H25D—C25'—H25F109.5
N2—C3—C8108.1 (2)H25E—C25'—H25F109.5
C5—C4—C3117.0 (3)O1'—C26'—C25'113.3 (18)
C5—C4—H4121.5O1'—C26'—H26C108.9
C3—C4—H4121.5C25'—C26'—H26C108.9
C4—C5—C6121.4 (3)O1'—C26'—H26D108.9
C4—C5—H5119.3C25'—C26'—H26D108.9
C6—C5—H5119.3H26C—C26'—H26D107.7
C7—C6—C5122.4 (3)In1—Cl1—O291.52 (5)
C7—C6—H6118.8C17—N1—C1112.7 (2)
C5—C6—H6118.8C17—N1—C9111.1 (2)
C6—C7—C8116.7 (3)C1—N1—C9111.5 (2)
C6—C7—H7121.7C17—N1—In1106.19 (14)
C8—C7—H7121.7C1—N1—In1106.27 (15)
N3—C8—C7133.1 (3)C9—N1—In1108.81 (15)
N3—C8—C3106.0 (2)C2—N2—C3106.5 (2)
C7—C8—C3120.9 (3)C2—N2—In1117.06 (17)
N1—C9—C10113.3 (2)C3—N2—In1136.28 (17)
N1—C9—H9A108.9C2—N3—C8107.2 (2)
C10—C9—H9A108.9C2—N3—O1122.7 (4)
N1—C9—H9B108.9C8—N3—O1129.6 (4)
C10—C9—H9B108.9C2—N3—H3126.4
H9A—C9—H9B107.7C8—N3—H3126.4
N4—C10—N5112.2 (2)C10—N4—C11106.1 (2)
N4—C10—C9125.7 (2)C10—N4—In1114.55 (17)
N5—C10—C9121.9 (2)C11—N4—In1138.28 (17)
C12—C11—N4131.1 (3)C10—N5—C16107.8 (2)
C12—C11—C16120.7 (3)C10—N5—H5A126.1
N4—C11—C16108.1 (2)C16—N5—H5A126.1
C13—C12—C11117.1 (3)C18—N6—C19106.4 (2)
C13—C12—H12121.4C18—N6—In1115.33 (17)
C11—C12—H12121.4C19—N6—In1138.08 (18)
C12—C13—C14121.5 (3)C18—N7—C24107.8 (2)
C12—C13—H13119.3C18—N7—H7A126.1
C14—C13—H13119.3C24—N7—H7A126.1
C15—C14—C13122.3 (3)O3—O2—Cl3102.18 (10)
C15—C14—H14118.8O3—O2—Cl1108.16 (10)
C13—C14—H14118.8Cl3—O2—Cl190.17 (7)
C14—C15—C16116.4 (3)O3—O2—H2A110 (3)
C14—C15—H15121.8Cl1—O2—H2A71 (3)
C16—C15—H15121.8O3—O2—H2B110 (3)
N5—C16—C15132.4 (3)Cl3—O2—H2B128 (3)
N5—C16—C11105.7 (2)H2A—O2—H2B109 (3)
C15—C16—C11121.9 (3)O2—O3—H3B103 (3)
N1—C17—C18108.9 (2)H3A—O3—H3B108 (3)
N1—C17—H17A109.9C26—O1—N3108.6 (8)
C18—C17—H17A109.9C26—O1—H1109.4
N1—C17—H17B109.9N3—O1—H1141.9
C18—C17—H17B109.9C26—O1—H1'106.6
H17A—C17—H17B108.3N3—O1—H1'139.3
N6—C18—N7111.9 (2)C26'—O1'—H3115.6
N6—C18—C17123.3 (2)C26'—O1'—H1113.8
N7—C18—C17124.8 (2)H3—O1'—H1116.6
C20—C19—N6131.2 (3)C26'—O1'—H1'109.2
C20—C19—C24120.8 (3)H3—O1'—H1'121.1
N6—C19—C24108.0 (2)
N1—C1—C2—N232.2 (3)C4—C3—N2—In11.4 (5)
N1—C1—C2—N3147.5 (3)C8—C3—N2—In1175.54 (19)
N2—C3—C4—C5177.2 (3)N4—In1—N2—C292.1 (2)
C8—C3—C4—C50.6 (4)N6—In1—N2—C216.7 (3)
C3—C4—C5—C60.4 (5)Cl1—In1—N2—C2170.69 (18)
C4—C5—C6—C70.8 (6)N1—In1—N2—C215.16 (18)
C5—C6—C7—C80.1 (6)Cl2—In1—N2—C274.28 (19)
C6—C7—C8—N3176.6 (3)N4—In1—N2—C382.8 (3)
C6—C7—C8—C31.0 (5)N6—In1—N2—C3158.2 (2)
C4—C3—C8—N3176.8 (3)Cl1—In1—N2—C314.4 (3)
N2—C3—C8—N30.5 (3)N1—In1—N2—C3159.8 (3)
C4—C3—C8—C71.4 (4)Cl2—In1—N2—C3110.8 (2)
N2—C3—C8—C7178.7 (3)N2—C2—N3—C80.4 (3)
N1—C9—C10—N413.9 (4)C1—C2—N3—C8179.8 (3)
N1—C9—C10—N5169.9 (2)N2—C2—N3—O1171.9 (4)
N4—C11—C12—C13177.5 (3)C1—C2—N3—O17.9 (5)
C16—C11—C12—C131.3 (4)C7—C8—N3—C2178.4 (3)
C11—C12—C13—C140.1 (4)C3—C8—N3—C20.5 (3)
C12—C13—C14—C150.9 (5)C7—C8—N3—O16.8 (6)
C13—C14—C15—C160.3 (5)C3—C8—N3—O1171.0 (4)
C14—C15—C16—N5176.8 (3)N5—C10—N4—C111.7 (3)
C14—C15—C16—C111.2 (4)C9—C10—N4—C11174.7 (2)
C12—C11—C16—N5176.5 (2)N5—C10—N4—In1168.72 (17)
N4—C11—C16—N50.5 (3)C9—C10—N4—In114.8 (3)
C12—C11—C16—C152.0 (4)C12—C11—N4—C10175.2 (3)
N4—C11—C16—C15179.0 (2)C16—C11—N4—C101.4 (3)
N1—C17—C18—N627.6 (4)C12—C11—N4—In117.9 (4)
N1—C17—C18—N7155.0 (3)C16—C11—N4—In1165.52 (19)
N6—C19—C20—C21177.2 (3)N2—In1—N4—C1080.35 (18)
C24—C19—C20—C210.9 (4)N6—In1—N4—C1065.52 (18)
C19—C20—C21—C220.4 (5)Cl1—In1—N4—C10170.61 (17)
C20—C21—C22—C230.6 (5)N1—In1—N4—C107.55 (17)
C21—C22—C23—C241.2 (5)Cl2—In1—N4—C1012.4 (4)
C22—C23—C24—N7177.5 (3)N2—In1—N4—C11113.5 (3)
C22—C23—C24—C190.7 (4)N6—In1—N4—C11100.6 (3)
C20—C19—C24—N7179.0 (3)Cl1—In1—N4—C114.5 (3)
N6—C19—C24—N70.4 (3)N1—In1—N4—C11173.7 (3)
C20—C19—C24—C230.3 (4)Cl2—In1—N4—C11178.55 (17)
N6—C19—C24—C23178.2 (3)N4—C10—N5—C161.4 (3)
N2—In1—Cl1—O282.46 (8)C9—C10—N5—C16175.2 (2)
N4—In1—Cl1—O2170.10 (7)C15—C16—N5—C10177.8 (3)
N6—In1—Cl1—O2101.98 (8)C11—C16—N5—C100.5 (3)
Cl2—In1—Cl1—O29.13 (5)N7—C18—N6—C190.1 (3)
C18—C17—N1—C1153.9 (2)C17—C18—N6—C19177.7 (2)
C18—C17—N1—C980.2 (3)N7—C18—N6—In1176.14 (17)
C18—C17—N1—In138.0 (2)C17—C18—N6—In11.6 (3)
C2—C1—N1—C17155.8 (2)C20—C19—N6—C18178.5 (3)
C2—C1—N1—C978.6 (3)C24—C19—N6—C180.2 (3)
C2—C1—N1—In139.9 (2)C20—C19—N6—In13.9 (5)
C10—C9—N1—C17111.3 (2)C24—C19—N6—In1174.4 (2)
C10—C9—N1—C1122.2 (2)N2—In1—N6—C1819.4 (3)
C10—C9—N1—In15.3 (3)N4—In1—N6—C1894.52 (19)
N2—In1—N1—C17150.47 (17)Cl1—In1—N6—C18167.88 (18)
N4—In1—N1—C17120.38 (16)N1—In1—N6—C1817.80 (18)
N6—In1—N1—C1730.48 (15)Cl2—In1—N6—C1871.11 (19)
Cl2—In1—N1—C1760.86 (15)N2—In1—N6—C19166.3 (2)
N2—In1—N1—C130.28 (16)N4—In1—N6—C1991.1 (3)
N4—In1—N1—C1119.44 (16)Cl1—In1—N6—C196.5 (3)
N6—In1—N1—C1150.67 (17)N1—In1—N6—C19167.8 (3)
Cl2—In1—N1—C159.33 (15)Cl2—In1—N6—C19103.2 (3)
N2—In1—N1—C989.91 (17)N6—C18—N7—C240.4 (3)
N4—In1—N1—C90.75 (16)C17—C18—N7—C24177.3 (3)
N6—In1—N1—C989.14 (17)C23—C24—N7—C18177.9 (3)
Cl2—In1—N1—C9179.52 (16)C19—C24—N7—C180.5 (3)
N3—C2—N2—C30.1 (3)In1—Cl1—O2—O386.39 (9)
C1—C2—N2—C3179.9 (2)In1—Cl1—O2—Cl3170.73 (6)
N3—C2—N2—In1176.25 (17)C25—C26—O1—N389.1 (15)
C1—C2—N2—In13.6 (3)C2—N3—O1—C2670.9 (9)
C4—C3—N2—C2176.7 (3)C8—N3—O1—C2699.5 (8)
C8—C3—N2—C20.3 (3)C25'—C26'—O1'—H3107.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl3i0.972.703.655 (3)168
C1—H1A···Cl3ii0.972.743.558 (3)142
N7—H7A···O3ii0.862.012.826 (4)158
N5—H5A···O2i0.861.992.818 (4)161
O3—H3B···Cl3iii0.83 (2)2.35 (2)3.144 (3)161 (4)
O3—H3A···O20.82 (2)2.05 (2)2.861 (4)166 (4)
N3—H3···O10.861.902.745 (12)169
N3—H3···O10.861.892.718 (12)160
O2—H2B···Cl20.83 (2)2.41 (2)3.171 (3)154 (3)
O2—H2A···Cl30.82 (2)2.34 (2)3.108 (3)155 (3)
O1—H1···Cl3iv0.822.323.127 (11)167
O1—H1···Cl3iv0.822.493.178 (11)143
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[InCl2(C24H21N7)]Cl·C2H6O·2H2O
Mr710.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.4152 (10), 13.7394 (13), 21.903 (2)
β (°) 103.75
V3)3044.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.846, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
22634, 7526, 6941
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.15
No. of reflections7526
No. of parameters403
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.55

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl3i0.972.703.655 (3)167.6
C1—H1A···Cl3ii0.972.743.558 (3)142.0
N7—H7A···O3ii0.862.012.826 (4)158.1
N5—H5A···O2i0.861.992.818 (4)161.4
O3—H3B···Cl3iii0.829 (18)2.35 (2)3.144 (3)161 (4)
O3—H3A···O20.823 (18)2.05 (2)2.861 (4)166 (4)
N3—H3···O10.861.902.745 (12)169.3
N3—H3···O1'0.861.892.718 (12)159.9
O2—H2B···Cl20.825 (18)2.41 (2)3.171 (3)154 (3)
O2—H2A···Cl30.823 (17)2.34 (2)3.108 (3)155 (3)
O1—H1···Cl3iv0.822.323.127 (11)166.9
O1'—H1'···Cl3iv0.822.493.178 (11)142.6
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Science Technology Research Programme of the Education Office of Hubei Province (grant No. Q20092503) for financial support.

References

First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGreen, D. E., Ferreira, C. L., Stick, R. V., Patrick, B. O., Adam, M. J. & Orvig, C. (2005). Bioconjugate Chem. 16, 1597–1609.  Web of Science CrossRef CAS Google Scholar
First citationHendriks, H. M. J., Birker, P. J. M. W. L., Rijn, J., Verschoor, G. C. & Reedijk, J. (1982). J. Am. Chem. Soc. 104, 3607–3617.  CSD CrossRef CAS Web of Science Google Scholar
First citationKrivokapic, A., Anderson, H. L., Bourhill, G., Ives, R., Clark, S., McEwan, K. J., Kenneth, (2001). Adv. Mater. 13, 652–656.  Google Scholar
First citationLu, J., Ji, S., Teo, Y. & Loh, T. (2005). Org. Lett. 7, 159–161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Q., Liu, Y., Li, H. & Luo, Z. (2009). Acta Cryst. E65, m394–m395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVagin, S., Barthel, M., Dini, D. & Hanack, M. (2003). Inorg. Chem. 42, 2683–2694.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds