organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[5-(Di­methyl­amino)-1-naphthylsulfon­yl]imidazolidine-2-thione

aSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: zy0340907@yahoo.com.cn

(Received 21 July 2010; accepted 27 July 2010; online 31 July 2010)

In the title mol­ecule, C15H17N3O2S2, the dihedral angle between the naphthalene ring system and the imidazole ring is 89.63 (2)°. The crystal structure is stablized by weak inter­molecuar C—H⋯π and N—H⋯π inter­actions.

Related literature

For the applications of compounds containing a 5-(dimethyl­amino)­naphthalene-1-sulfonyl group, see: Corradini et al. (1996[Corradini, R., Dossena, A., Marchelli, R., Panagia, A., Sartor, G., Saviano, M., Lombardi, A. & Pavone, V. (1996). Chem. Eur. J. 2, 373-381.], 1997[Corradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem. 62, 6283-6289.]); Christoforou et al. (2006[Christoforou, A. M., Marzilli, P. A. & Marzilli, L. G. (2006). Inorg. Chem. 45, 6771-6781.]). For a related structure, see: Zhang et al. (2009[Zhang, Y., Qu, Y. & Liu, T. (2009). Acta Cryst. E65, o2752.]). For the synthetic procedure, see: Corradini et al. (1996[Corradini, R., Dossena, A., Marchelli, R., Panagia, A., Sartor, G., Saviano, M., Lombardi, A. & Pavone, V. (1996). Chem. Eur. J. 2, 373-381.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3O2S2

  • Mr = 335.44

  • Monoclinic, P 21 /n

  • a = 15.364 (4) Å

  • b = 6.9814 (18) Å

  • c = 15.470 (4) Å

  • β = 113.967 (4)°

  • V = 1516.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.33 × 0.32 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.965

  • 8935 measured reflections

  • 3302 independent reflections

  • 2605 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.145

  • S = 1.04

  • 3302 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C5/C10 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.93 2.88 3.667 (3) 143
N3—H3ACg2ii 0.88 (3) 2.58 (3) 3.433 (3) 165 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The dansyl (5-(dimethylamino)naphthalene-1-sulfonyl) group has been widely used as a fluorophore due to its good fluorescent properties. Recently many dansyl derivatives have been reported (Corradini et al., 1996,1997; Christoforou et al., 2006). We show great interest in preparing fluorescent probes that are expected to bind to hydrophobic sites in proteins or membranes and have recently published a structure reslted to the title compound (Zhang et al., 2009). With this in mind, the title compound, (I), was prepared and we report herein the crystal stucture.

In the molecular structure (Fig. 1), the dihedral angle between the naphthalene ring and five-membered heterocyclic ring is 89.63 (2)°. The crystal structure is stablized by weak intermolecuar C—H···π and N—H···π interactions.

Related literature top

For the applications of compounds containing a 5-(dimethylamino)naphthalene-1-sulfonyl group, see: Corradini et al. (1996, 1997); Christoforou et al. (2006). For a related structure, see: Zhang et al. (2009). For the synthetic procedure, see: Corradini et al. (1996).

Experimental top

The intermediate N-(2-Aminoethyl)-5-(dimethylamino)naphthalene-1-sulfonamide was synthesized according to a literature procedure (Corradini et al., 1996). Carbon bisulfide (0.76 g, 10 mmol) and sodium hydroxide(0.40 g, 10 mmol) were added into a stirred solution of the above intermediate (1.47 g, 5 mmol) in dry methanol (20 ml).The reaction mixture was allowed to stir for 24 hr at 293 K. The progress of the reaction was monitored by TLC, untill the completion of reaction. The solvent was evaporated and the residue was purified by column chromatography (dichloromethane-ethyl acetate,1:8 v/v) to afford the title compound as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in dichloromethane at room temperature.

Refinement top

All H atoms were placed in idealized positions [CH(methyl)=0.96 Å, 0.97Å (methylene) and 0.93 Å (aromatic),with Uiso(H)= 1.5Ueq(methyl C) 1.2Ueq(other C). N-bounded hydrogen atom was found from the difference map and refined with the restraint of N—H = 0.88 (3)Å and Uiso(H) = 1.2 Ueq(N).

Structure description top

The dansyl (5-(dimethylamino)naphthalene-1-sulfonyl) group has been widely used as a fluorophore due to its good fluorescent properties. Recently many dansyl derivatives have been reported (Corradini et al., 1996,1997; Christoforou et al., 2006). We show great interest in preparing fluorescent probes that are expected to bind to hydrophobic sites in proteins or membranes and have recently published a structure reslted to the title compound (Zhang et al., 2009). With this in mind, the title compound, (I), was prepared and we report herein the crystal stucture.

In the molecular structure (Fig. 1), the dihedral angle between the naphthalene ring and five-membered heterocyclic ring is 89.63 (2)°. The crystal structure is stablized by weak intermolecuar C—H···π and N—H···π interactions.

For the applications of compounds containing a 5-(dimethylamino)naphthalene-1-sulfonyl group, see: Corradini et al. (1996, 1997); Christoforou et al. (2006). For a related structure, see: Zhang et al. (2009). For the synthetic procedure, see: Corradini et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
1-[5-(Dimethylamino)-1-naphthylsulfonyl]imidazolidine-2-thione top
Crystal data top
C15H17N3O2S2F(000) = 700
Mr = 335.44Dx = 1.465 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2682 reflections
a = 15.364 (4) Åθ = 2.4–28.1°
b = 6.9814 (18) ŵ = 0.36 mm1
c = 15.470 (4) ÅT = 298 K
β = 113.967 (4)°Block, yellow
V = 1516.3 (7) Å30.33 × 0.32 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3302 independent reflections
Radiation source: fine-focus sealed tube2605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
φ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1719
Tmin = 0.955, Tmax = 0.965k = 88
8935 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
3302 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C15H17N3O2S2V = 1516.3 (7) Å3
Mr = 335.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.364 (4) ŵ = 0.36 mm1
b = 6.9814 (18) ÅT = 298 K
c = 15.470 (4) Å0.33 × 0.32 × 0.28 mm
β = 113.967 (4)°
Data collection top
Bruker SMART CCD
diffractometer
3302 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2605 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.965Rint = 0.104
8935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
3302 reflectionsΔρmin = 0.35 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61885 (15)0.6070 (3)0.72722 (15)0.0306 (5)
C20.68621 (19)0.7474 (3)0.76019 (18)0.0379 (6)
H20.68680.84660.72030.045*
C30.75453 (19)0.7430 (3)0.85392 (19)0.0434 (6)
H30.80110.83750.87460.052*
C40.75429 (17)0.6051 (3)0.91479 (17)0.0384 (6)
H40.79830.60990.97740.046*
C50.68768 (15)0.4529 (3)0.88431 (15)0.0271 (5)
C60.68432 (16)0.2951 (3)0.94243 (16)0.0299 (5)
C70.62594 (17)0.1403 (3)0.90561 (16)0.0342 (5)
H70.62530.03980.94480.041*
C80.56701 (17)0.1343 (3)0.80839 (17)0.0370 (6)
H80.52980.02670.78280.044*
C90.56426 (17)0.2841 (3)0.75203 (17)0.0336 (5)
H90.52350.27920.68830.040*
C100.62191 (14)0.4484 (3)0.78765 (15)0.0271 (5)
C110.45077 (18)0.6337 (5)0.6290 (2)0.0536 (7)
H11A0.44250.55780.67690.080*
H11B0.40510.59530.56780.080*
H11C0.44160.76650.63910.080*
C120.5635 (2)0.7304 (4)0.5667 (2)0.0576 (8)
H12A0.56040.86160.58370.086*
H12B0.51570.70720.50430.086*
H12C0.62530.70460.56770.086*
C130.7299 (2)0.6395 (4)1.1372 (2)0.0589 (8)
H13A0.73910.70551.08630.071*
H13B0.78960.63941.19290.071*
C140.6522 (2)0.7308 (4)1.1575 (2)0.0515 (7)
H14A0.67640.78061.22160.062*
H14B0.62230.83411.11350.062*
C150.60716 (16)0.4138 (3)1.11357 (15)0.0336 (5)
N10.54715 (14)0.6055 (3)0.63401 (13)0.0381 (5)
N20.69536 (13)0.4434 (3)1.10932 (13)0.0328 (4)
N30.58699 (18)0.5772 (3)1.14554 (17)0.0496 (6)
H3A0.534 (2)0.590 (4)1.154 (2)0.059*
O10.74468 (12)0.1037 (2)1.09977 (12)0.0422 (4)
O20.84230 (11)0.3748 (3)1.09114 (11)0.0414 (4)
S10.75069 (4)0.29031 (8)1.06638 (4)0.03206 (19)
S20.53971 (5)0.22082 (10)1.08475 (6)0.0524 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0297 (12)0.0365 (13)0.0286 (12)0.0012 (10)0.0150 (9)0.0006 (9)
C20.0425 (14)0.0352 (13)0.0384 (13)0.0015 (10)0.0190 (11)0.0049 (10)
C30.0452 (16)0.0396 (14)0.0437 (15)0.0167 (11)0.0165 (12)0.0017 (11)
C40.0372 (14)0.0423 (14)0.0316 (12)0.0092 (11)0.0097 (10)0.0028 (10)
C50.0263 (11)0.0309 (11)0.0263 (11)0.0000 (9)0.0129 (8)0.0013 (9)
C60.0266 (11)0.0343 (12)0.0291 (11)0.0026 (9)0.0118 (9)0.0001 (9)
C70.0402 (13)0.0308 (12)0.0339 (12)0.0022 (10)0.0173 (10)0.0006 (10)
C80.0413 (14)0.0339 (13)0.0393 (13)0.0111 (11)0.0200 (11)0.0103 (10)
C90.0303 (12)0.0416 (13)0.0295 (12)0.0041 (10)0.0126 (9)0.0060 (10)
C100.0232 (10)0.0328 (12)0.0280 (11)0.0021 (9)0.0130 (9)0.0015 (9)
C110.0345 (15)0.072 (2)0.0477 (16)0.0080 (14)0.0092 (12)0.0107 (14)
C120.0583 (19)0.073 (2)0.0356 (15)0.0115 (15)0.0130 (13)0.0146 (13)
C130.0640 (19)0.0383 (15)0.083 (2)0.0096 (14)0.0386 (17)0.0153 (15)
C140.070 (2)0.0387 (15)0.0469 (16)0.0002 (13)0.0246 (15)0.0069 (12)
C150.0395 (13)0.0371 (13)0.0266 (11)0.0071 (10)0.0158 (10)0.0067 (10)
N10.0322 (11)0.0490 (12)0.0302 (10)0.0000 (9)0.0099 (8)0.0070 (9)
N20.0342 (11)0.0307 (10)0.0343 (11)0.0012 (8)0.0145 (8)0.0036 (8)
N30.0595 (15)0.0440 (13)0.0595 (15)0.0068 (11)0.0389 (13)0.0025 (11)
O10.0509 (11)0.0343 (9)0.0399 (10)0.0105 (8)0.0169 (8)0.0090 (7)
O20.0284 (9)0.0521 (11)0.0391 (10)0.0026 (8)0.0092 (7)0.0035 (8)
S10.0314 (3)0.0339 (3)0.0303 (3)0.0052 (2)0.0119 (2)0.0030 (2)
S20.0465 (4)0.0484 (4)0.0687 (5)0.0096 (3)0.0300 (4)0.0000 (3)
Geometric parameters (Å, º) top
C1—C21.365 (3)C11—H11B0.9600
C1—N11.415 (3)C11—H11C0.9600
C1—C101.437 (3)C12—N11.456 (3)
C2—C31.403 (4)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.348 (3)C12—H12C0.9600
C3—H30.9300C13—N21.468 (3)
C4—C51.417 (3)C13—C141.496 (4)
C4—H40.9300C13—H13A0.9700
C5—C101.425 (3)C13—H13B0.9700
C5—C61.436 (3)C14—N31.428 (3)
C6—C71.372 (3)C14—H14A0.9700
C6—S11.769 (2)C14—H14B0.9700
C7—C81.406 (3)C15—N31.329 (3)
C7—H70.9300C15—N21.398 (3)
C8—C91.351 (3)C15—S21.647 (2)
C8—H80.9300N2—S11.6628 (19)
C9—C101.417 (3)N3—H3A0.88 (3)
C9—H90.9300O1—S11.4182 (17)
C11—N11.464 (3)O2—S11.4275 (17)
C11—H11A0.9600
C2—C1—N1123.0 (2)N1—C12—H12A109.5
C2—C1—C10119.4 (2)N1—C12—H12B109.5
N1—C1—C10117.6 (2)H12A—C12—H12B109.5
C1—C2—C3120.4 (2)N1—C12—H12C109.5
C1—C2—H2119.8H12A—C12—H12C109.5
C3—C2—H2119.8H12B—C12—H12C109.5
C4—C3—C2121.7 (2)N2—C13—C14103.6 (2)
C4—C3—H3119.2N2—C13—H13A111.0
C2—C3—H3119.2C14—C13—H13A111.0
C3—C4—C5120.7 (2)N2—C13—H13B111.0
C3—C4—H4119.7C14—C13—H13B111.0
C5—C4—H4119.7H13A—C13—H13B109.0
C4—C5—C10118.31 (19)N3—C14—C13103.3 (2)
C4—C5—C6124.9 (2)N3—C14—H14A111.1
C10—C5—C6116.72 (19)C13—C14—H14A111.1
C7—C6—C5121.9 (2)N3—C14—H14B111.1
C7—C6—S1115.27 (17)C13—C14—H14B111.1
C5—C6—S1122.80 (17)H14A—C14—H14B109.1
C6—C7—C8119.7 (2)N3—C15—N2105.5 (2)
C6—C7—H7120.1N3—C15—S2125.9 (2)
C8—C7—H7120.1N2—C15—S2128.54 (17)
C9—C8—C7120.3 (2)C1—N1—C12115.8 (2)
C9—C8—H8119.8C1—N1—C11113.87 (19)
C7—C8—H8119.8C12—N1—C11110.3 (2)
C8—C9—C10121.7 (2)C15—N2—C13111.46 (19)
C8—C9—H9119.2C15—N2—S1125.90 (16)
C10—C9—H9119.2C13—N2—S1122.26 (17)
C9—C10—C5119.38 (19)C15—N3—C14115.8 (2)
C9—C10—C1121.37 (19)C15—N3—H3A121 (2)
C5—C10—C1119.17 (19)C14—N3—H3A123.1 (19)
N1—C11—H11A109.5O1—S1—O2119.00 (10)
N1—C11—H11B109.5O1—S1—N2108.99 (10)
H11A—C11—H11B109.5O2—S1—N2103.62 (10)
N1—C11—H11C109.5O1—S1—C6108.55 (11)
H11A—C11—H11C109.5O2—S1—C6110.75 (10)
H11B—C11—H11C109.5N2—S1—C6104.94 (10)
N1—C1—C2—C3178.9 (2)C2—C1—N1—C1216.4 (3)
C10—C1—C2—C33.7 (4)C10—C1—N1—C12161.2 (2)
C1—C2—C3—C42.1 (4)C2—C1—N1—C11113.0 (3)
C2—C3—C4—C53.6 (4)C10—C1—N1—C1169.5 (3)
C3—C4—C5—C100.7 (3)N3—C15—N2—C132.2 (3)
C3—C4—C5—C6177.1 (2)S2—C15—N2—C13177.2 (2)
C4—C5—C6—C7171.7 (2)N3—C15—N2—S1175.13 (17)
C10—C5—C6—C74.8 (3)S2—C15—N2—S14.3 (3)
C4—C5—C6—S111.1 (3)C14—C13—N2—C151.1 (3)
C10—C5—C6—S1172.47 (15)C14—C13—N2—S1172.14 (18)
C5—C6—C7—C80.3 (3)N2—C15—N3—C145.0 (3)
S1—C6—C7—C8177.21 (17)S2—C15—N3—C14174.4 (2)
C6—C7—C8—C93.2 (3)C13—C14—N3—C155.7 (3)
C7—C8—C9—C101.9 (4)C15—N2—S1—O144.0 (2)
C8—C9—C10—C52.9 (3)C13—N2—S1—O1143.8 (2)
C8—C9—C10—C1179.8 (2)C15—N2—S1—O2171.64 (17)
C4—C5—C10—C9170.7 (2)C13—N2—S1—O216.1 (2)
C6—C5—C10—C96.0 (3)C15—N2—S1—C672.1 (2)
C4—C5—C10—C16.3 (3)C13—N2—S1—C6100.1 (2)
C6—C5—C10—C1177.01 (18)C7—C6—S1—O112.6 (2)
C2—C1—C10—C9169.1 (2)C5—C6—S1—O1169.92 (17)
N1—C1—C10—C98.5 (3)C7—C6—S1—O2145.02 (18)
C2—C1—C10—C57.8 (3)C5—C6—S1—O237.5 (2)
N1—C1—C10—C5174.59 (19)C7—C6—S1—N2103.77 (18)
N2—C13—C14—N33.7 (3)C5—C6—S1—N273.67 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C5/C10 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.932.883.667 (3)143
N3—H3A···Cg2ii0.88 (3)2.58 (3)3.433 (3)165 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H17N3O2S2
Mr335.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)15.364 (4), 6.9814 (18), 15.470 (4)
β (°) 113.967 (4)
V3)1516.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.33 × 0.32 × 0.28
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.955, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
8935, 3302, 2605
Rint0.104
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.145, 1.04
No. of reflections3302
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.35

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C5/C10 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.932.883.667 (3)143
N3—H3A···Cg2ii0.88 (3)2.58 (3)3.433 (3)165 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2.
 

References

First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristoforou, A. M., Marzilli, P. A. & Marzilli, L. G. (2006). Inorg. Chem. 45, 6771–6781.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCorradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem. 62, 6283–6289.  CrossRef CAS Web of Science Google Scholar
First citationCorradini, R., Dossena, A., Marchelli, R., Panagia, A., Sartor, G., Saviano, M., Lombardi, A. & Pavone, V. (1996). Chem. Eur. J. 2, 373–381.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Qu, Y. & Liu, T. (2009). Acta Cryst. E65, o2752.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds