organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­butyl­ammonium N-benzoyl-6-nitro-1,3-benzo­thia­zol-2-aminide

aDepartment of Applied Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: thkim@chonnam.ac.kr

(Received 1 June 2010; accepted 5 July 2010; online 10 July 2010)

In the title salt, C16H36N+·C14H8N3O3S, the torsion angles within the cation reveal that one butyl group displays an anti conformation and the other three butyl groups show gauche conformations. The anion is almost planar, with a largest deviation of 0.166 (6) Å from the least-squares plane (r.m.s. deviation of fitted atoms = 0.052 Å). In the crystal structure, the component ions inter­act by means of weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the development of colorimetric chemosensors, see: Coll et al. (2007[Coll, C., Martinez-Manez, R., Dolores, M. M., Sancenon, F. & Soto, J. (2007). Angew. Chem. Int. Ed. 46, 1675-1678.]); Evans et al. (2006[Evans, L. S., Gale, P. A., Light, M. E. & Quesada, R. (2006). Chem. Commun. pp. 965-967.]). For similar deprotonation reactions, see: Kang et al. (2009[Kang, S. O., Nguyen, Q. P. B. & Kim, T. H. (2009). Bull. Korean Chem. Soc. 30, 2735-2738.]).

[Scheme 1]

Experimental

Crystal data
  • C16H36N+·C14H8N3O3S

  • Mr = 540.75

  • Monoclinic, C c

  • a = 7.9234 (7) Å

  • b = 25.059 (2) Å

  • c = 15.4916 (14) Å

  • β = 97.699 (2)°

  • V = 3048.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 223 K

  • 0.22 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.988

  • 11371 measured reflections

  • 5730 independent reflections

  • 2547 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.169

  • S = 0.95

  • 5730 reflections

  • 347 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1908 Friedel pairs

  • Flack parameter: 0.08 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28A⋯O1i 0.98 2.24 3.166 (8) 157
C29—H29A⋯O2ii 0.98 2.39 3.353 (9) 166
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The development of colorimetric chemosensors is attractive in supramolecular chemistry because they give a direct signal which is easily observed by the naked eye (Coll et al., 2007). Most chemosensors contain –NH fragments which act as hydrogen bond donors for the binding of anions. However, the chromophore fragments for colorimetric signal may contain electron-withdrawing groups that enhance the acidity of the –NH protons of the binding site. Therefore, these acidic protons can be abstracted by the basic anions in the deprotonation process (Evans et al., 2006). In some cases, it is difficult to establish a clear difference between a hydrogen bond donor binding process and a deprotonation process. The title salt was prepared on the study of the nature of interaction between N-(6-nitrobenzo[d]thiazol-2-yl)benzamide and tetrabutylammonium acetate (Kang et al., 2009).

The asymmetric unit of the title salt, C16H36N+.C14H8N3O3S-, contains a tetrabutylammonium cation and a deprotonated anion of N-(6-nitrobenzo[d]thiazol-2-yl)benzamide (Fig. 1). The C15—C16—C17—C18 torsion angle of -179.9 (7)° displays the anti conformation for the four atoms of a butyl group within the cation, whereas the other three butyl groups show the gauche conformations with the torsion angles of -74.8 (7)° (C19—C20—C21—C22), -75.7 (8)° (C23—C24—C25—C26) and -65.9 (9)° (C27—C28—C29—C30)°. The anion is almost planar with the largest deviation of 0.166 (6) Å (O2) from the least-squares plane (r.m.s. deviation of fitted atoms: 0.052 Å). In the crystal structure, the component ions interact by means of weak intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the development of colorimetric chemosensors, see: Coll et al. (2007); Evans et al. (2006). For similar deprotonation reactions, see: Kang et al. (2009).

Experimental top

A solution of 6-nitrobenzo[d]thiazol-2-amine (0.300 mg, 1.54 mmol) and benzoyl chloride (0.148 ml, 1.28 mmol) in pyridine was refluxed for 24 h under argon atmosphere. Upon completion of the reaction, the reaction mixture was cooled to 0 °C, and poured into water. The formed precipitate was separated by filtration and washed with methanol, dichloromethane and ether and dried, to give a yellow solid N-(6-nitrobenzo[d]thiazol-2-yl)benzamide (0.192 g, yield 50%). Crystals of the title compound suitable for X-ray analysis were obtained in a deprotonation reaction that involved slow evaporation of an acetonitrile solution of N-(6-nitrobenzo[d]thiazol-2-yl)benzamide in the presence of excess tetrabutylammonium acetate at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.94 (CH), 0.98 (CH2) or 0.97 Å (CH3) and Uiso(H) = 1.2Ueq or 1.5Ueq(methyl C)].

Structure description top

The development of colorimetric chemosensors is attractive in supramolecular chemistry because they give a direct signal which is easily observed by the naked eye (Coll et al., 2007). Most chemosensors contain –NH fragments which act as hydrogen bond donors for the binding of anions. However, the chromophore fragments for colorimetric signal may contain electron-withdrawing groups that enhance the acidity of the –NH protons of the binding site. Therefore, these acidic protons can be abstracted by the basic anions in the deprotonation process (Evans et al., 2006). In some cases, it is difficult to establish a clear difference between a hydrogen bond donor binding process and a deprotonation process. The title salt was prepared on the study of the nature of interaction between N-(6-nitrobenzo[d]thiazol-2-yl)benzamide and tetrabutylammonium acetate (Kang et al., 2009).

The asymmetric unit of the title salt, C16H36N+.C14H8N3O3S-, contains a tetrabutylammonium cation and a deprotonated anion of N-(6-nitrobenzo[d]thiazol-2-yl)benzamide (Fig. 1). The C15—C16—C17—C18 torsion angle of -179.9 (7)° displays the anti conformation for the four atoms of a butyl group within the cation, whereas the other three butyl groups show the gauche conformations with the torsion angles of -74.8 (7)° (C19—C20—C21—C22), -75.7 (8)° (C23—C24—C25—C26) and -65.9 (9)° (C27—C28—C29—C30)°. The anion is almost planar with the largest deviation of 0.166 (6) Å (O2) from the least-squares plane (r.m.s. deviation of fitted atoms: 0.052 Å). In the crystal structure, the component ions interact by means of weak intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2).

For the development of colorimetric chemosensors, see: Coll et al. (2007); Evans et al. (2006). For similar deprotonation reactions, see: Kang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title salt, with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted.
[Figure 2] Fig. 2. View of the unit-cell contents of the title salt. Hydrogen-bond interactions are drawn with dashed lines.
Tetrabutylammonium N-benzoyl-6-nitro-1,3-benzothiazol-2-aminide top
Crystal data top
C16H36N+·C14H8N3O3SF(000) = 1168
Mr = 540.75Dx = 1.178 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1597 reflections
a = 7.9234 (7) Åθ = 2.7–19.4°
b = 25.059 (2) ŵ = 0.14 mm1
c = 15.4916 (14) ÅT = 223 K
β = 97.699 (2)°Block, yellow
V = 3048.2 (5) Å30.22 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5730 independent reflections
Radiation source: fine-focus sealed tube2547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 910
Tmin = 0.979, Tmax = 0.988k = 3329
11371 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0566P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
5730 reflectionsΔρmax = 0.25 e Å3
347 parametersΔρmin = 0.19 e Å3
2 restraintsAbsolute structure: Flack (1983), 1908 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (12)
Crystal data top
C16H36N+·C14H8N3O3SV = 3048.2 (5) Å3
Mr = 540.75Z = 4
Monoclinic, CcMo Kα radiation
a = 7.9234 (7) ŵ = 0.14 mm1
b = 25.059 (2) ÅT = 223 K
c = 15.4916 (14) Å0.22 × 0.11 × 0.10 mm
β = 97.699 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5730 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2547 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.076
11371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.169Δρmax = 0.25 e Å3
S = 0.95Δρmin = 0.19 e Å3
5730 reflectionsAbsolute structure: Flack (1983), 1908 Friedel pairs
347 parametersAbsolute structure parameter: 0.08 (12)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70508 (16)0.32664 (5)0.33449 (9)0.0502 (4)
O10.6825 (5)0.22458 (14)0.3155 (3)0.0623 (11)
O20.8146 (9)0.57535 (19)0.3706 (4)0.131 (2)
O30.8142 (7)0.52224 (19)0.4779 (4)0.0984 (16)
N10.6279 (5)0.26786 (17)0.1823 (3)0.0505 (11)
N20.6516 (5)0.36006 (18)0.1718 (3)0.0521 (11)
N30.7979 (7)0.5308 (2)0.3993 (5)0.0829 (16)
C10.6094 (7)0.1727 (2)0.1884 (4)0.0573 (15)
C20.6156 (8)0.1257 (2)0.2357 (5)0.0767 (19)
H20.64050.12720.29670.092*
C30.5860 (10)0.0768 (3)0.1957 (6)0.102 (3)
H30.58660.04540.22900.123*
C40.5553 (9)0.0746 (3)0.1050 (7)0.099 (3)
H40.53790.04150.07670.119*
C50.5504 (9)0.1211 (3)0.0569 (5)0.088 (2)
H50.53190.11970.00430.106*
C60.5723 (7)0.1689 (2)0.0985 (4)0.0640 (16)
H60.56210.20040.06520.077*
C70.6423 (6)0.2240 (2)0.2350 (4)0.0521 (14)
C80.6573 (6)0.3158 (2)0.2190 (3)0.0472 (14)
C90.7132 (6)0.3942 (2)0.3138 (3)0.0457 (13)
C100.7471 (7)0.4359 (2)0.3727 (4)0.0544 (14)
H100.76500.42950.43300.065*
C110.7536 (7)0.4870 (2)0.3401 (4)0.0628 (17)
C120.7267 (8)0.4976 (2)0.2513 (5)0.0748 (19)
H120.73190.53290.23110.090*
C130.6920 (8)0.4558 (2)0.1925 (4)0.0687 (17)
H130.67450.46250.13220.082*
C140.6833 (6)0.4036 (2)0.2238 (4)0.0486 (13)
N40.1005 (5)0.30363 (16)0.0850 (3)0.0481 (10)
C150.2355 (7)0.3308 (2)0.0382 (4)0.0585 (15)
H15A0.34730.32440.07210.070*
H15B0.23560.31360.01850.070*
C160.2155 (8)0.3893 (2)0.0237 (4)0.080 (2)
H16A0.21580.40730.07990.096*
H16B0.10580.39640.01160.096*
C170.3571 (8)0.4115 (3)0.0218 (5)0.093 (2)
H17A0.35650.39320.07770.111*
H17B0.46650.40400.01370.111*
C180.3428 (11)0.4709 (3)0.0380 (8)0.179 (5)
H18A0.34980.48960.01730.268*
H18B0.23450.47880.07270.268*
H18C0.43500.48260.06890.268*
C190.0817 (6)0.3310 (2)0.1697 (3)0.0524 (14)
H19A0.00170.31120.19840.063*
H19B0.03520.36680.15670.063*
C200.2431 (7)0.3364 (2)0.2329 (4)0.0604 (15)
H20A0.32980.35480.20440.073*
H20B0.28660.30080.25030.073*
C210.2101 (9)0.3676 (3)0.3135 (4)0.0762 (19)
H21A0.10710.35340.33380.091*
H21B0.30530.36150.35970.091*
C220.1894 (11)0.4244 (3)0.3004 (6)0.117 (3)
H22A0.28980.43890.27930.176*
H22B0.17440.44130.35510.176*
H22C0.09020.43110.25790.176*
C230.1534 (6)0.2459 (2)0.0986 (4)0.0578 (15)
H23A0.26730.24500.13220.069*
H23B0.16200.23000.04150.069*
C240.0357 (7)0.21084 (19)0.1452 (5)0.0713 (19)
H24A0.03260.22490.20400.086*
H24B0.08000.21280.11380.086*
C250.0915 (9)0.1527 (3)0.1516 (6)0.100 (2)
H25A0.21430.15170.17110.120*
H25B0.03490.13550.19670.120*
C260.0580 (11)0.1222 (3)0.0743 (6)0.130 (3)
H26A0.11300.13880.02880.195*
H26B0.06390.12070.05620.195*
H26C0.10200.08640.08500.195*
C270.0763 (6)0.3079 (2)0.0309 (3)0.0546 (14)
H27A0.16130.29420.06570.066*
H27B0.10170.34570.01910.066*
C280.0946 (8)0.2782 (3)0.0552 (4)0.095 (2)
H28A0.00290.28640.08570.114*
H28B0.09470.23970.04410.114*
C290.2574 (10)0.2935 (3)0.1122 (5)0.098 (2)
H29A0.25810.33230.11990.117*
H29B0.25600.27730.16970.117*
C300.4061 (10)0.2790 (4)0.0820 (5)0.132 (3)
H30A0.40540.29210.02310.198*
H30B0.41590.24040.08240.198*
H30C0.50210.29420.11940.198*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0514 (8)0.0594 (7)0.0391 (7)0.0010 (8)0.0035 (6)0.0034 (7)
O10.078 (3)0.066 (2)0.042 (3)0.003 (2)0.006 (2)0.003 (2)
O20.220 (7)0.058 (3)0.109 (5)0.020 (3)0.003 (4)0.002 (3)
O30.130 (5)0.089 (3)0.073 (4)0.000 (3)0.000 (3)0.023 (3)
N10.050 (3)0.059 (3)0.044 (3)0.003 (2)0.008 (2)0.001 (2)
N20.050 (3)0.062 (3)0.044 (3)0.002 (2)0.004 (2)0.006 (2)
N30.095 (4)0.071 (4)0.079 (5)0.004 (3)0.001 (3)0.008 (4)
C10.045 (3)0.065 (4)0.063 (4)0.001 (3)0.007 (3)0.001 (4)
C20.090 (5)0.054 (4)0.082 (5)0.015 (3)0.001 (4)0.008 (4)
C30.124 (7)0.068 (5)0.110 (8)0.012 (4)0.001 (6)0.006 (5)
C40.091 (6)0.097 (6)0.108 (7)0.029 (5)0.010 (5)0.031 (6)
C50.094 (6)0.096 (5)0.076 (5)0.016 (4)0.016 (4)0.030 (5)
C60.056 (4)0.074 (4)0.060 (4)0.004 (3)0.004 (3)0.012 (4)
C70.034 (3)0.066 (4)0.057 (4)0.002 (3)0.012 (3)0.001 (3)
C80.033 (3)0.069 (4)0.041 (3)0.006 (3)0.009 (2)0.005 (3)
C90.038 (3)0.059 (3)0.041 (4)0.003 (3)0.004 (3)0.001 (3)
C100.050 (3)0.063 (4)0.049 (4)0.005 (3)0.003 (3)0.002 (3)
C110.071 (5)0.052 (3)0.064 (4)0.000 (3)0.005 (4)0.011 (4)
C120.091 (5)0.062 (4)0.069 (5)0.007 (3)0.001 (4)0.014 (4)
C130.084 (5)0.061 (4)0.059 (4)0.003 (3)0.001 (3)0.010 (3)
C140.044 (3)0.054 (3)0.048 (4)0.007 (3)0.002 (3)0.008 (3)
N40.035 (2)0.068 (3)0.041 (3)0.004 (2)0.0049 (19)0.007 (2)
C150.048 (3)0.075 (4)0.054 (4)0.003 (3)0.011 (3)0.001 (3)
C160.061 (4)0.100 (5)0.081 (5)0.008 (4)0.017 (4)0.031 (4)
C170.057 (4)0.128 (6)0.089 (6)0.023 (4)0.002 (4)0.039 (5)
C180.107 (8)0.141 (7)0.284 (15)0.005 (6)0.013 (8)0.150 (9)
C190.044 (3)0.071 (3)0.043 (3)0.001 (3)0.007 (3)0.005 (3)
C200.049 (3)0.073 (4)0.058 (4)0.006 (3)0.003 (3)0.003 (3)
C210.064 (4)0.105 (5)0.056 (5)0.006 (4)0.003 (3)0.023 (4)
C220.101 (6)0.095 (5)0.154 (10)0.012 (5)0.011 (6)0.050 (6)
C230.038 (3)0.057 (3)0.076 (4)0.005 (3)0.000 (3)0.005 (3)
C240.051 (4)0.058 (3)0.103 (6)0.002 (3)0.004 (4)0.006 (4)
C250.079 (5)0.090 (5)0.127 (8)0.000 (4)0.003 (5)0.003 (5)
C260.134 (8)0.134 (6)0.111 (8)0.058 (6)0.027 (6)0.051 (6)
C270.038 (3)0.081 (4)0.044 (3)0.007 (3)0.000 (2)0.006 (3)
C280.058 (4)0.175 (7)0.048 (4)0.002 (4)0.008 (3)0.024 (4)
C290.094 (6)0.125 (6)0.067 (5)0.027 (5)0.014 (4)0.006 (5)
C300.069 (5)0.238 (11)0.084 (6)0.004 (6)0.012 (4)0.033 (7)
Geometric parameters (Å, º) top
S1—C91.725 (5)C17—H17A0.9800
S1—C81.799 (5)C17—H17B0.9800
O1—C71.245 (6)C18—H18A0.9700
O2—N31.216 (7)C18—H18B0.9700
O3—N31.226 (7)C18—H18C0.9700
N1—C81.335 (6)C19—C201.509 (7)
N1—C71.365 (7)C19—H19A0.9800
N2—C81.327 (6)C19—H19B0.9800
N2—C141.360 (7)C20—C211.525 (8)
N3—C111.441 (7)C20—H20A0.9800
C1—C21.383 (8)C20—H20B0.9800
C1—C61.388 (8)C21—C221.444 (8)
C1—C71.480 (7)C21—H21A0.9800
C2—C31.380 (8)C21—H21B0.9800
C2—H20.9400C22—H22A0.9700
C3—C41.394 (11)C22—H22B0.9700
C3—H30.9400C22—H22C0.9700
C4—C51.380 (10)C23—C241.530 (7)
C4—H40.9400C23—H23A0.9800
C5—C61.361 (8)C23—H23B0.9800
C5—H50.9400C24—C251.521 (8)
C6—H60.9400C24—H24A0.9800
C9—C101.390 (7)C24—H24B0.9800
C9—C141.402 (7)C25—C261.415 (10)
C10—C111.381 (7)C25—H25A0.9800
C10—H100.9400C25—H25B0.9800
C11—C121.388 (8)C26—H26A0.9700
C12—C131.394 (8)C26—H26B0.9700
C12—H120.9400C26—H26C0.9700
C13—C141.398 (7)C27—C281.517 (8)
C13—H130.9400C27—H27A0.9800
N4—C191.505 (6)C27—H27B0.9800
N4—C231.513 (6)C28—C291.511 (9)
N4—C151.531 (6)C28—H28A0.9800
N4—C271.537 (6)C28—H28B0.9800
C15—C161.487 (7)C29—C301.373 (9)
C15—H15A0.9800C29—H29A0.9800
C15—H15B0.9800C29—H29B0.9800
C16—C171.509 (8)C30—H30A0.9700
C16—H16A0.9800C30—H30B0.9700
C16—H16B0.9800C30—H30C0.9700
C17—C181.511 (9)
C9—S1—C888.4 (3)C17—C18—H18C109.5
C8—N1—C7118.3 (5)H18A—C18—H18C109.5
C8—N2—C14110.8 (5)H18B—C18—H18C109.5
O2—N3—O3121.4 (7)N4—C19—C20115.6 (4)
O2—N3—C11119.7 (7)N4—C19—H19A108.4
O3—N3—C11118.9 (6)C20—C19—H19A108.4
C2—C1—C6117.5 (6)N4—C19—H19B108.4
C2—C1—C7119.3 (6)C20—C19—H19B108.4
C6—C1—C7123.2 (5)H19A—C19—H19B107.4
C3—C2—C1121.7 (7)C19—C20—C21110.7 (5)
C3—C2—H2119.1C19—C20—H20A109.5
C1—C2—H2119.1C21—C20—H20A109.5
C2—C3—C4119.0 (7)C19—C20—H20B109.5
C2—C3—H3120.5C21—C20—H20B109.5
C4—C3—H3120.5H20A—C20—H20B108.1
C5—C4—C3120.0 (7)C22—C21—C20114.8 (6)
C5—C4—H4120.0C22—C21—H21A108.6
C3—C4—H4120.0C20—C21—H21A108.6
C6—C5—C4119.6 (8)C22—C21—H21B108.6
C6—C5—H5120.2C20—C21—H21B108.6
C4—C5—H5120.2H21A—C21—H21B107.5
C5—C6—C1122.1 (6)C21—C22—H22A109.5
C5—C6—H6118.9C21—C22—H22B109.5
C1—C6—H6118.9H22A—C22—H22B109.5
O1—C7—N1125.4 (6)C21—C22—H22C109.5
O1—C7—C1120.2 (6)H22A—C22—H22C109.5
N1—C7—C1114.4 (5)H22B—C22—H22C109.5
N2—C8—N1121.7 (5)N4—C23—C24116.1 (4)
N2—C8—S1114.1 (4)N4—C23—H23A108.3
N1—C8—S1124.2 (4)C24—C23—H23A108.3
C10—C9—C14121.2 (5)N4—C23—H23B108.3
C10—C9—S1128.6 (4)C24—C23—H23B108.3
C14—C9—S1110.2 (4)H23A—C23—H23B107.4
C11—C10—C9118.1 (5)C25—C24—C23113.0 (5)
C11—C10—H10120.9C25—C24—H24A109.0
C9—C10—H10120.9C23—C24—H24A109.0
C10—C11—C12122.1 (6)C25—C24—H24B109.0
C10—C11—N3119.4 (6)C23—C24—H24B109.0
C12—C11—N3118.5 (6)H24A—C24—H24B107.8
C11—C12—C13119.6 (6)C26—C25—C24116.2 (7)
C11—C12—H12120.2C26—C25—H25A108.2
C13—C12—H12120.2C24—C25—H25A108.2
C12—C13—C14119.4 (6)C26—C25—H25B108.2
C12—C13—H13120.3C24—C25—H25B108.2
C14—C13—H13120.3H25A—C25—H25B107.4
N2—C14—C13123.9 (5)C25—C26—H26A109.5
N2—C14—C9116.5 (5)C25—C26—H26B109.5
C13—C14—C9119.6 (6)H26A—C26—H26B109.5
C19—N4—C23111.9 (4)C25—C26—H26C109.5
C19—N4—C15111.5 (4)H26A—C26—H26C109.5
C23—N4—C15107.1 (4)H26B—C26—H26C109.5
C19—N4—C27104.7 (4)C28—C27—N4114.7 (4)
C23—N4—C27111.0 (4)C28—C27—H27A108.6
C15—N4—C27110.7 (4)N4—C27—H27A108.6
C16—C15—N4116.3 (4)C28—C27—H27B108.6
C16—C15—H15A108.2N4—C27—H27B108.6
N4—C15—H15A108.2H27A—C27—H27B107.6
C16—C15—H15B108.2C29—C28—C27111.3 (6)
N4—C15—H15B108.2C29—C28—H28A109.4
H15A—C15—H15B107.4C27—C28—H28A109.4
C15—C16—C17111.3 (5)C29—C28—H28B109.4
C15—C16—H16A109.4C27—C28—H28B109.4
C17—C16—H16A109.4H28A—C28—H28B108.0
C15—C16—H16B109.4C30—C29—C28116.0 (7)
C17—C16—H16B109.4C30—C29—H29A108.3
H16A—C16—H16B108.0C28—C29—H29A108.3
C16—C17—C18113.4 (6)C30—C29—H29B108.3
C16—C17—H17A108.9C28—C29—H29B108.3
C18—C17—H17A108.9H29A—C29—H29B107.4
C16—C17—H17B108.9C29—C30—H30A109.5
C18—C17—H17B108.9C29—C30—H30B109.5
H17A—C17—H17B107.7H30A—C30—H30B109.5
C17—C18—H18A109.5C29—C30—H30C109.5
C17—C18—H18B109.5H30A—C30—H30C109.5
H18A—C18—H18B109.5H30B—C30—H30C109.5
C6—C1—C2—C30.1 (9)N3—C11—C12—C13176.9 (6)
C7—C1—C2—C3179.9 (6)C11—C12—C13—C140.5 (9)
C1—C2—C3—C42.4 (11)C8—N2—C14—C13177.6 (5)
C2—C3—C4—C51.7 (12)C8—N2—C14—C90.6 (6)
C3—C4—C5—C61.3 (11)C12—C13—C14—N2179.4 (5)
C4—C5—C6—C13.7 (10)C12—C13—C14—C91.3 (8)
C2—C1—C6—C53.0 (8)C10—C9—C14—N2179.9 (5)
C7—C1—C6—C5176.9 (5)S1—C9—C14—N21.2 (6)
C8—N1—C7—O10.6 (7)C10—C9—C14—C131.7 (8)
C8—N1—C7—C1179.3 (4)S1—C9—C14—C13177.1 (4)
C2—C1—C7—O13.1 (8)C19—N4—C15—C1653.1 (6)
C6—C1—C7—O1176.7 (5)C23—N4—C15—C16175.8 (5)
C2—C1—C7—N1178.1 (5)C27—N4—C15—C1663.1 (6)
C6—C1—C7—N12.0 (7)N4—C15—C16—C17179.3 (6)
C14—N2—C8—N1179.1 (4)C15—C16—C17—C18179.9 (7)
C14—N2—C8—S10.3 (5)C23—N4—C19—C2064.5 (5)
C7—N1—C8—N2177.6 (4)C15—N4—C19—C2055.4 (6)
C7—N1—C8—S13.1 (6)C27—N4—C19—C20175.2 (5)
C9—S1—C8—N20.8 (4)N4—C19—C20—C21176.5 (5)
C9—S1—C8—N1178.5 (4)C19—C20—C21—C2274.8 (7)
C8—S1—C9—C10179.7 (5)C19—N4—C23—C2457.3 (6)
C8—S1—C9—C141.0 (4)C15—N4—C23—C24179.7 (5)
C14—C9—C10—C111.2 (8)C27—N4—C23—C2459.3 (6)
S1—C9—C10—C11177.3 (4)N4—C23—C24—C25176.6 (5)
C9—C10—C11—C120.4 (8)C23—C24—C25—C2675.7 (8)
C9—C10—C11—N3176.5 (5)C19—N4—C27—C28174.3 (5)
O2—N3—C11—C10175.3 (6)C23—N4—C27—C2853.4 (6)
O3—N3—C11—C106.4 (9)C15—N4—C27—C2865.4 (6)
O2—N3—C11—C121.7 (9)N4—C27—C28—C29168.3 (5)
O3—N3—C11—C12176.6 (6)C27—C28—C29—C3065.9 (9)
C10—C11—C12—C130.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28A···O1i0.982.243.166 (8)157
C29—H29A···O2ii0.982.393.353 (9)166
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC16H36N+·C14H8N3O3S
Mr540.75
Crystal system, space groupMonoclinic, Cc
Temperature (K)223
a, b, c (Å)7.9234 (7), 25.059 (2), 15.4916 (14)
β (°) 97.699 (2)
V3)3048.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.22 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11371, 5730, 2547
Rint0.076
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.169, 0.95
No. of reflections5730
No. of parameters347
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19
Absolute structureFlack (1983), 1908 Friedel pairs
Absolute structure parameter0.08 (12)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28A···O1i0.982.243.166 (8)156.5
C29—H29A···O2ii0.982.393.353 (9)165.8
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y+1, z1/2.
 

Acknowledgements

This work was supported by a National Research Foundation of Korea Grant funded by the Korean Government (20090076626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColl, C., Martinez-Manez, R., Dolores, M. M., Sancenon, F. & Soto, J. (2007). Angew. Chem. Int. Ed. 46, 1675–1678.  Web of Science CrossRef CAS Google Scholar
First citationEvans, L. S., Gale, P. A., Light, M. E. & Quesada, R. (2006). Chem. Commun. pp. 965–967.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKang, S. O., Nguyen, Q. P. B. & Kim, T. H. (2009). Bull. Korean Chem. Soc. 30, 2735–2738.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds