organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{6-Chloro-2-[(2-chloro-8-methyl-3-quinol­yl)meth­­oxy]-4-phenyl­quinolin-3-yl}ethanone

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 8 June 2010; accepted 1 July 2010; online 7 July 2010)

In the title mol­ecule, C28H20Cl2N2O2, the dihedral angle between the 2-chloro­quinoline and 6-chloro­quinoline rings is 7.55 (6)°. The dihedral angle between the phenyl ring and its attached quinoline ring is 62.59 (4)°. In the crystal, aromatic ππ stacking inter­actions [centroid–centroid distances = 3.771 (3) and 3.612 (3) Å] help to establish the packing.

Related literature

For the structures of related 2-quinolone compounds, see: Khan, Roopan, Hathwar et al. (2010[Khan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o972-o973.]); Khan, Roopan, Kumar et al. (2010[Khan, F. N., Roopan, S. M., Kumar, R., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o1607-o1608.]). For the biological activity, see: Ukita & Mizuno (1960[Ukita, C. & Mizuno, D. (1960). Chem. Pharm. Bull. 8, 1016-1020.]); Jayashree et al. (2010[Jayashree, B. S., Thomas, S. & Nayak, Y. (2010). Med. Chem. Res. 19, 193-209.]); Joseph et al. (2002[Joseph, B., Darro, F., Behard, A., Lesur, B., Collignon, F., Decaestecker, C., Frydman, A., Guillaumet, G. & Kiss, R. (2002). J. Med. Chem. 45, 2543-2555.]); Xiao et al. (2001[Xiao, Z., Waters, N. C., Woodard, C. L., Li, Z. & Li, P. K. (2001). Bioorg. Med. Chem. Lett. 11, 2875-2878.]). For related literature, see: Roopan & Khan (2009[Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161-169.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20Cl2N2O2

  • Mr = 487.36

  • Triclinic, [P \overline 1]

  • a = 9.7396 (4) Å

  • b = 10.5520 (3) Å

  • c = 13.0108 (4) Å

  • α = 88.730 (3)°

  • β = 68.127 (4)°

  • γ = 71.105 (4)°

  • V = 1166.62 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.24 × 0.18 × 0.15 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.930, Tmax = 0.955

  • 22437 measured reflections

  • 4323 independent reflections

  • 2707 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 0.95

  • 4323 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our previous work (Roopan et al., 2009; Khan, Roopan, Hathwar et al., 2010; Khan, Roopan, Kumar et al., 2010), we here report the molecular and crystal structure of 1-{6-chloro-2-[(2-chloro-8-methylquinolin-3-yl)methoxy]-4- phenylquinolin-3-yl}ethan-1-one. In the title molecule (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles observed are within normal ranges and are consistent with those related structures (Roopan et al., 2009; Khan, Roopan, Hathwar et al., 2010; Khan, Roopan, Kumar et al., 2010).

The quinoline rings (N1/C1-C9) and (N2/C12–C20) rings in (I) are almost planar, with maximal deviations from their mean planes of 0.016 (2) and of 0.042 (2) Å, respectively. These rings make a dihedral angle of 7.55 (6)° with each other. The N2/C12-C20 quinoline ring makes a dihedral angle of 62.59 (4)° with the C21-C26 phenyl ring. The molecular packing (Fig. 2) is stabilized by ππ stacking interactions between the quinoline rings of the adjacent molecules [Cg1···Cg2i = 3.771 (3) Å and Cg3···Cg4i = 3.612 (3) Å; where the Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1-C4/C9, N2/C12-C15/C20, C4-C9 and C15-C20 rings, respectively].

Related literature top

For the structures of related 2-quinolone compounds, see: Khan, Roopan, Hathwar et al. (2010); Khan, Roopan, Kumar et al. (2010). For the biological activity, see: Ukita & Mizuno (1960); Jayashree et al. (2010); Joseph et al. (2002); Xiao et al. (2001). For related literature, see: Roopan & Khan (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 1-(6-chloro-2-hydroxy-4-phenylquinolin-3-yl)ethanone (1 mmol) in DMSO (5 ml) solution 2-chloro-3-chloromethyl-8-methylquinoline (1 mmol), Ag2SO4 (10 mol %) were added and refluxed at 383 K. The reaction was completed with in 20 min. The reaction mixture was then filtered and the supernatant liquid was added drop wise in to the crushed ice. The solution was neutralized with dilute HCl. The precipitate was filtered off and re-crystallized with ethanol. The clear solution was kept for a day and the resulting crystals were dried.

Refinement top

H atoms were positioned with idealized geometry using a riding model with C–H = 0.93-0.97 Å and refined as riding with Uiso(H) = 1.2-1.5Ueq(C).

Structure description top

In continuation of our previous work (Roopan et al., 2009; Khan, Roopan, Hathwar et al., 2010; Khan, Roopan, Kumar et al., 2010), we here report the molecular and crystal structure of 1-{6-chloro-2-[(2-chloro-8-methylquinolin-3-yl)methoxy]-4- phenylquinolin-3-yl}ethan-1-one. In the title molecule (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles observed are within normal ranges and are consistent with those related structures (Roopan et al., 2009; Khan, Roopan, Hathwar et al., 2010; Khan, Roopan, Kumar et al., 2010).

The quinoline rings (N1/C1-C9) and (N2/C12–C20) rings in (I) are almost planar, with maximal deviations from their mean planes of 0.016 (2) and of 0.042 (2) Å, respectively. These rings make a dihedral angle of 7.55 (6)° with each other. The N2/C12-C20 quinoline ring makes a dihedral angle of 62.59 (4)° with the C21-C26 phenyl ring. The molecular packing (Fig. 2) is stabilized by ππ stacking interactions between the quinoline rings of the adjacent molecules [Cg1···Cg2i = 3.771 (3) Å and Cg3···Cg4i = 3.612 (3) Å; where the Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1-C4/C9, N2/C12-C15/C20, C4-C9 and C15-C20 rings, respectively].

For the structures of related 2-quinolone compounds, see: Khan, Roopan, Hathwar et al. (2010); Khan, Roopan, Kumar et al. (2010). For the biological activity, see: Ukita & Mizuno (1960); Jayashree et al. (2010); Joseph et al. (2002); Xiao et al. (2001). For related literature, see: Roopan & Khan (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. ππ interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry codes: (i ) - x, - y + 1, - z + 2; (ii) - x + 1, - y + 1, - z + 1; (iii) x + 1, y, z - 1.]
1-{6-Chloro-2-[(2-chloro-8-methyl-3-quinolyl)methoxy]-4-phenylquinolin- 3-yl}ethanone top
Crystal data top
C28H20Cl2N2O2Z = 2
Mr = 487.36F(000) = 504
Triclinic, P1Dx = 1.387 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7396 (4) ÅCell parameters from 1523 reflections
b = 10.5520 (3) Åθ = 1.9–21.4°
c = 13.0108 (4) ŵ = 0.31 mm1
α = 88.730 (3)°T = 295 K
β = 68.127 (4)°Block, colourless
γ = 71.105 (4)°0.24 × 0.18 × 0.15 mm
V = 1166.62 (8) Å3
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4323 independent reflections
Radiation source: Enhance (Mo) X-ray Source2707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.930, Tmax = 0.955k = 1212
22437 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.099H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0508P)2]
where P = (Fo2 + 2Fc2)/3
4323 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C28H20Cl2N2O2γ = 71.105 (4)°
Mr = 487.36V = 1166.62 (8) Å3
Triclinic, P1Z = 2
a = 9.7396 (4) ÅMo Kα radiation
b = 10.5520 (3) ŵ = 0.31 mm1
c = 13.0108 (4) ÅT = 295 K
α = 88.730 (3)°0.24 × 0.18 × 0.15 mm
β = 68.127 (4)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4323 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
2707 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.955Rint = 0.043
22437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.95Δρmax = 0.17 e Å3
4323 reflectionsΔρmin = 0.20 e Å3
309 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16697 (6)0.85124 (6)1.16788 (4)0.0619 (2)
Cl20.24300 (8)0.10446 (6)0.58993 (5)0.0766 (3)
O10.8426 (2)0.46569 (18)0.71113 (15)0.0882 (8)
O20.51617 (15)0.59876 (14)0.85708 (11)0.0569 (5)
N10.40686 (19)0.91617 (16)1.15591 (12)0.0469 (6)
N20.34893 (19)0.50251 (15)0.83264 (13)0.0467 (6)
C10.3644 (2)0.83966 (19)1.10679 (15)0.0442 (7)
C20.4616 (2)0.74620 (18)1.01018 (15)0.0439 (7)
C30.6156 (2)0.73538 (19)0.96840 (15)0.0478 (7)
C40.6722 (2)0.81378 (19)1.01774 (15)0.0453 (7)
C50.8312 (2)0.8047 (2)0.97723 (17)0.0556 (8)
C60.8776 (3)0.8850 (2)1.02774 (19)0.0640 (9)
C70.7671 (3)0.9777 (2)1.11959 (18)0.0610 (9)
C80.6118 (3)0.9910 (2)1.16341 (16)0.0514 (8)
C90.5621 (2)0.90695 (19)1.11163 (15)0.0441 (7)
C100.4943 (3)1.0894 (2)1.26265 (18)0.0675 (9)
C110.3932 (2)0.6686 (2)0.96029 (15)0.0522 (7)
C120.4862 (2)0.51534 (18)0.79707 (16)0.0442 (7)
C130.6141 (2)0.45183 (18)0.69549 (15)0.0421 (7)
C140.5961 (2)0.36140 (18)0.63171 (15)0.0404 (6)
C150.4501 (2)0.33709 (18)0.67024 (15)0.0413 (7)
C160.4214 (2)0.2410 (2)0.61547 (16)0.0477 (7)
C170.2772 (3)0.2266 (2)0.65504 (17)0.0514 (8)
C180.1544 (3)0.3075 (2)0.74891 (18)0.0577 (8)
C190.1802 (2)0.3982 (2)0.80495 (17)0.0529 (8)
C200.3284 (2)0.41356 (19)0.76929 (16)0.0430 (7)
C210.7258 (2)0.29310 (18)0.52394 (15)0.0411 (7)
C220.7071 (2)0.3150 (2)0.42376 (17)0.0540 (8)
C230.8307 (3)0.2580 (2)0.32397 (17)0.0645 (9)
C240.9741 (3)0.1765 (2)0.32318 (18)0.0651 (9)
C250.9930 (3)0.1522 (2)0.42123 (18)0.0635 (8)
C260.8697 (2)0.2107 (2)0.52146 (17)0.0536 (8)
C270.7577 (2)0.4940 (2)0.66076 (18)0.0524 (7)
C280.7825 (3)0.5774 (2)0.56593 (19)0.0723 (9)
H30.685300.674700.905700.0570*
H50.904700.743500.915800.0670*
H60.982800.878301.001200.0770*
H70.801101.032601.152200.0730*
H10A0.546101.138501.287200.1010*
H10B0.447701.041601.321700.1010*
H10C0.413801.151201.242600.1010*
H11A0.358800.605001.009700.0630*
H11B0.303700.729100.947200.0630*
H160.501100.187100.552000.0570*
H180.055400.299100.772900.0690*
H190.098500.451200.868000.0630*
H220.610100.368700.423900.0650*
H230.817500.274600.257200.0770*
H241.057700.138100.255900.0780*
H251.089200.096100.420700.0760*
H260.884100.194200.587900.0640*
H28A0.866500.610000.558900.1090*
H28B0.687700.652400.579500.1090*
H28C0.809200.523400.498300.1090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0520 (3)0.0709 (4)0.0580 (4)0.0276 (3)0.0098 (3)0.0047 (3)
Cl20.0897 (5)0.0851 (5)0.0828 (5)0.0534 (4)0.0430 (4)0.0057 (3)
O10.0757 (12)0.1028 (14)0.1176 (15)0.0422 (10)0.0617 (12)0.0225 (11)
O20.0572 (9)0.0598 (9)0.0529 (9)0.0249 (7)0.0152 (7)0.0134 (7)
N10.0549 (11)0.0459 (10)0.0428 (10)0.0199 (8)0.0197 (8)0.0048 (8)
N20.0471 (10)0.0458 (10)0.0478 (10)0.0193 (8)0.0161 (8)0.0052 (8)
C10.0488 (12)0.0439 (11)0.0408 (12)0.0193 (10)0.0156 (10)0.0086 (10)
C20.0510 (13)0.0422 (11)0.0408 (11)0.0184 (10)0.0181 (10)0.0062 (9)
C30.0511 (13)0.0486 (12)0.0386 (11)0.0150 (10)0.0134 (10)0.0014 (9)
C40.0524 (13)0.0504 (12)0.0379 (11)0.0206 (10)0.0202 (10)0.0116 (9)
C50.0545 (14)0.0657 (15)0.0462 (13)0.0266 (12)0.0140 (11)0.0126 (11)
C60.0617 (15)0.0831 (18)0.0611 (15)0.0396 (14)0.0269 (13)0.0222 (13)
C70.0809 (17)0.0671 (15)0.0625 (15)0.0458 (14)0.0407 (14)0.0208 (12)
C80.0672 (15)0.0516 (13)0.0487 (13)0.0302 (12)0.0286 (11)0.0145 (10)
C90.0558 (13)0.0446 (12)0.0395 (11)0.0217 (10)0.0229 (10)0.0114 (9)
C100.0873 (17)0.0623 (15)0.0627 (15)0.0309 (13)0.0346 (13)0.0014 (12)
C110.0544 (13)0.0519 (12)0.0483 (13)0.0168 (11)0.0183 (11)0.0042 (10)
C120.0500 (13)0.0403 (11)0.0458 (12)0.0172 (10)0.0207 (10)0.0025 (9)
C130.0418 (11)0.0413 (11)0.0450 (12)0.0144 (9)0.0185 (9)0.0062 (9)
C140.0448 (11)0.0386 (11)0.0411 (11)0.0144 (9)0.0201 (9)0.0060 (9)
C150.0486 (12)0.0386 (11)0.0418 (11)0.0174 (9)0.0212 (10)0.0098 (9)
C160.0550 (13)0.0499 (12)0.0447 (12)0.0227 (11)0.0222 (10)0.0075 (9)
C170.0618 (14)0.0523 (13)0.0585 (14)0.0310 (12)0.0337 (12)0.0147 (11)
C180.0505 (13)0.0629 (15)0.0703 (16)0.0301 (12)0.0261 (12)0.0192 (12)
C190.0463 (13)0.0521 (13)0.0592 (14)0.0206 (11)0.0161 (11)0.0068 (10)
C200.0474 (12)0.0401 (11)0.0464 (12)0.0196 (10)0.0197 (10)0.0118 (9)
C210.0455 (12)0.0387 (11)0.0418 (12)0.0178 (9)0.0168 (10)0.0040 (9)
C220.0565 (13)0.0517 (13)0.0523 (14)0.0123 (11)0.0245 (11)0.0033 (10)
C230.0849 (18)0.0627 (15)0.0420 (13)0.0204 (14)0.0241 (13)0.0041 (11)
C240.0752 (17)0.0533 (14)0.0475 (14)0.0153 (13)0.0081 (12)0.0024 (11)
C250.0551 (14)0.0559 (14)0.0611 (16)0.0030 (11)0.0159 (12)0.0009 (12)
C260.0556 (14)0.0545 (13)0.0464 (13)0.0124 (11)0.0205 (11)0.0053 (10)
C270.0436 (12)0.0462 (12)0.0654 (14)0.0130 (10)0.0201 (11)0.0070 (10)
C280.0627 (15)0.0676 (15)0.0818 (17)0.0323 (13)0.0143 (13)0.0140 (13)
Geometric parameters (Å, º) top
Cl1—C11.749 (2)C18—C191.354 (3)
Cl2—C171.740 (3)C19—C201.405 (3)
O1—C271.199 (3)C21—C221.386 (3)
O2—C111.433 (2)C21—C261.378 (3)
O2—C121.355 (2)C22—C231.378 (3)
N1—C11.291 (3)C23—C241.379 (4)
N1—C91.373 (3)C24—C251.363 (3)
N2—C121.294 (3)C25—C261.383 (3)
N2—C201.371 (3)C27—C281.491 (3)
C1—C21.419 (3)C3—H30.9300
C2—C31.357 (3)C5—H50.9300
C2—C111.495 (3)C6—H60.9300
C3—C41.408 (3)C7—H70.9300
C4—C51.408 (3)C10—H10A0.9600
C4—C91.415 (3)C10—H10B0.9600
C5—C61.359 (3)C10—H10C0.9600
C6—C71.398 (3)C11—H11A0.9700
C7—C81.362 (4)C11—H11B0.9700
C8—C91.422 (3)C16—H160.9300
C8—C101.498 (3)C18—H180.9300
C12—C131.421 (3)C19—H190.9300
C13—C141.372 (3)C22—H220.9300
C13—C271.511 (3)C23—H230.9300
C14—C151.428 (3)C24—H240.9300
C14—C211.489 (3)C25—H250.9300
C15—C161.406 (3)C26—H260.9300
C15—C201.416 (3)C28—H28A0.9600
C16—C171.363 (4)C28—H28B0.9600
C17—C181.396 (3)C28—H28C0.9600
Cl1···C24i3.563 (2)C13···H263.0100
Cl1···H11A2.9500C15···H223.0600
Cl1···H11B2.8100C16···H10Biii3.0600
Cl1···H24i2.9600C16···H223.0700
Cl1···H18ii2.9500C21···H162.6700
Cl1···H26iii3.0800C21···H28C2.7800
Cl2···H25iv3.1100C22···H28C3.0000
O1···O22.901 (2)C22···H162.7900
O1···C18v3.169 (4)C24···H5ix3.0900
O2···O12.901 (2)C27···H263.0300
O1···H18v2.6200H3···O22.3300
O2···H32.3300H3···H52.5200
N1···H10B2.7700H5···H32.5200
N1···H10C2.7800H5···C24ix3.0900
N2···H11A2.6100H5···H24ix2.5000
N2···H11B2.6700H7···H10A2.3500
N2···H23vi2.8900H10A···H72.3500
C2···C8vii3.598 (3)H10B···N12.7700
C4···C19iii3.543 (3)H10B···C16iii3.0600
C5···C19iii3.504 (3)H10C···N12.7800
C6···C18iii3.484 (3)H10C···C3vii3.0400
C7···C18iii3.439 (3)H11A···Cl12.9500
C7···C17iii3.579 (3)H11A···N22.6100
C8···C2vii3.598 (3)H11B···Cl12.8100
C8···C17iii3.475 (3)H11B···N22.6700
C16···C223.275 (3)H16···C212.6700
C17···C7iii3.579 (3)H16···C222.7900
C17···C8iii3.475 (3)H18···O1iv2.6200
C18···O1iv3.169 (4)H18···Cl1ii2.9500
C18···C6iii3.484 (3)H22···C153.0600
C18···C7iii3.439 (3)H22···C163.0700
C19···C5iii3.504 (3)H23···N2vi2.8900
C19···C4iii3.543 (3)H24···Cl1viii2.9600
C21···C283.313 (3)H24···C5ix2.9400
C22···C163.275 (3)H24···H5ix2.5000
C24···Cl1viii3.563 (2)H25···Cl2v3.1100
C26···C273.173 (3)H26···C133.0100
C27···C263.173 (3)H26···C273.0300
C28···C213.313 (3)H26···Cl1iii3.0800
C3···H10Cvii3.0400H28B···C10vii3.0300
C5···H24ix2.9400H28C···C212.7800
C10···H28Bvii3.0300H28C···C223.0000
C11—O2—C12118.02 (17)C22—C23—C24120.0 (2)
C1—N1—C9117.56 (16)C23—C24—C25119.9 (2)
C12—N2—C20116.71 (17)C24—C25—C26120.3 (2)
Cl1—C1—N1116.13 (15)C21—C26—C25120.7 (2)
Cl1—C1—C2117.06 (16)O1—C27—C13120.6 (2)
N1—C1—C2126.8 (2)O1—C27—C28122.5 (2)
C1—C2—C3115.30 (18)C13—C27—C28116.8 (2)
C1—C2—C11120.44 (18)C2—C3—H3119.00
C3—C2—C11124.26 (17)C4—C3—H3119.00
C2—C3—C4121.56 (17)C4—C5—H5120.00
C3—C4—C5123.17 (18)C6—C5—H5120.00
C3—C4—C9117.67 (19)C5—C6—H6120.00
C5—C4—C9119.16 (19)C7—C6—H6120.00
C4—C5—C6120.2 (2)C6—C7—H7119.00
C5—C6—C7120.0 (3)C8—C7—H7119.00
C6—C7—C8122.8 (2)C8—C10—H10A109.00
C7—C8—C9117.67 (19)C8—C10—H10B109.00
C7—C8—C10122.6 (2)C8—C10—H10C109.00
C9—C8—C10119.8 (2)H10A—C10—H10B110.00
N1—C9—C4121.05 (18)H10A—C10—H10C109.00
N1—C9—C8118.75 (18)H10B—C10—H10C109.00
C4—C9—C8120.2 (2)O2—C11—H11A110.00
O2—C11—C2106.18 (17)O2—C11—H11B110.00
O2—C12—N2119.90 (17)C2—C11—H11A111.00
O2—C12—C13114.06 (18)C2—C11—H11B111.00
N2—C12—C13126.01 (19)H11A—C11—H11B109.00
C12—C13—C14117.91 (19)C15—C16—H16120.00
C12—C13—C27118.15 (17)C17—C16—H16120.00
C14—C13—C27123.84 (17)C17—C18—H18120.00
C13—C14—C15118.45 (17)C19—C18—H18120.00
C13—C14—C21120.10 (19)C18—C19—H19119.00
C15—C14—C21121.44 (17)C20—C19—H19119.00
C14—C15—C16123.51 (17)C21—C22—H22120.00
C14—C15—C20117.99 (18)C23—C22—H22120.00
C16—C15—C20118.50 (19)C22—C23—H23120.00
C15—C16—C17120.23 (18)C24—C23—H23120.00
Cl2—C17—C16120.35 (16)C23—C24—H24120.00
Cl2—C17—C18118.4 (2)C25—C24—H24120.00
C16—C17—C18121.3 (2)C24—C25—H25120.00
C17—C18—C19119.7 (3)C26—C25—H25120.00
C18—C19—C20121.1 (2)C21—C26—H26120.00
N2—C20—C15122.68 (19)C25—C26—H26120.00
N2—C20—C19118.18 (18)C27—C28—H28A110.00
C15—C20—C19119.14 (19)C27—C28—H28B109.00
C14—C21—C22121.01 (18)C27—C28—H28C109.00
C14—C21—C26120.45 (17)H28A—C28—H28B109.00
C22—C21—C26118.49 (18)H28A—C28—H28C109.00
C21—C22—C23120.7 (2)H28B—C28—H28C109.00
C12—O2—C11—C2177.13 (15)N2—C12—C13—C27171.72 (18)
C11—O2—C12—N21.1 (3)C12—C13—C14—C150.5 (3)
C11—O2—C12—C13179.27 (16)C12—C13—C14—C21179.35 (17)
C9—N1—C1—Cl1178.38 (14)C27—C13—C14—C15175.59 (18)
C9—N1—C1—C20.4 (3)C27—C13—C14—C213.2 (3)
C1—N1—C9—C42.0 (3)C12—C13—C27—O169.7 (3)
C1—N1—C9—C8179.39 (18)C12—C13—C27—C28107.3 (2)
C20—N2—C12—O2178.21 (16)C14—C13—C27—O1114.2 (2)
C20—N2—C12—C133.9 (3)C14—C13—C27—C2868.9 (3)
C12—N2—C20—C150.8 (3)C13—C14—C15—C16176.10 (18)
C12—N2—C20—C19179.37 (18)C13—C14—C15—C203.5 (3)
Cl1—C1—C2—C3176.91 (14)C21—C14—C15—C165.1 (3)
Cl1—C1—C2—C113.7 (2)C21—C14—C15—C20175.27 (17)
N1—C1—C2—C31.9 (3)C13—C14—C21—C22115.6 (2)
N1—C1—C2—C11177.46 (18)C13—C14—C21—C2661.7 (3)
C1—C2—C3—C40.9 (3)C15—C14—C21—C2263.2 (3)
C11—C2—C3—C4178.43 (18)C15—C14—C21—C26119.5 (2)
C1—C2—C11—O2172.29 (16)C14—C15—C16—C17177.72 (19)
C3—C2—C11—O27.0 (2)C20—C15—C16—C172.7 (3)
C2—C3—C4—C5179.57 (19)C14—C15—C20—N24.4 (3)
C2—C3—C4—C91.3 (3)C14—C15—C20—C19175.73 (18)
C3—C4—C5—C6178.91 (19)C16—C15—C20—N2175.24 (18)
C9—C4—C5—C60.2 (3)C16—C15—C20—C194.6 (3)
C3—C4—C9—N12.8 (3)C15—C16—C17—Cl2178.09 (15)
C3—C4—C9—C8178.59 (18)C15—C16—C17—C181.1 (3)
C5—C4—C9—N1177.99 (18)Cl2—C17—C18—C19176.30 (17)
C5—C4—C9—C80.6 (3)C16—C17—C18—C192.9 (3)
C4—C5—C6—C70.5 (3)C17—C18—C19—C200.8 (3)
C5—C6—C7—C81.0 (3)C18—C19—C20—N2176.95 (19)
C6—C7—C8—C90.6 (3)C18—C19—C20—C152.9 (3)
C6—C7—C8—C10179.3 (2)C14—C21—C22—C23176.0 (2)
C7—C8—C9—N1178.44 (18)C26—C21—C22—C231.4 (3)
C7—C8—C9—C40.2 (3)C14—C21—C26—C25176.8 (2)
C10—C8—C9—N11.5 (3)C22—C21—C26—C250.6 (3)
C10—C8—C9—C4179.92 (19)C21—C22—C23—C241.0 (3)
O2—C12—C13—C14177.38 (17)C22—C23—C24—C250.2 (4)
O2—C12—C13—C276.3 (2)C23—C24—C25—C261.1 (4)
N2—C12—C13—C144.6 (3)C24—C25—C26—C210.7 (3)
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x+1, y+2, z+2; (viii) x+1, y1, z1; (ix) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC28H20Cl2N2O2
Mr487.36
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.7396 (4), 10.5520 (3), 13.0108 (4)
α, β, γ (°)88.730 (3), 68.127 (4), 71.105 (4)
V3)1166.62 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.930, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
22437, 4323, 2707
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 0.95
No. of reflections4323
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA–DST program at IISc. The authors thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. F. N. Khan thanks DST for Fast Track Proposal funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJayashree, B. S., Thomas, S. & Nayak, Y. (2010). Med. Chem. Res. 19, 193–209.  Web of Science CrossRef CAS Google Scholar
First citationJoseph, B., Darro, F., Behard, A., Lesur, B., Collignon, F., Decaestecker, C., Frydman, A., Guillaumet, G. & Kiss, R. (2002). J. Med. Chem. 45, 2543–2555.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o972–o973.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Roopan, S. M., Kumar, R., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o1607–o1608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161–169.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkita, C. & Mizuno, D. (1960). Chem. Pharm. Bull. 8, 1016–1020.  CrossRef Google Scholar
First citationXiao, Z., Waters, N. C., Woodard, C. L., Li, Z. & Li, P. K. (2001). Bioorg. Med. Chem. Lett. 11, 2875–2878.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds