organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperazine-1,4-diium 2-(carb­­oxy­meth­yl)-2-hy­dr­oxy­butane­dioate monohydrate

aRenmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
*Correspondence e-mail: llliu573@126.com

(Received 21 July 2010; accepted 29 July 2010; online 31 July 2010)

In the crystal structure of the title compound, C4H12N22+·C6H6O72−·H2O, the cations, anions and water mol­ecules are linked by inter­molecular N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds into a three-dimensional network. An intra­molecular O—H⋯O inter­action occurs in the dianion.

Related literature

For background to the applications of organic salts as pharmaceuticals, see: Du et al. (2009[Du, M., Zhang, Z. H., Guo, W. & Fu, X. J. (2009). Cryst. Growth Des. 9, 1655-1657.]); Skovsgaard & Bond (2009[Skovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444-453.]); Yathirajan et al. (2005[Yathirajan, H. S., Nagaraj, B., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o489-o491.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N22+·C6H6O72−·H2O

  • Mr = 296.28

  • Monoclinic, P n

  • a = 9.2055 (12) Å

  • b = 6.8314 (9) Å

  • c = 11.2443 (14) Å

  • β = 112.047 (2)°

  • V = 655.41 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.987

  • 4284 measured reflections

  • 1605 independent reflections

  • 1597 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 0.84

  • 1605 reflections

  • 205 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.85 (2) 2.48 (3) 3.068 (3) 126 (3)
N1—H1A⋯O4i 0.85 (2) 1.99 (3) 2.764 (3) 150 (3)
N1—H1B⋯O1 0.86 (2) 1.95 (2) 2.806 (3) 174 (4)
N2—H2A⋯O5ii 0.86 (2) 1.86 (2) 2.706 (2) 167 (4)
N2—H2B⋯O1iii 0.86 (2) 1.99 (2) 2.804 (3) 159 (4)
O3—H3C⋯O2 0.87 (3) 1.92 (4) 2.685 (3) 147 (4)
O6—H6C⋯O5iv 0.87 (3) 1.82 (3) 2.671 (3) 167 (5)
O8—H8C⋯O2 0.87 (8) 2.00 (4) 2.798 (4) 151 (8)
O8—H8D⋯O1iv 0.87 (8) 2.15 (4) 3.003 (5) 165 (10)
C1—H1C⋯O7ii 0.97 2.47 3.391 (3) 159
C3—H3A⋯O7v 0.97 2.58 3.394 (3) 142
C3—H3B⋯O8vi 0.97 2.41 3.344 (7) 161
C4—H4B⋯O5ii 0.97 2.58 3.274 (3) 128
C6—H6A⋯O6vi 0.97 2.57 3.338 (3) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [x-{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) x, y-1, z-1; (vi) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Molecular adducts or cocrystals are widely applied in the fields of pharmaceuticals (Yathirajan, et al., 2005, Skovsgaard & Bond, 2009, Du et al., 2009). Herein, the crystal structure of the title compound (I) is reported.

The asymmetic unit of (I) composed of one piperazinium divalent cation, one citrate divalent anion and one solvent water molecule (see Fig.1). In the crystal structure, the piperazinium cations, citrate anions and water molecules are linked by intermolecular N—H···O, O—H..O and weak C—H···O hydrogen bonds (Table 1) into a three-dimensional network (Fig.2).

Related literature top

For background to the applications of co-crystals as pharmaceuticals, see: Du et al. (2009); Skovsgaard & Bond (2009); Yathirajan et al. (2005).

Experimental top

All the reagents and solvents were used as obtained without further purification. Equivalent molar amount of piperazine (0.2 mmol, 17.2 mg) and citric acid (0.2 mmol, 42.1 mg) were dissolved in 10 ml 95% methanol. The mixture was stirred for ten minutes at ambient temperature and then filtered. The resulting colorless solution was kept in air for three week. Block-shaped crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Refinement top

In the absence of anomalous dispersion effects the Fridel pairs were merged. H atoms bonded to C atoms were positioned geometrically with C–H = 0.97Å and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C)]. H atoms bonded to N and O atoms were found from the difference maps and the N—H and O—H distances were refined using commands of 'SADI' and 'DFIX' in SHELXL (Sheldrick, 2008). The Uiso(H) values were set to 1.2 and 1.5 times of 1.2Ueq(N) and 1.5Ueq(O), respectively.

Structure description top

Molecular adducts or cocrystals are widely applied in the fields of pharmaceuticals (Yathirajan, et al., 2005, Skovsgaard & Bond, 2009, Du et al., 2009). Herein, the crystal structure of the title compound (I) is reported.

The asymmetic unit of (I) composed of one piperazinium divalent cation, one citrate divalent anion and one solvent water molecule (see Fig.1). In the crystal structure, the piperazinium cations, citrate anions and water molecules are linked by intermolecular N—H···O, O—H..O and weak C—H···O hydrogen bonds (Table 1) into a three-dimensional network (Fig.2).

For background to the applications of co-crystals as pharmaceuticals, see: Du et al. (2009); Skovsgaard & Bond (2009); Yathirajan et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure showing hydrogen bonds as dashed lines (I).
Piperazine-1,4-diium 2-(carboxymethyl)-2-hydroxybutanedioate monohydrate top
Crystal data top
C4H12N22+·C6H6O72·H2OF(000) = 316
Mr = 296.28Dx = 1.501 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 3551 reflections
a = 9.2055 (12) Åθ = 2.4–28.2°
b = 6.8314 (9) ŵ = 0.13 mm1
c = 11.2443 (14) ÅT = 298 K
β = 112.047 (2)°Block, colorless
V = 655.41 (15) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1605 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
0.3° wide ω exposures scansθmax = 28.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.964, Tmax = 0.987k = 97
4284 measured reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.1299P)2 + 0.0532P]
where P = (Fo2 + 2Fc2)/3
1605 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.34 e Å3
15 restraintsΔρmin = 0.49 e Å3
Crystal data top
C4H12N22+·C6H6O72·H2OV = 655.41 (15) Å3
Mr = 296.28Z = 2
Monoclinic, PnMo Kα radiation
a = 9.2055 (12) ŵ = 0.13 mm1
b = 6.8314 (9) ÅT = 298 K
c = 11.2443 (14) Å0.20 × 0.10 × 0.10 mm
β = 112.047 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1605 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1597 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.987Rint = 0.088
4284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04515 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.34 e Å3
1605 reflectionsΔρmin = 0.49 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0340 (3)0.4003 (3)0.1528 (2)0.0297 (4)
H1C0.02350.44670.23070.036*
H1D0.06360.51060.11240.036*
C20.1605 (3)0.2459 (4)0.1861 (3)0.0332 (5)
H2C0.17960.21050.10970.040*
H2D0.25700.29820.24840.040*
C30.0376 (3)0.0130 (3)0.1483 (2)0.0305 (5)
H3A0.06730.12650.18590.037*
H3B0.02510.05400.07010.037*
C40.1648 (3)0.1419 (4)0.1174 (2)0.0303 (5)
H4A0.26180.09030.05530.036*
H4B0.18260.17540.19460.036*
C50.0510 (2)0.2958 (3)0.2147 (2)0.0246 (4)
C60.0104 (3)0.2231 (3)0.3269 (2)0.0265 (4)
H6A0.09930.15010.38460.032*
H6B0.07680.13250.29370.032*
C70.0330 (2)0.3809 (3)0.40527 (19)0.0199 (4)
C80.1144 (3)0.4982 (3)0.4852 (2)0.0262 (4)
H8A0.18380.41570.55290.031*
H8B0.16970.53750.43070.031*
C90.0719 (3)0.6782 (3)0.5437 (2)0.0252 (4)
C100.0977 (2)0.2788 (3)0.49726 (19)0.0214 (4)
N10.1189 (2)0.3207 (3)0.06442 (18)0.0258 (4)
H1A0.194 (3)0.403 (4)0.044 (4)0.031*
H1B0.121 (4)0.286 (5)0.010 (2)0.031*
N20.1133 (2)0.0681 (3)0.23994 (18)0.0265 (4)
H2A0.094 (4)0.085 (6)0.308 (3)0.032*
H2B0.183 (4)0.019 (4)0.248 (4)0.032*
O10.1237 (2)0.1775 (3)0.17088 (18)0.0372 (5)
O20.0071 (3)0.4609 (3)0.1684 (2)0.0461 (6)
O30.1506 (2)0.5083 (3)0.32461 (16)0.0297 (4)
H3C0.122 (5)0.535 (7)0.261 (4)0.045*
O40.2272 (2)0.3241 (2)0.49788 (19)0.0315 (4)
O50.0096 (2)0.1479 (3)0.56970 (16)0.0303 (4)
O60.1374 (3)0.8387 (3)0.5218 (2)0.0423 (5)
H6C0.102 (6)0.942 (6)0.547 (5)0.063*
O70.0127 (3)0.6765 (3)0.60374 (19)0.0368 (4)
O80.0953 (5)0.8366 (6)0.0753 (6)0.0923 (14)
H8C0.032 (9)0.739 (7)0.107 (10)0.139*
H8D0.039 (10)0.938 (7)0.114 (9)0.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0348 (10)0.0246 (10)0.0330 (11)0.0013 (9)0.0165 (8)0.0009 (8)
C20.0289 (10)0.0379 (12)0.0375 (12)0.0018 (9)0.0177 (9)0.0036 (10)
C30.0352 (11)0.0250 (10)0.0302 (10)0.0009 (8)0.0112 (9)0.0010 (8)
C40.0260 (9)0.0318 (11)0.0322 (11)0.0007 (8)0.0097 (8)0.0022 (9)
C50.0272 (9)0.0293 (9)0.0195 (8)0.0015 (8)0.0112 (7)0.0005 (7)
C60.0391 (11)0.0221 (9)0.0259 (10)0.0037 (8)0.0211 (9)0.0018 (7)
C70.0229 (8)0.0193 (8)0.0203 (8)0.0014 (7)0.0115 (7)0.0013 (6)
C80.0240 (8)0.0227 (8)0.0351 (10)0.0027 (7)0.0147 (7)0.0024 (8)
C90.0276 (10)0.0238 (9)0.0252 (10)0.0019 (7)0.0110 (8)0.0007 (7)
C100.0294 (9)0.0171 (8)0.0213 (8)0.0024 (7)0.0138 (7)0.0031 (6)
N10.0304 (9)0.0286 (9)0.0215 (8)0.0066 (7)0.0132 (7)0.0017 (6)
N20.0295 (8)0.0292 (9)0.0225 (8)0.0087 (7)0.0116 (7)0.0001 (7)
O10.0466 (10)0.0427 (10)0.0324 (9)0.0174 (8)0.0264 (8)0.0075 (7)
O20.0781 (16)0.0326 (9)0.0428 (11)0.0132 (10)0.0402 (11)0.0136 (8)
O30.0319 (7)0.0340 (8)0.0255 (7)0.0119 (6)0.0134 (6)0.0082 (6)
O40.0296 (8)0.0290 (8)0.0442 (10)0.0006 (6)0.0234 (7)0.0021 (7)
O50.0422 (9)0.0269 (7)0.0294 (8)0.0073 (6)0.0220 (7)0.0057 (6)
O60.0593 (12)0.0196 (8)0.0672 (14)0.0016 (7)0.0456 (12)0.0006 (7)
O70.0514 (11)0.0315 (9)0.0396 (10)0.0068 (7)0.0307 (9)0.0060 (6)
O80.076 (2)0.0599 (19)0.123 (4)0.0029 (17)0.017 (2)0.014 (2)
Geometric parameters (Å, º) top
C1—N11.488 (3)C6—H6B0.9700
C1—C21.510 (3)C7—O31.420 (2)
C1—H1C0.9700C7—C101.540 (3)
C1—H1D0.9700C7—C81.541 (3)
C2—N21.492 (3)C8—C91.514 (3)
C2—H2C0.9700C8—H8A0.9700
C2—H2D0.9700C8—H8B0.9700
C3—N21.491 (3)C9—O71.207 (3)
C3—C41.519 (3)C9—O61.318 (3)
C3—H3A0.9700C10—O41.235 (3)
C3—H3B0.9700C10—O51.274 (3)
C4—N11.488 (3)N1—H1A0.85 (2)
C4—H4A0.9700N1—H1B0.86 (2)
C4—H4B0.9700N2—H2A0.86 (2)
C5—O21.244 (3)N2—H2B0.86 (2)
C5—O11.262 (3)O3—H3C0.87 (3)
C5—C61.527 (3)O6—H6C0.87 (3)
C6—C71.537 (3)O8—H8C0.87 (8)
C6—H6A0.9700O8—H8D0.87 (8)
N1—C1—C2110.99 (19)O3—C7—C6111.33 (17)
N1—C1—H1C109.4O3—C7—C10108.20 (17)
C2—C1—H1C109.4C6—C7—C10108.45 (16)
N1—C1—H1D109.4O3—C7—C8110.29 (17)
C2—C1—H1D109.4C6—C7—C8109.76 (16)
H1C—C1—H1D108.0C10—C7—C8108.75 (16)
N2—C2—C1110.75 (19)C9—C8—C7111.19 (18)
N2—C2—H2C109.5C9—C8—H8A109.4
C1—C2—H2C109.5C7—C8—H8A109.4
N2—C2—H2D109.5C9—C8—H8B109.4
C1—C2—H2D109.5C7—C8—H8B109.4
H2C—C2—H2D108.1H8A—C8—H8B108.0
N2—C3—C4109.71 (19)O7—C9—O6123.3 (2)
N2—C3—H3A109.7O7—C9—C8124.2 (2)
C4—C3—H3A109.7O6—C9—C8112.56 (19)
N2—C3—H3B109.7O4—C10—O5123.8 (2)
C4—C3—H3B109.7O4—C10—C7120.53 (19)
H3A—C3—H3B108.2O5—C10—C7115.69 (18)
N1—C4—C3110.68 (19)C4—N1—C1111.87 (18)
N1—C4—H4A109.5C4—N1—H1A109 (2)
C3—C4—H4A109.5C1—N1—H1A114 (2)
N1—C4—H4B109.5C4—N1—H1B105 (2)
C3—C4—H4B109.5C1—N1—H1B115 (2)
H4A—C4—H4B108.1H1A—N1—H1B102 (4)
O2—C5—O1123.7 (2)C3—N2—C2111.07 (18)
O2—C5—C6119.9 (2)C3—N2—H2A103 (2)
O1—C5—C6116.4 (2)C2—N2—H2A116 (3)
C5—C6—C7116.23 (18)C3—N2—H2B107 (3)
C5—C6—H6A108.2C2—N2—H2B107 (3)
C7—C6—H6A108.2H2A—N2—H2B113 (4)
C5—C6—H6B108.2C7—O3—H3C105 (3)
C7—C6—H6B108.2C9—O6—H6C111 (4)
H6A—C6—H6B107.4H8C—O8—H8D103 (5)
N1—C1—C2—N255.1 (3)C7—C8—C9—O6129.7 (2)
N2—C3—C4—N157.1 (3)O3—C7—C10—O44.9 (3)
O2—C5—C6—C720.1 (3)C6—C7—C10—O4125.8 (2)
O1—C5—C6—C7162.6 (2)C8—C7—C10—O4114.9 (2)
C5—C6—C7—O351.2 (3)O3—C7—C10—O5174.87 (17)
C5—C6—C7—C10170.11 (18)C6—C7—C10—O554.0 (2)
C5—C6—C7—C871.2 (2)C8—C7—C10—O565.3 (2)
O3—C7—C8—C946.2 (2)C3—C4—N1—C156.1 (2)
C6—C7—C8—C9169.19 (18)C2—C1—N1—C455.0 (2)
C10—C7—C8—C972.3 (2)C4—C3—N2—C258.1 (2)
C7—C8—C9—O750.3 (3)C1—C2—N2—C357.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.85 (2)2.48 (3)3.068 (3)126 (3)
N1—H1A···O4i0.85 (2)1.99 (3)2.764 (3)150 (3)
N1—H1B···O10.86 (2)1.95 (2)2.806 (3)174 (4)
N2—H2A···O5ii0.86 (2)1.86 (2)2.706 (2)167 (4)
N2—H2B···O1iii0.86 (2)1.99 (2)2.804 (3)159 (4)
O3—H3C···O20.87 (3)1.92 (4)2.685 (3)147 (4)
O6—H6C···O5iv0.87 (3)1.82 (3)2.671 (3)167 (5)
O8—H8C···O20.87 (8)2.00 (4)2.798 (4)151 (8)
O8—H8D···O1iv0.87 (8)2.15 (4)3.003 (5)165 (10)
C1—H1C···O7ii0.972.473.391 (3)159
C3—H3A···O7v0.972.583.394 (3)142
C3—H3B···O8vi0.972.413.344 (7)161
C4—H4B···O5ii0.972.583.274 (3)128
C6—H6A···O6vi0.972.573.338 (3)136
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y, z1; (iii) x1/2, y, z1/2; (iv) x, y+1, z; (v) x, y1, z1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC4H12N22+·C6H6O72·H2O
Mr296.28
Crystal system, space groupMonoclinic, Pn
Temperature (K)298
a, b, c (Å)9.2055 (12), 6.8314 (9), 11.2443 (14)
β (°) 112.047 (2)
V3)655.41 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.964, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4284, 1605, 1597
Rint0.088
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 0.84
No. of reflections1605
No. of parameters205
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.49

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick,2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.85 (2)2.48 (3)3.068 (3)126 (3)
N1—H1A···O4i0.85 (2)1.99 (3)2.764 (3)150 (3)
N1—H1B···O10.86 (2)1.95 (2)2.806 (3)174 (4)
N2—H2A···O5ii0.86 (2)1.86 (2)2.706 (2)167 (4)
N2—H2B···O1iii0.86 (2)1.99 (2)2.804 (3)159 (4)
O3—H3C···O20.87 (3)1.92 (4)2.685 (3)147 (4)
O6—H6C···O5iv0.87 (3)1.82 (3)2.671 (3)167 (5)
O8—H8C···O20.87 (8)2.00 (4)2.798 (4)151 (8)
O8—H8D···O1iv0.87 (8)2.15 (4)3.003 (5)165 (10)
C1—H1C···O7ii0.972.473.391 (3)159.4
C3—H3A···O7v0.972.583.394 (3)141.9
C3—H3B···O8vi0.972.413.344 (7)160.9
C4—H4B···O5ii0.972.583.274 (3)128.4
C6—H6A···O6vi0.972.573.338 (3)135.8
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y, z1; (iii) x1/2, y, z1/2; (iv) x, y+1, z; (v) x, y1, z1; (vi) x, y1, z.
 

Acknowledgements

Renmin Hospital of Wuhan University is thanked for for financial support of this work.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Zhang, Z. H., Guo, W. & Fu, X. J. (2009). Cryst. Growth Des. 9, 1655–1657.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Nagaraj, B., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o489–o491.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds