metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-poly[[[(2,2′-bi­pyridine-2κ2N,N′)-μ-cyanido-1:2κ2N:C-cyanido-2κC-tris­­(methanol-1κO)(nitrato-1κ2O,O′)iron(II)yttrium(III)]-di-μ-cyanido-1:2′κ2N:C;2:1′κ2C:N] methanol solvate hemihydrate]

aSuqian College, Suqian 223800, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com

(Received 1 July 2010; accepted 27 July 2010; online 31 July 2010)

The title complex, {[FeIIYIII(CN)4(NO3)(C10H8N2)(CH3OH)3]·CH3OH·0.5H2O}n, is built up of ladder-like chains oriented along the c axis. Each ladder consists of two strands based on alternating FeII and YIII ions connected by cyanide bridges. Two such parallel chains are connected by additional cyanide anions (the `rungs' of the ladder), which likewise connect FeII and YIII ions, such that each [Fe(bipy)(CN)4]2− (bipy is 2,2′-bipyridine) unit coordinates with three YIII ions and each YIII ion connects with three different [Fe(bipy)(CN)4]2− units. The FeII atom is six-coordinated in a distorted octa­hedral geometry and the YIII atom cation is eight-coordinated in a distorted dodeca­hedral environment. The uncoordinated methanol solvent mol­ecules are involved in hydrogen-bonding inter­actions with the one terminal cyanide group and a coordinated methanol mol­ecule from another [YIII(NO3)(CH3OH)3]2+ unit. Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the [Fe(CN)4(bipy)]2− units in one chain and the OH donors of CH3OH ligands from [YIII(NO3)(CH3OH)3] units in neighboring chains. The water molecule exhibits half-occupation.

Related literature

For background to the design, synthesis and properties of mixed rare earth–transition metal complexes, see: Wilson et al. (2009[Wilson, D. C., Liu, S. M., Chen, X. N., Meyers, E. A., Bao, X. G., Prosvirin, A. V., Dunbar, K. R., Hadad, C. M. & Shore, S. G. (2009). Inorg. Chem. 48, 5725-5735.]); Zhou et al. (2002[Zhou, B. C., Kou, H.-Z., He, Y., Xiong, M., Wang, R.-J. & Li, Y.-D. (2002). Acta Cryst. C58, m478-m480.]); Li et al. (2008[Li, J. R., Chen, W. T., Tong, M. L., Guo, G. C., Tao, Y., Yu, Q., Song, W. C. & Bu, X. H. (2008). Cryst. Growth Des. 8, 2780-2792.]); Karan et al. (2002[Karan, N. K., Mitra, S., Hossain, G. M. G. & Malik, K. M. A. (2002). Z. Naturforsch. Teil B, 57, 736-740.]); Sokol et al. (2002[Sokol, J. J., Shores, M. P. & Long, J. R. (2002). Inorg. Chem. 41, 3052-3054.]); Toma et al. (2003[Toma, L. M., Lescouezec, R., Lloret, F., Julve, M., Vaissermann, J. & Verdaguer, M. (2003). Chem. Commun. pp. 1850-1855.]); Xu et al. (2009[Xu, Y., Zhou, H., Yuan, A.-H., Shen, X.-P. & Zhang, Q. (2009). Acta Cryst. C65, m177-m179.]). For related structures, see: Baca et al. (2007[Baca, S. G., Adams, H., Sykes, D., Faulkner, S. & Ward, M. D. (2007). Dalton Trans. pp. 2419-2430.]); Liu et al. (2008[Liu, M., Yuan, W. B., Zhang, Q., Yan, L. & Yang, R. D. (2008). Chin. J. Appl. Chem. 25, 1194-1196.]); Yuan et al. (2004[Yuan, W. B., Yan, L. & Yang, R. D. (2004). Chin. J. Appl. Chem. 20, 829-831.]).

[Scheme 1]

Experimental

Crystal data
  • [FeY(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O·0.5H2O

  • Mr = 604.21

  • Monoclinic, P 21 /c

  • a = 12.803 (3) Å

  • b = 18.132 (4) Å

  • c = 10.728 (2) Å

  • β = 103.439 (3)°

  • V = 2422.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.04 mm−1

  • T = 173 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.46, Tmax = 0.55

  • 18891 measured reflections

  • 4760 independent reflections

  • 3490 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.107

  • S = 1.07

  • 4760 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N6i 0.99 1.78 2.762 (5) 172
O7—H7B⋯N6 0.85 2.03 2.823 (5) 154
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much attention is currently devoted to the design and synthesis of mixed rare earth–transition metal complexes because rare earth ions have a rich coordination chemistry with high coordination numbers and significant coordination flexibility, which often leads to unanticipated but remarkable structures (Karan et al., 2002; Li et al., 2008; Wilson et al., 2009; Zhou et al., 2002.) [M(CN)x(L)y]n- [M = Cr, Fe, Ru and Mo; L = chelate ligand; and x = 2, 3, 4) can be used as the bricks to synthesize low-dimensional cyanide-bridged bimetallic compounds, which is a elaborate strategy as revealed by a few research groups (Sokol et al., 2002; Toma et al., 2003). However, the assemblies of [M(CN)x(L)y]n- with rare earth ions have rarely been reported so far (Xu et al., 2009). In this paper, we report a new cyano-bridged FeIIYIII bimetallic ladder-like chain complex, based on the [FeII(bipy)(CN)4]2- [bipy = 2,2'-bipyridine] building block.

The asymmetric unit in the structure of the title complex comprises one [FeII(bipy)(CN)4]2- anion, one [YIII(NO3)(CH3OH)3]2+ cation, one solvent methanol molecule and half a water molecule (Fig. 1). The crystal structure consists of one-dimensional ladder-like bimetallic chains, {[FeII(bipy)(CN)4][YIII(NO3)(CH3OH)3]}n, built up from alternating FeII and YIII metal centers linked through the cyano bridges (Fig. 2). The ladder-like bimetallic chains contain Fe2Y2 centrosymmetric motifs. The [Fe(bipy)(CN)4]2- fragment exhibits a distorted octahedral structure consisting of two N atoms from a planar bipy ligand and four C atoms from four CN- groups. The small bite angle subtended by the chelating bipy group [79.90 (15)° for N1—Fe1—N2] is one of the main factors accounting for this distortion. Three of the four cyano groups of the [Fe(bipy)(CN)4]2- unit are bridging, while the fourth is terminal. The Fe—C—N angles for both terminal [178.6 (5)°] and bridging [178.7 (4), 179.4 (4) and 174.4 (4)°] CN- groups deviate slightly from strict linearity. Each YIII cation is eight-coordinated, connecting with two O atoms from the NO3 group, three O atoms from three CH3OH units and three N atoms from three CN- ligands, building distorted YN3O5 dodecahedral surroundings (Fig. 1). The Y—O bond lengths fall in a very narrow range [2.385 (3)–2.448 (3)Å for Y—O(NO3) and 2.372 (3)–2.392 (3)(3) Å for Y—O(CH3OH)]. The Y—N(cyanide) bond distances [2.401 (4)–2.344 (4) Å] are somewhat smaller than those from {[Ru(phen)(CN)4]3[Ln(terpy)(H2O)3]2.nH2O} [2.530 (9)–2.548 (11) Å; Baca et al., 2007]. The angles of YIIINC(cyano) are far from linear [165.9 (3)–169.9 (3)°]. The NO3- ion acts as a bidentate ligand toward YIII through two of its three O atoms, which is different from previously reported cases (Yuan et al., 2004; Liu et al., 2008), in which an NO3- ion coordinated to a rare earth ion acts as a monodenate ligand in rare earth–transition metal complexes.

The Fe···Y separations across cyanide bridges are 5.410 (4), 5.357 (3) and 5.424 (4) Å. The uncoordinated methanol solvent molecules are involved in hydrogen-bonding interactions with the one terminal cyanide group and a coordinated methanol molecule from another [YIII(NO3)(CH3OH)3]2- unit (Table 1). Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the [Fe(CN)4(bipy)]2- units in one chain and the OH donors of CH3OH ligands from [YIII(NO3)(CH3OH)3] units in neighboring chains. From this arrangement a two-dimensional structure is formed.

Related literature top

For background to the design, synthesis and properties of mixed rare earth–transition metal complexes, see: Wilson et al. (2009); Zhou et al. (2002); Li et al. (2008); Karan et al. (2002); Sokol et al. (2002); Toma et al. (2003); Xu et al. (2009). For related structures, see: Baca et al. (2007); Liu et al. (2008); Yuan et al. (2004).

Experimental top

Red brown prism crystals of the title complex were obtained by slow diffusion of a MeOH solution of K2[Fe(bipy)(CN)4].3H2O(0.1 mmol) and an aqueous solution of Y(NO3)3.6H2O (0.1 mmol) through an H-tube at room temperature. The resulting crystals were collected, washed with H2O and MeOH, respectively, and dried in air.

Refinement top

The (C)H atoms of the bipy ligand were placed in calculated positions (C - H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The (C)H atoms of the methanol molecule were placed geometrically (C - H = 0.98 or 0.96 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C). The (O)H atoms of the methanol molecule were located in a difference Fourier map and refined with O - H restraints (O - H = 0.99 or 0.85 Å), and with Uiso(H) = 1.5Ueq(O). The position of the water molecule is occupied to only 50%. Its H atoms were located in a difference Fourier map and refined with O - H restraints (O - H = 0.85 Å), and with Uiso(H) = 1.5Ueq(O).

Structure description top

Much attention is currently devoted to the design and synthesis of mixed rare earth–transition metal complexes because rare earth ions have a rich coordination chemistry with high coordination numbers and significant coordination flexibility, which often leads to unanticipated but remarkable structures (Karan et al., 2002; Li et al., 2008; Wilson et al., 2009; Zhou et al., 2002.) [M(CN)x(L)y]n- [M = Cr, Fe, Ru and Mo; L = chelate ligand; and x = 2, 3, 4) can be used as the bricks to synthesize low-dimensional cyanide-bridged bimetallic compounds, which is a elaborate strategy as revealed by a few research groups (Sokol et al., 2002; Toma et al., 2003). However, the assemblies of [M(CN)x(L)y]n- with rare earth ions have rarely been reported so far (Xu et al., 2009). In this paper, we report a new cyano-bridged FeIIYIII bimetallic ladder-like chain complex, based on the [FeII(bipy)(CN)4]2- [bipy = 2,2'-bipyridine] building block.

The asymmetric unit in the structure of the title complex comprises one [FeII(bipy)(CN)4]2- anion, one [YIII(NO3)(CH3OH)3]2+ cation, one solvent methanol molecule and half a water molecule (Fig. 1). The crystal structure consists of one-dimensional ladder-like bimetallic chains, {[FeII(bipy)(CN)4][YIII(NO3)(CH3OH)3]}n, built up from alternating FeII and YIII metal centers linked through the cyano bridges (Fig. 2). The ladder-like bimetallic chains contain Fe2Y2 centrosymmetric motifs. The [Fe(bipy)(CN)4]2- fragment exhibits a distorted octahedral structure consisting of two N atoms from a planar bipy ligand and four C atoms from four CN- groups. The small bite angle subtended by the chelating bipy group [79.90 (15)° for N1—Fe1—N2] is one of the main factors accounting for this distortion. Three of the four cyano groups of the [Fe(bipy)(CN)4]2- unit are bridging, while the fourth is terminal. The Fe—C—N angles for both terminal [178.6 (5)°] and bridging [178.7 (4), 179.4 (4) and 174.4 (4)°] CN- groups deviate slightly from strict linearity. Each YIII cation is eight-coordinated, connecting with two O atoms from the NO3 group, three O atoms from three CH3OH units and three N atoms from three CN- ligands, building distorted YN3O5 dodecahedral surroundings (Fig. 1). The Y—O bond lengths fall in a very narrow range [2.385 (3)–2.448 (3)Å for Y—O(NO3) and 2.372 (3)–2.392 (3)(3) Å for Y—O(CH3OH)]. The Y—N(cyanide) bond distances [2.401 (4)–2.344 (4) Å] are somewhat smaller than those from {[Ru(phen)(CN)4]3[Ln(terpy)(H2O)3]2.nH2O} [2.530 (9)–2.548 (11) Å; Baca et al., 2007]. The angles of YIIINC(cyano) are far from linear [165.9 (3)–169.9 (3)°]. The NO3- ion acts as a bidentate ligand toward YIII through two of its three O atoms, which is different from previously reported cases (Yuan et al., 2004; Liu et al., 2008), in which an NO3- ion coordinated to a rare earth ion acts as a monodenate ligand in rare earth–transition metal complexes.

The Fe···Y separations across cyanide bridges are 5.410 (4), 5.357 (3) and 5.424 (4) Å. The uncoordinated methanol solvent molecules are involved in hydrogen-bonding interactions with the one terminal cyanide group and a coordinated methanol molecule from another [YIII(NO3)(CH3OH)3]2- unit (Table 1). Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the [Fe(CN)4(bipy)]2- units in one chain and the OH donors of CH3OH ligands from [YIII(NO3)(CH3OH)3] units in neighboring chains. From this arrangement a two-dimensional structure is formed.

For background to the design, synthesis and properties of mixed rare earth–transition metal complexes, see: Wilson et al. (2009); Zhou et al. (2002); Li et al. (2008); Karan et al. (2002); Sokol et al. (2002); Toma et al. (2003); Xu et al. (2009). For related structures, see: Baca et al. (2007); Liu et al. (2008); Yuan et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, -y, z - 1; (iii) x, y, z + 1.]
[Figure 2] Fig. 2. The one-dimensional chain of the title complex. [Symmetry code: (i) -x + 1, -y, -z + 1.]
catena-poly[[[(2,2'-bipyridine-2κ2N,N')-µ-cyanido- κ21:2N:C-cyanido-2κC-tris(methanol- 1κO)(nitrato-1κ2O,O')iron(II)yttrium(III)]- di-µ-cyanido-1:2'κ2N:C;2:1'κ2C:N] methanol solvate hemihydrate] top
Crystal data top
[FeY(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O·0.5H2OF(000) = 1228
Mr = 604.21Dx = 1.657 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 838 reflections
a = 12.803 (3) Åθ = 3.0–23.5°
b = 18.132 (4) ŵ = 3.04 mm1
c = 10.728 (2) ÅT = 173 K
β = 103.439 (3)°Prism, red brown
V = 2422.2 (9) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4760 independent reflections
Radiation source: sealed tube3490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
phi and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1415
Tmin = 0.46, Tmax = 0.55k = 2222
18891 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0481P)2]
where P = (Fo2 + 2Fc2)/3
4760 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[FeY(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O·0.5H2OV = 2422.2 (9) Å3
Mr = 604.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.803 (3) ŵ = 3.04 mm1
b = 18.132 (4) ÅT = 173 K
c = 10.728 (2) Å0.26 × 0.22 × 0.20 mm
β = 103.439 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4760 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3490 reflections with I > 2σ(I)
Tmin = 0.46, Tmax = 0.55Rint = 0.067
18891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.07Δρmax = 0.49 e Å3
4760 reflectionsΔρmin = 0.57 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7345 (4)0.1231 (2)0.3081 (4)0.0385 (10)
H10.65950.12590.30290.046*
C20.7916 (4)0.1886 (2)0.3052 (4)0.0347 (10)
H20.75700.23530.29750.042*
C30.9033 (4)0.1825 (3)0.3155 (4)0.0394 (10)
H30.94550.22580.31740.047*
C40.9530 (4)0.1133 (3)0.3213 (4)0.0419 (11)
H41.02770.10890.32570.050*
C50.8893 (3)0.0504 (3)0.3225 (5)0.0391 (10)
C60.9318 (3)0.0236 (3)0.3317 (4)0.0384 (10)
C71.0374 (4)0.0395 (3)0.3333 (5)0.0452 (11)
H71.08580.00140.32380.054*
C81.0714 (3)0.1123 (2)0.3497 (4)0.0348 (10)
H81.14390.12410.35040.042*
C91.0006 (3)0.1689 (3)0.3651 (4)0.0354 (10)
H91.02400.21850.37900.042*
C100.8930 (3)0.1483 (2)0.3587 (4)0.0281 (8)
H100.84230.18530.36630.034*
C110.7170 (3)0.0426 (2)0.4978 (4)0.0363 (10)
C120.5697 (3)0.0028 (2)0.2858 (4)0.0363 (10)
C130.6951 (3)0.0482 (2)0.1340 (4)0.0298 (9)
C140.6443 (3)0.1349 (3)0.3103 (4)0.0385 (10)
C150.8118 (4)0.0835 (3)0.9317 (4)0.0427 (11)
H15A0.85760.04700.98590.064*
H15B0.85640.11630.89330.064*
H15C0.77340.11240.98400.064*
C160.7459 (4)0.2236 (3)0.6177 (4)0.0390 (10)
H16A0.81810.21520.67120.059*
H16B0.73190.27670.60940.059*
H16C0.74080.20220.53260.059*
C170.4893 (4)0.1450 (3)0.9517 (5)0.0429 (11)
H17A0.49070.09160.96600.064*
H17B0.41550.16080.91390.064*
H17C0.51580.17041.03360.064*
C180.4471 (3)0.1056 (3)0.4540 (4)0.0385 (10)
H18A0.41350.13430.50890.058*
H18B0.43070.05440.46170.058*
H18C0.52350.11250.47850.058*
Fe10.70769 (5)0.04235 (3)0.31568 (6)0.03166 (16)
N10.7825 (3)0.05414 (19)0.3170 (4)0.0338 (8)
N20.8605 (3)0.07728 (19)0.3405 (3)0.0307 (7)
N30.7168 (3)0.0475 (2)0.6043 (4)0.0364 (8)
N40.4832 (3)0.0227 (2)0.2667 (4)0.0394 (9)
N50.6896 (3)0.05129 (18)0.0266 (4)0.0339 (8)
N60.6040 (3)0.1931 (2)0.3041 (4)0.0385 (9)
N70.8853 (3)0.1436 (2)0.9291 (3)0.0354 (8)
O10.8747 (2)0.08407 (17)0.8686 (3)0.0398 (7)
O20.7993 (2)0.17623 (15)0.9284 (3)0.0367 (7)
O30.9709 (2)0.16875 (16)0.9851 (3)0.0399 (7)
O40.7341 (2)0.04552 (16)0.8312 (3)0.0361 (7)
H4A0.66590.07240.82530.054*
O50.6676 (2)0.18859 (16)0.6775 (3)0.0379 (7)
H5A0.64520.22800.72970.057*
O60.5579 (2)0.16346 (17)0.8642 (3)0.0354 (7)
H6A0.59930.20770.90020.053*
O70.4061 (2)0.12975 (17)0.3204 (3)0.0408 (7)
H7B0.45820.14510.29070.061*
O80.3088 (5)0.2478 (4)0.4772 (7)0.0489 (17)0.50
H8B0.24470.23220.46700.073*0.50
H8C0.33180.26220.55400.073*0.50
Y10.68339 (3)0.08045 (2)0.80828 (4)0.03110 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.028 (2)0.045 (3)0.0085 (19)0.005 (2)0.0008 (19)
C20.044 (2)0.033 (2)0.028 (2)0.0147 (19)0.0103 (18)0.0087 (17)
C30.039 (2)0.037 (2)0.042 (3)0.0070 (19)0.0076 (19)0.003 (2)
C40.051 (3)0.035 (2)0.043 (3)0.009 (2)0.017 (2)0.002 (2)
C50.030 (2)0.043 (3)0.046 (3)0.0014 (19)0.0119 (19)0.001 (2)
C60.029 (2)0.048 (3)0.039 (3)0.0038 (19)0.0103 (18)0.003 (2)
C70.041 (3)0.050 (3)0.044 (3)0.003 (2)0.008 (2)0.002 (2)
C80.036 (2)0.038 (2)0.036 (2)0.0024 (18)0.0191 (18)0.0030 (19)
C90.036 (2)0.043 (3)0.029 (2)0.0085 (19)0.0124 (17)0.0080 (19)
C100.034 (2)0.027 (2)0.0260 (19)0.0081 (16)0.0131 (16)0.0043 (16)
C110.036 (2)0.033 (2)0.038 (3)0.0010 (19)0.0049 (19)0.001 (2)
C120.028 (2)0.031 (2)0.045 (3)0.0038 (18)0.0014 (19)0.0016 (19)
C130.027 (2)0.029 (2)0.032 (2)0.0095 (16)0.0043 (17)0.0037 (17)
C140.033 (2)0.042 (3)0.046 (3)0.0122 (19)0.0193 (19)0.002 (2)
C150.034 (2)0.044 (3)0.040 (3)0.013 (2)0.0127 (19)0.001 (2)
C160.037 (2)0.041 (3)0.042 (3)0.003 (2)0.015 (2)0.010 (2)
C170.041 (3)0.038 (3)0.054 (3)0.011 (2)0.018 (2)0.019 (2)
C180.034 (2)0.037 (2)0.044 (3)0.0078 (18)0.009 (2)0.008 (2)
Fe10.0315 (3)0.0311 (3)0.0327 (3)0.0019 (2)0.0080 (2)0.0011 (2)
N10.0317 (19)0.0258 (18)0.045 (2)0.0048 (14)0.0115 (16)0.0053 (15)
N20.0281 (17)0.0279 (18)0.0366 (19)0.0061 (14)0.0088 (14)0.0024 (15)
N30.0317 (19)0.041 (2)0.040 (2)0.0017 (15)0.0149 (16)0.0024 (17)
N40.037 (2)0.035 (2)0.045 (2)0.0037 (16)0.0059 (17)0.0022 (17)
N50.0308 (19)0.0293 (19)0.043 (2)0.0113 (15)0.0113 (16)0.0014 (16)
N60.036 (2)0.034 (2)0.047 (2)0.0065 (16)0.0133 (17)0.0072 (17)
N70.0316 (19)0.044 (2)0.0310 (19)0.0007 (16)0.0075 (15)0.0157 (17)
O10.0346 (16)0.0331 (17)0.0493 (19)0.0044 (13)0.0050 (14)0.0012 (14)
O20.0293 (16)0.0297 (16)0.0476 (19)0.0013 (13)0.0014 (13)0.0034 (13)
O30.0343 (17)0.0299 (16)0.0509 (19)0.0084 (13)0.0004 (14)0.0013 (14)
O40.0432 (17)0.0295 (15)0.0309 (16)0.0158 (13)0.0010 (13)0.0060 (12)
O50.0487 (18)0.0341 (17)0.0327 (16)0.0156 (14)0.0128 (13)0.0033 (13)
O60.0306 (16)0.0370 (17)0.0412 (17)0.0026 (12)0.0137 (13)0.0023 (13)
O70.0412 (18)0.0439 (19)0.0346 (17)0.0068 (14)0.0034 (13)0.0051 (14)
O80.041 (4)0.045 (4)0.058 (4)0.012 (3)0.006 (3)0.001 (3)
Y10.0295 (2)0.0324 (2)0.0303 (2)0.00059 (17)0.00460 (15)0.00014 (17)
Geometric parameters (Å, º) top
C1—N11.386 (5)C16—H16A0.9799
C1—C21.399 (6)C16—H16B0.9800
C1—H10.9500C16—H16C0.9800
C2—C31.413 (6)C17—O61.465 (5)
C2—H20.9500C17—H17A0.9799
C3—C41.402 (6)C17—H17B0.9800
C3—H30.9500C17—H17C0.9799
C4—C51.404 (6)C18—O71.474 (5)
C4—H40.9502C18—H18A0.9599
C5—N11.356 (6)C18—H18B0.9600
C5—C61.442 (6)C18—H18C0.9600
C6—N21.353 (6)Fe1—N11.993 (4)
C6—C71.379 (6)Fe1—N22.015 (3)
C7—C81.387 (7)N3—Y12.401 (4)
C7—H70.9500N4—Y1i2.344 (4)
C8—C91.405 (6)N5—Y1ii2.384 (4)
C8—H80.9500N7—O31.210 (4)
C9—C101.413 (6)N7—O21.248 (4)
C9—H90.9500N7—O11.251 (4)
C10—N21.353 (5)N7—Y12.849 (4)
C10—H100.9500O1—Y12.384 (3)
C11—N31.146 (6)O2—Y12.448 (3)
C11—Fe11.930 (5)O4—Y12.372 (3)
C12—N41.173 (5)O4—H4A0.9900
C12—Fe11.865 (4)O5—Y12.392 (3)
C13—N51.140 (5)O5—H5A0.9900
C13—Fe11.921 (4)O6—Y12.378 (3)
C14—N61.169 (5)O6—H6A0.9901
C14—Fe11.860 (4)O7—H7B0.8501
C15—O41.459 (5)O8—H8B0.8499
C15—H15A0.9801O8—H8C0.8500
C15—H15B0.9800Y1—N4i2.344 (4)
C15—H15C0.9800Y1—N5iii2.384 (4)
C16—O51.455 (5)
N1—C1—C2122.8 (4)C12—Fe1—N2175.02 (17)
N1—C1—H1118.7C13—Fe1—N288.11 (15)
C2—C1—H1118.5C11—Fe1—N292.05 (16)
C1—C2—C3117.2 (4)N1—Fe1—N279.90 (14)
C1—C2—H2121.6C5—N1—C1118.3 (4)
C3—C2—H2121.2C5—N1—Fe1115.7 (3)
C4—C3—C2120.9 (4)C1—N1—Fe1125.9 (3)
C4—C3—H3119.3C6—N2—C10120.4 (3)
C2—C3—H3119.9C6—N2—Fe1114.5 (3)
C3—C4—C5118.0 (4)C10—N2—Fe1125.1 (3)
C3—C4—H4121.3C11—N3—Y1165.9 (4)
C5—C4—H4120.7C12—N4—Y1i169.3 (4)
N1—C5—C4122.7 (4)C13—N5—Y1ii169.9 (3)
N1—C5—C6114.2 (4)O3—N7—O2121.4 (4)
C4—C5—C6123.1 (4)O3—N7—O1124.0 (4)
N2—C6—C7121.6 (4)O2—N7—O1114.6 (3)
N2—C6—C5115.1 (4)O3—N7—Y1177.2 (3)
C7—C6—C5123.3 (4)O2—N7—Y158.8 (2)
C6—C7—C8118.6 (5)O1—N7—Y155.87 (19)
C6—C7—H7120.5N7—O1—Y198.4 (2)
C8—C7—H7120.9N7—O2—Y195.3 (2)
C7—C8—C9121.1 (4)C15—O4—Y1130.8 (2)
C7—C8—H8119.5C15—O4—H4A104.8
C9—C8—H8119.3Y1—O4—H4A104.6
C8—C9—C10116.8 (4)C16—O5—Y1130.0 (3)
C8—C9—H9121.5C16—O5—H5A104.7
C10—C9—H9121.7Y1—O5—H5A104.8
N2—C10—C9121.4 (4)C17—O6—Y1123.9 (2)
N2—C10—H10119.5C17—O6—H6A106.4
C9—C10—H10119.1Y1—O6—H6A106.2
N3—C11—Fe1174.3 (4)C18—O7—H7B109.2
N4—C12—Fe1179.4 (4)H8B—O8—H8C109.5
N5—C13—Fe1178.7 (4)N4i—Y1—O479.10 (11)
N6—C14—Fe1178.6 (4)N4i—Y1—O675.80 (12)
O4—C15—H15A109.3O4—Y1—O6140.19 (10)
O4—C15—H15B109.9N4i—Y1—N5iii93.33 (12)
H15A—C15—H15B109.5O4—Y1—N5iii74.86 (11)
O4—C15—H15C109.2O6—Y1—N5iii76.29 (11)
H15A—C15—H15C109.5N4i—Y1—O1154.27 (12)
H15B—C15—H15C109.5O4—Y1—O176.06 (10)
O5—C16—H16A109.1O6—Y1—O1128.74 (11)
O5—C16—H16B109.8N5iii—Y1—O186.64 (12)
H16A—C16—H16B109.5N4i—Y1—O5102.62 (12)
O5—C16—H16C109.5O4—Y1—O5146.51 (11)
H16A—C16—H16C109.5O6—Y1—O570.07 (10)
H16B—C16—H16C109.5N5iii—Y1—O5137.47 (11)
O6—C17—H17A109.6O1—Y1—O594.49 (11)
O6—C17—H17B109.4N4i—Y1—N385.22 (13)
H17A—C17—H17B109.5O4—Y1—N375.66 (12)
O6—C17—H17C109.4O6—Y1—N3131.40 (11)
H17A—C17—H17C109.5N5iii—Y1—N3150.21 (13)
H17B—C17—H17C109.5O1—Y1—N382.26 (12)
O7—C18—H18A109.0O5—Y1—N371.22 (12)
O7—C18—H18B109.6N4i—Y1—O2152.81 (12)
H18A—C18—H18B109.5O4—Y1—O2120.72 (10)
O7—C18—H18C109.8O6—Y1—O277.33 (10)
H18A—C18—H18C109.5N5iii—Y1—O276.24 (11)
H18B—C18—H18C109.5O1—Y1—O251.58 (10)
C14—Fe1—C1287.3 (2)O5—Y1—O271.68 (10)
C14—Fe1—C1389.19 (19)N3—Y1—O2116.23 (11)
C12—Fe1—C1389.64 (18)N4i—Y1—N7173.07 (12)
C14—Fe1—C1187.33 (19)O4—Y1—N798.20 (10)
C12—Fe1—C1190.5 (2)O6—Y1—N7103.03 (10)
C13—Fe1—C11176.51 (19)N5iii—Y1—N779.78 (11)
C14—Fe1—N1176.55 (18)O1—Y1—N725.75 (10)
C12—Fe1—N195.62 (17)O5—Y1—N783.18 (11)
C13—Fe1—N188.99 (17)N3—Y1—N7100.36 (11)
C11—Fe1—N194.48 (17)O2—Y1—N725.85 (9)
C14—Fe1—N297.11 (18)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N6iv0.991.782.762 (5)172
O7—H7B···N60.852.032.823 (5)154
Symmetry code: (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[FeY(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O·0.5H2O
Mr604.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.803 (3), 18.132 (4), 10.728 (2)
β (°) 103.439 (3)
V3)2422.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.04
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.46, 0.55
No. of measured, independent and
observed [I > 2σ(I)] reflections
18891, 4760, 3490
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.107, 1.07
No. of reflections4760
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.57

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N6i0.991.782.762 (5)171.8
O7—H7B···N60.852.032.823 (5)154.2
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Jiangsu Province (No. BK2009196) for financial support.

References

First citationBaca, S. G., Adams, H., Sykes, D., Faulkner, S. & Ward, M. D. (2007). Dalton Trans. pp. 2419–2430.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaran, N. K., Mitra, S., Hossain, G. M. G. & Malik, K. M. A. (2002). Z. Naturforsch. Teil B, 57, 736–740.  CAS Google Scholar
First citationLi, J. R., Chen, W. T., Tong, M. L., Guo, G. C., Tao, Y., Yu, Q., Song, W. C. & Bu, X. H. (2008). Cryst. Growth Des. 8, 2780–2792.  Web of Science CrossRef CAS Google Scholar
First citationLiu, M., Yuan, W. B., Zhang, Q., Yan, L. & Yang, R. D. (2008). Chin. J. Appl. Chem. 25, 1194–1196.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokol, J. J., Shores, M. P. & Long, J. R. (2002). Inorg. Chem. 41, 3052–3054.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationToma, L. M., Lescouezec, R., Lloret, F., Julve, M., Vaissermann, J. & Verdaguer, M. (2003). Chem. Commun. pp. 1850–1855.  Web of Science CSD CrossRef Google Scholar
First citationWilson, D. C., Liu, S. M., Chen, X. N., Meyers, E. A., Bao, X. G., Prosvirin, A. V., Dunbar, K. R., Hadad, C. M. & Shore, S. G. (2009). Inorg. Chem. 48, 5725–5735.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXu, Y., Zhou, H., Yuan, A.-H., Shen, X.-P. & Zhang, Q. (2009). Acta Cryst. C65, m177–m179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuan, W. B., Yan, L. & Yang, R. D. (2004). Chin. J. Appl. Chem. 20, 829–831.  Google Scholar
First citationZhou, B. C., Kou, H.-Z., He, Y., Xiong, M., Wang, R.-J. & Li, Y.-D. (2002). Acta Cryst. C58, m478–m480.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds