metal-organic compounds
catena-poly[[[(2,2′-bipyridine-2κ2N,N′)-μ-cyanido-1:2κ2N:C-cyanido-2κC-tris(methanol-1κO)(nitrato-1κ2O,O′)iron(II)yttrium(III)]-di-μ-cyanido-1:2′κ2N:C;2:1′κ2C:N] methanol solvate hemihydrate]
aSuqian College, Suqian 223800, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com
The title complex, {[FeIIYIII(CN)4(NO3)(C10H8N2)(CH3OH)3]·CH3OH·0.5H2O}n, is built up of ladder-like chains oriented along the c axis. Each ladder consists of two strands based on alternating FeII and YIII ions connected by cyanide bridges. Two such parallel chains are connected by additional cyanide anions (the `rungs' of the ladder), which likewise connect FeII and YIII ions, such that each [Fe(bipy)(CN)4]2− (bipy is 2,2′-bipyridine) unit coordinates with three YIII ions and each YIII ion connects with three different [Fe(bipy)(CN)4]2− units. The FeII atom is six-coordinated in a distorted octahedral geometry and the YIII atom cation is eight-coordinated in a distorted dodecahedral environment. The uncoordinated methanol solvent molecules are involved in hydrogen-bonding interactions with the one terminal cyanide group and a coordinated methanol molecule from another [YIII(NO3)(CH3OH)3]2+ unit. Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the [Fe(CN)4(bipy)]2− units in one chain and the OH donors of CH3OH ligands from [YIII(NO3)(CH3OH)3] units in neighboring chains. The water molecule exhibits half-occupation.
Related literature
For background to the design, synthesis and properties of mixed rare earth–transition metal complexes, see: Wilson et al. (2009); Zhou et al. (2002); Li et al. (2008); Karan et al. (2002); Sokol et al. (2002); Toma et al. (2003); Xu et al. (2009). For related structures, see: Baca et al. (2007); Liu et al. (2008); Yuan et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810029843/nc2192sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810029843/nc2192Isup2.hkl
Red brown prism crystals of the title complex were obtained by slow diffusion of a MeOH solution of K2[Fe(bipy)(CN)4].3H2O(0.1 mmol) and an aqueous solution of Y(NO3)3.6H2O (0.1 mmol) through an H-tube at room temperature. The resulting crystals were collected, washed with H2O and MeOH, respectively, and dried in air.
The (C)H atoms of the bipy ligand were placed in calculated positions (C - H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The (C)H atoms of the methanol molecule were placed geometrically (C - H = 0.98 or 0.96 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C). The (O)H atoms of the methanol molecule were located in a difference Fourier map and refined with O - H restraints (O - H = 0.99 or 0.85 Å), and with Uiso(H) = 1.5Ueq(O). The position of the water molecule is occupied to only 50%. Its H atoms were located in a difference Fourier map and refined with O - H restraints (O - H = 0.85 Å), and with Uiso(H) = 1.5Ueq(O).
Much attention is currently devoted to the design and synthesis of mixed rare earth–transition metal complexes because rare earth ions have a rich coordination chemistry with high coordination numbers and significant coordination flexibility, which often leads to unanticipated but remarkable structures (Karan et al., 2002; Li et al., 2008; Wilson et al., 2009; Zhou et al., 2002.) [M(CN)x(L)y]n- [M = Cr, Fe, Ru and Mo; L = chelate ligand; and x = 2, 3, 4) can be used as the bricks to synthesize low-dimensional cyanide-bridged bimetallic compounds, which is a elaborate strategy as revealed by a few research groups (Sokol et al., 2002; Toma et al., 2003). However, the assemblies of [M(CN)x(L)y]n- with rare earth ions have rarely been reported so far (Xu et al., 2009). In this paper, we report a new cyano-bridged FeIIYIII bimetallic ladder-like chain complex, based on the [FeII(bipy)(CN)4]2- [bipy = 2,2'-bipyridine] building block.
The ∞ [2.530 (9)–2.548 (11) Å; Baca et al., 2007]. The angles of YIII—N—C(cyano) are far from linear [165.9 (3)–169.9 (3)°]. The NO3- ion acts as a bidentate ligand toward YIII through two of its three O atoms, which is different from previously reported cases (Yuan et al., 2004; Liu et al., 2008), in which an NO3- ion coordinated to a rare earth ion acts as a monodenate ligand in rare earth–transition metal complexes.
in the structure of the title complex comprises one [FeII(bipy)(CN)4]2- anion, one [YIII(NO3)(CH3OH)3]2+ cation, one solvent methanol molecule and half a water molecule (Fig. 1). The consists of one-dimensional ladder-like bimetallic chains, {[FeII(bipy)(CN)4][YIII(NO3)(CH3OH)3]}n, built up from alternating FeII and YIII metal centers linked through the cyano bridges (Fig. 2). The ladder-like bimetallic chains contain Fe2Y2 centrosymmetric motifs. The [Fe(bipy)(CN)4]2- fragment exhibits a distorted octahedral structure consisting of two N atoms from a planar bipy ligand and four C atoms from four CN- groups. The small bite angle subtended by the chelating bipy group [79.90 (15)° for N1—Fe1—N2] is one of the main factors accounting for this distortion. Three of the four cyano groups of the [Fe(bipy)(CN)4]2- unit are bridging, while the fourth is terminal. The Fe—C—N angles for both terminal [178.6 (5)°] and bridging [178.7 (4), 179.4 (4) and 174.4 (4)°] CN- groups deviate slightly from strict linearity. Each YIII cation is eight-coordinated, connecting with two O atoms from the NO3 group, three O atoms from three CH3OH units and three N atoms from three CN- ligands, building distorted YN3O5 dodecahedral surroundings (Fig. 1). The Y—O bond lengths fall in a very narrow range [2.385 (3)–2.448 (3)Å for Y—O(NO3) and 2.372 (3)–2.392 (3)(3) Å for Y—O(CH3OH)]. The Y—N(cyanide) bond distances [2.401 (4)–2.344 (4) Å] are somewhat smaller than those from {[Ru(phen)(CN)4]3[Ln(terpy)(H2O)3]2.nH2O}The Fe···Y separations across cyanide bridges are 5.410 (4), 5.357 (3) and 5.424 (4) Å. The uncoordinated methanol solvent molecules are involved in hydrogen-bonding interactions with the one terminal cyanide group and a coordinated methanol molecule from another [YIII(NO3)(CH3OH)3]2- unit (Table 1). Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the [Fe(CN)4(bipy)]2- units in one chain and the OH donors of CH3OH ligands from [YIII(NO3)(CH3OH)3] units in neighboring chains. From this arrangement a two-dimensional structure is formed.
For background to the design, synthesis and properties of mixed rare earth–transition metal complexes, see: Wilson et al. (2009); Zhou et al. (2002); Li et al. (2008); Karan et al. (2002); Sokol et al. (2002); Toma et al. (2003); Xu et al. (2009). For related structures, see: Baca et al. (2007); Liu et al. (2008); Yuan et al. (2004).
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[FeY(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O·0.5H2O | F(000) = 1228 |
Mr = 604.21 | Dx = 1.657 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 838 reflections |
a = 12.803 (3) Å | θ = 3.0–23.5° |
b = 18.132 (4) Å | µ = 3.04 mm−1 |
c = 10.728 (2) Å | T = 173 K |
β = 103.439 (3)° | Prism, red brown |
V = 2422.2 (9) Å3 | 0.26 × 0.22 × 0.20 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 4760 independent reflections |
Radiation source: sealed tube | 3490 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
phi and ω scans | θmax = 26.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −14→15 |
Tmin = 0.46, Tmax = 0.55 | k = −22→22 |
18891 measured reflections | l = −13→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0481P)2] where P = (Fo2 + 2Fc2)/3 |
4760 reflections | (Δ/σ)max < 0.001 |
316 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.57 e Å−3 |
[FeY(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O·0.5H2O | V = 2422.2 (9) Å3 |
Mr = 604.21 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.803 (3) Å | µ = 3.04 mm−1 |
b = 18.132 (4) Å | T = 173 K |
c = 10.728 (2) Å | 0.26 × 0.22 × 0.20 mm |
β = 103.439 (3)° |
Bruker SMART APEX CCD diffractometer | 4760 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 3490 reflections with I > 2σ(I) |
Tmin = 0.46, Tmax = 0.55 | Rint = 0.067 |
18891 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.49 e Å−3 |
4760 reflections | Δρmin = −0.57 e Å−3 |
316 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.7345 (4) | −0.1231 (2) | 0.3081 (4) | 0.0385 (10) | |
H1 | 0.6595 | −0.1259 | 0.3029 | 0.046* | |
C2 | 0.7916 (4) | −0.1886 (2) | 0.3052 (4) | 0.0347 (10) | |
H2 | 0.7570 | −0.2353 | 0.2975 | 0.042* | |
C3 | 0.9033 (4) | −0.1825 (3) | 0.3155 (4) | 0.0394 (10) | |
H3 | 0.9455 | −0.2258 | 0.3174 | 0.047* | |
C4 | 0.9530 (4) | −0.1133 (3) | 0.3213 (4) | 0.0419 (11) | |
H4 | 1.0277 | −0.1089 | 0.3257 | 0.050* | |
C5 | 0.8893 (3) | −0.0504 (3) | 0.3225 (5) | 0.0391 (10) | |
C6 | 0.9318 (3) | 0.0236 (3) | 0.3317 (4) | 0.0384 (10) | |
C7 | 1.0374 (4) | 0.0395 (3) | 0.3333 (5) | 0.0452 (11) | |
H7 | 1.0858 | 0.0014 | 0.3238 | 0.054* | |
C8 | 1.0714 (3) | 0.1123 (2) | 0.3497 (4) | 0.0348 (10) | |
H8 | 1.1439 | 0.1241 | 0.3504 | 0.042* | |
C9 | 1.0006 (3) | 0.1689 (3) | 0.3651 (4) | 0.0354 (10) | |
H9 | 1.0240 | 0.2185 | 0.3790 | 0.042* | |
C10 | 0.8930 (3) | 0.1483 (2) | 0.3587 (4) | 0.0281 (8) | |
H10 | 0.8423 | 0.1853 | 0.3663 | 0.034* | |
C11 | 0.7170 (3) | 0.0426 (2) | 0.4978 (4) | 0.0363 (10) | |
C12 | 0.5697 (3) | 0.0028 (2) | 0.2858 (4) | 0.0363 (10) | |
C13 | 0.6951 (3) | 0.0482 (2) | 0.1340 (4) | 0.0298 (9) | |
C14 | 0.6443 (3) | 0.1349 (3) | 0.3103 (4) | 0.0385 (10) | |
C15 | 0.8118 (4) | −0.0835 (3) | 0.9317 (4) | 0.0427 (11) | |
H15A | 0.8576 | −0.0470 | 0.9859 | 0.064* | |
H15B | 0.8564 | −0.1163 | 0.8933 | 0.064* | |
H15C | 0.7734 | −0.1124 | 0.9840 | 0.064* | |
C16 | 0.7459 (4) | 0.2236 (3) | 0.6177 (4) | 0.0390 (10) | |
H16A | 0.8181 | 0.2152 | 0.6712 | 0.059* | |
H16B | 0.7319 | 0.2767 | 0.6094 | 0.059* | |
H16C | 0.7408 | 0.2022 | 0.5326 | 0.059* | |
C17 | 0.4893 (4) | 0.1450 (3) | 0.9517 (5) | 0.0429 (11) | |
H17A | 0.4907 | 0.0916 | 0.9660 | 0.064* | |
H17B | 0.4155 | 0.1608 | 0.9139 | 0.064* | |
H17C | 0.5158 | 0.1704 | 1.0336 | 0.064* | |
C18 | 0.4471 (3) | 0.1056 (3) | 0.4540 (4) | 0.0385 (10) | |
H18A | 0.4135 | 0.1343 | 0.5089 | 0.058* | |
H18B | 0.4307 | 0.0544 | 0.4617 | 0.058* | |
H18C | 0.5235 | 0.1125 | 0.4785 | 0.058* | |
Fe1 | 0.70769 (5) | 0.04235 (3) | 0.31568 (6) | 0.03166 (16) | |
N1 | 0.7825 (3) | −0.05414 (19) | 0.3170 (4) | 0.0338 (8) | |
N2 | 0.8605 (3) | 0.07728 (19) | 0.3405 (3) | 0.0307 (7) | |
N3 | 0.7168 (3) | 0.0475 (2) | 0.6043 (4) | 0.0364 (8) | |
N4 | 0.4832 (3) | −0.0227 (2) | 0.2667 (4) | 0.0394 (9) | |
N5 | 0.6896 (3) | 0.05129 (18) | 0.0266 (4) | 0.0339 (8) | |
N6 | 0.6040 (3) | 0.1931 (2) | 0.3041 (4) | 0.0385 (9) | |
N7 | 0.8853 (3) | 0.1436 (2) | 0.9291 (3) | 0.0354 (8) | |
O1 | 0.8747 (2) | 0.08407 (17) | 0.8686 (3) | 0.0398 (7) | |
O2 | 0.7993 (2) | 0.17623 (15) | 0.9284 (3) | 0.0367 (7) | |
O3 | 0.9709 (2) | 0.16875 (16) | 0.9851 (3) | 0.0399 (7) | |
O4 | 0.7341 (2) | −0.04552 (16) | 0.8312 (3) | 0.0361 (7) | |
H4A | 0.6659 | −0.0724 | 0.8253 | 0.054* | |
O5 | 0.6676 (2) | 0.18859 (16) | 0.6775 (3) | 0.0379 (7) | |
H5A | 0.6452 | 0.2280 | 0.7297 | 0.057* | |
O6 | 0.5579 (2) | 0.16346 (17) | 0.8642 (3) | 0.0354 (7) | |
H6A | 0.5993 | 0.2077 | 0.9002 | 0.053* | |
O7 | 0.4061 (2) | 0.12975 (17) | 0.3204 (3) | 0.0408 (7) | |
H7B | 0.4582 | 0.1451 | 0.2907 | 0.061* | |
O8 | 0.3088 (5) | 0.2478 (4) | 0.4772 (7) | 0.0489 (17) | 0.50 |
H8B | 0.2447 | 0.2322 | 0.4670 | 0.073* | 0.50 |
H8C | 0.3318 | 0.2622 | 0.5540 | 0.073* | 0.50 |
Y1 | 0.68339 (3) | 0.08045 (2) | 0.80828 (4) | 0.03110 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.040 (2) | 0.028 (2) | 0.045 (3) | −0.0085 (19) | 0.005 (2) | 0.0008 (19) |
C2 | 0.044 (2) | 0.033 (2) | 0.028 (2) | −0.0147 (19) | 0.0103 (18) | −0.0087 (17) |
C3 | 0.039 (2) | 0.037 (2) | 0.042 (3) | −0.0070 (19) | 0.0076 (19) | −0.003 (2) |
C4 | 0.051 (3) | 0.035 (2) | 0.043 (3) | −0.009 (2) | 0.017 (2) | −0.002 (2) |
C5 | 0.030 (2) | 0.043 (3) | 0.046 (3) | 0.0014 (19) | 0.0119 (19) | 0.001 (2) |
C6 | 0.029 (2) | 0.048 (3) | 0.039 (3) | −0.0038 (19) | 0.0103 (18) | −0.003 (2) |
C7 | 0.041 (3) | 0.050 (3) | 0.044 (3) | −0.003 (2) | 0.008 (2) | 0.002 (2) |
C8 | 0.036 (2) | 0.038 (2) | 0.036 (2) | −0.0024 (18) | 0.0191 (18) | 0.0030 (19) |
C9 | 0.036 (2) | 0.043 (3) | 0.029 (2) | 0.0085 (19) | 0.0124 (17) | −0.0080 (19) |
C10 | 0.034 (2) | 0.027 (2) | 0.0260 (19) | 0.0081 (16) | 0.0131 (16) | 0.0043 (16) |
C11 | 0.036 (2) | 0.033 (2) | 0.038 (3) | −0.0010 (19) | 0.0049 (19) | 0.001 (2) |
C12 | 0.028 (2) | 0.031 (2) | 0.045 (3) | −0.0038 (18) | −0.0014 (19) | −0.0016 (19) |
C13 | 0.027 (2) | 0.029 (2) | 0.032 (2) | −0.0095 (16) | 0.0043 (17) | 0.0037 (17) |
C14 | 0.033 (2) | 0.042 (3) | 0.046 (3) | 0.0122 (19) | 0.0193 (19) | −0.002 (2) |
C15 | 0.034 (2) | 0.044 (3) | 0.040 (3) | −0.013 (2) | −0.0127 (19) | −0.001 (2) |
C16 | 0.037 (2) | 0.041 (3) | 0.042 (3) | 0.003 (2) | 0.015 (2) | −0.010 (2) |
C17 | 0.041 (3) | 0.038 (3) | 0.054 (3) | 0.011 (2) | 0.018 (2) | 0.019 (2) |
C18 | 0.034 (2) | 0.037 (2) | 0.044 (3) | −0.0078 (18) | 0.009 (2) | 0.008 (2) |
Fe1 | 0.0315 (3) | 0.0311 (3) | 0.0327 (3) | −0.0019 (2) | 0.0080 (2) | −0.0011 (2) |
N1 | 0.0317 (19) | 0.0258 (18) | 0.045 (2) | −0.0048 (14) | 0.0115 (16) | −0.0053 (15) |
N2 | 0.0281 (17) | 0.0279 (18) | 0.0366 (19) | −0.0061 (14) | 0.0088 (14) | 0.0024 (15) |
N3 | 0.0317 (19) | 0.041 (2) | 0.040 (2) | −0.0017 (15) | 0.0149 (16) | 0.0024 (17) |
N4 | 0.037 (2) | 0.035 (2) | 0.045 (2) | 0.0037 (16) | 0.0059 (17) | −0.0022 (17) |
N5 | 0.0308 (19) | 0.0293 (19) | 0.043 (2) | −0.0113 (15) | 0.0113 (16) | 0.0014 (16) |
N6 | 0.036 (2) | 0.034 (2) | 0.047 (2) | 0.0065 (16) | 0.0133 (17) | −0.0072 (17) |
N7 | 0.0316 (19) | 0.044 (2) | 0.0310 (19) | 0.0007 (16) | 0.0075 (15) | −0.0157 (17) |
O1 | 0.0346 (16) | 0.0331 (17) | 0.0493 (19) | 0.0044 (13) | 0.0050 (14) | −0.0012 (14) |
O2 | 0.0293 (16) | 0.0297 (16) | 0.0476 (19) | −0.0013 (13) | 0.0014 (13) | 0.0034 (13) |
O3 | 0.0343 (17) | 0.0299 (16) | 0.0509 (19) | −0.0084 (13) | 0.0004 (14) | 0.0013 (14) |
O4 | 0.0432 (17) | 0.0295 (15) | 0.0309 (16) | −0.0158 (13) | −0.0010 (13) | −0.0060 (12) |
O5 | 0.0487 (18) | 0.0341 (17) | 0.0327 (16) | −0.0156 (14) | 0.0128 (13) | −0.0033 (13) |
O6 | 0.0306 (16) | 0.0370 (17) | 0.0412 (17) | −0.0026 (12) | 0.0137 (13) | 0.0023 (13) |
O7 | 0.0412 (18) | 0.0439 (19) | 0.0346 (17) | −0.0068 (14) | 0.0034 (13) | 0.0051 (14) |
O8 | 0.041 (4) | 0.045 (4) | 0.058 (4) | 0.012 (3) | 0.006 (3) | −0.001 (3) |
Y1 | 0.0295 (2) | 0.0324 (2) | 0.0303 (2) | −0.00059 (17) | 0.00460 (15) | 0.00014 (17) |
C1—N1 | 1.386 (5) | C16—H16A | 0.9799 |
C1—C2 | 1.399 (6) | C16—H16B | 0.9800 |
C1—H1 | 0.9500 | C16—H16C | 0.9800 |
C2—C3 | 1.413 (6) | C17—O6 | 1.465 (5) |
C2—H2 | 0.9500 | C17—H17A | 0.9799 |
C3—C4 | 1.402 (6) | C17—H17B | 0.9800 |
C3—H3 | 0.9500 | C17—H17C | 0.9799 |
C4—C5 | 1.404 (6) | C18—O7 | 1.474 (5) |
C4—H4 | 0.9502 | C18—H18A | 0.9599 |
C5—N1 | 1.356 (6) | C18—H18B | 0.9600 |
C5—C6 | 1.442 (6) | C18—H18C | 0.9600 |
C6—N2 | 1.353 (6) | Fe1—N1 | 1.993 (4) |
C6—C7 | 1.379 (6) | Fe1—N2 | 2.015 (3) |
C7—C8 | 1.387 (7) | N3—Y1 | 2.401 (4) |
C7—H7 | 0.9500 | N4—Y1i | 2.344 (4) |
C8—C9 | 1.405 (6) | N5—Y1ii | 2.384 (4) |
C8—H8 | 0.9500 | N7—O3 | 1.210 (4) |
C9—C10 | 1.413 (6) | N7—O2 | 1.248 (4) |
C9—H9 | 0.9500 | N7—O1 | 1.251 (4) |
C10—N2 | 1.353 (5) | N7—Y1 | 2.849 (4) |
C10—H10 | 0.9500 | O1—Y1 | 2.384 (3) |
C11—N3 | 1.146 (6) | O2—Y1 | 2.448 (3) |
C11—Fe1 | 1.930 (5) | O4—Y1 | 2.372 (3) |
C12—N4 | 1.173 (5) | O4—H4A | 0.9900 |
C12—Fe1 | 1.865 (4) | O5—Y1 | 2.392 (3) |
C13—N5 | 1.140 (5) | O5—H5A | 0.9900 |
C13—Fe1 | 1.921 (4) | O6—Y1 | 2.378 (3) |
C14—N6 | 1.169 (5) | O6—H6A | 0.9901 |
C14—Fe1 | 1.860 (4) | O7—H7B | 0.8501 |
C15—O4 | 1.459 (5) | O8—H8B | 0.8499 |
C15—H15A | 0.9801 | O8—H8C | 0.8500 |
C15—H15B | 0.9800 | Y1—N4i | 2.344 (4) |
C15—H15C | 0.9800 | Y1—N5iii | 2.384 (4) |
C16—O5 | 1.455 (5) | ||
N1—C1—C2 | 122.8 (4) | C12—Fe1—N2 | 175.02 (17) |
N1—C1—H1 | 118.7 | C13—Fe1—N2 | 88.11 (15) |
C2—C1—H1 | 118.5 | C11—Fe1—N2 | 92.05 (16) |
C1—C2—C3 | 117.2 (4) | N1—Fe1—N2 | 79.90 (14) |
C1—C2—H2 | 121.6 | C5—N1—C1 | 118.3 (4) |
C3—C2—H2 | 121.2 | C5—N1—Fe1 | 115.7 (3) |
C4—C3—C2 | 120.9 (4) | C1—N1—Fe1 | 125.9 (3) |
C4—C3—H3 | 119.3 | C6—N2—C10 | 120.4 (3) |
C2—C3—H3 | 119.9 | C6—N2—Fe1 | 114.5 (3) |
C3—C4—C5 | 118.0 (4) | C10—N2—Fe1 | 125.1 (3) |
C3—C4—H4 | 121.3 | C11—N3—Y1 | 165.9 (4) |
C5—C4—H4 | 120.7 | C12—N4—Y1i | 169.3 (4) |
N1—C5—C4 | 122.7 (4) | C13—N5—Y1ii | 169.9 (3) |
N1—C5—C6 | 114.2 (4) | O3—N7—O2 | 121.4 (4) |
C4—C5—C6 | 123.1 (4) | O3—N7—O1 | 124.0 (4) |
N2—C6—C7 | 121.6 (4) | O2—N7—O1 | 114.6 (3) |
N2—C6—C5 | 115.1 (4) | O3—N7—Y1 | 177.2 (3) |
C7—C6—C5 | 123.3 (4) | O2—N7—Y1 | 58.8 (2) |
C6—C7—C8 | 118.6 (5) | O1—N7—Y1 | 55.87 (19) |
C6—C7—H7 | 120.5 | N7—O1—Y1 | 98.4 (2) |
C8—C7—H7 | 120.9 | N7—O2—Y1 | 95.3 (2) |
C7—C8—C9 | 121.1 (4) | C15—O4—Y1 | 130.8 (2) |
C7—C8—H8 | 119.5 | C15—O4—H4A | 104.8 |
C9—C8—H8 | 119.3 | Y1—O4—H4A | 104.6 |
C8—C9—C10 | 116.8 (4) | C16—O5—Y1 | 130.0 (3) |
C8—C9—H9 | 121.5 | C16—O5—H5A | 104.7 |
C10—C9—H9 | 121.7 | Y1—O5—H5A | 104.8 |
N2—C10—C9 | 121.4 (4) | C17—O6—Y1 | 123.9 (2) |
N2—C10—H10 | 119.5 | C17—O6—H6A | 106.4 |
C9—C10—H10 | 119.1 | Y1—O6—H6A | 106.2 |
N3—C11—Fe1 | 174.3 (4) | C18—O7—H7B | 109.2 |
N4—C12—Fe1 | 179.4 (4) | H8B—O8—H8C | 109.5 |
N5—C13—Fe1 | 178.7 (4) | N4i—Y1—O4 | 79.10 (11) |
N6—C14—Fe1 | 178.6 (4) | N4i—Y1—O6 | 75.80 (12) |
O4—C15—H15A | 109.3 | O4—Y1—O6 | 140.19 (10) |
O4—C15—H15B | 109.9 | N4i—Y1—N5iii | 93.33 (12) |
H15A—C15—H15B | 109.5 | O4—Y1—N5iii | 74.86 (11) |
O4—C15—H15C | 109.2 | O6—Y1—N5iii | 76.29 (11) |
H15A—C15—H15C | 109.5 | N4i—Y1—O1 | 154.27 (12) |
H15B—C15—H15C | 109.5 | O4—Y1—O1 | 76.06 (10) |
O5—C16—H16A | 109.1 | O6—Y1—O1 | 128.74 (11) |
O5—C16—H16B | 109.8 | N5iii—Y1—O1 | 86.64 (12) |
H16A—C16—H16B | 109.5 | N4i—Y1—O5 | 102.62 (12) |
O5—C16—H16C | 109.5 | O4—Y1—O5 | 146.51 (11) |
H16A—C16—H16C | 109.5 | O6—Y1—O5 | 70.07 (10) |
H16B—C16—H16C | 109.5 | N5iii—Y1—O5 | 137.47 (11) |
O6—C17—H17A | 109.6 | O1—Y1—O5 | 94.49 (11) |
O6—C17—H17B | 109.4 | N4i—Y1—N3 | 85.22 (13) |
H17A—C17—H17B | 109.5 | O4—Y1—N3 | 75.66 (12) |
O6—C17—H17C | 109.4 | O6—Y1—N3 | 131.40 (11) |
H17A—C17—H17C | 109.5 | N5iii—Y1—N3 | 150.21 (13) |
H17B—C17—H17C | 109.5 | O1—Y1—N3 | 82.26 (12) |
O7—C18—H18A | 109.0 | O5—Y1—N3 | 71.22 (12) |
O7—C18—H18B | 109.6 | N4i—Y1—O2 | 152.81 (12) |
H18A—C18—H18B | 109.5 | O4—Y1—O2 | 120.72 (10) |
O7—C18—H18C | 109.8 | O6—Y1—O2 | 77.33 (10) |
H18A—C18—H18C | 109.5 | N5iii—Y1—O2 | 76.24 (11) |
H18B—C18—H18C | 109.5 | O1—Y1—O2 | 51.58 (10) |
C14—Fe1—C12 | 87.3 (2) | O5—Y1—O2 | 71.68 (10) |
C14—Fe1—C13 | 89.19 (19) | N3—Y1—O2 | 116.23 (11) |
C12—Fe1—C13 | 89.64 (18) | N4i—Y1—N7 | 173.07 (12) |
C14—Fe1—C11 | 87.33 (19) | O4—Y1—N7 | 98.20 (10) |
C12—Fe1—C11 | 90.5 (2) | O6—Y1—N7 | 103.03 (10) |
C13—Fe1—C11 | 176.51 (19) | N5iii—Y1—N7 | 79.78 (11) |
C14—Fe1—N1 | 176.55 (18) | O1—Y1—N7 | 25.75 (10) |
C12—Fe1—N1 | 95.62 (17) | O5—Y1—N7 | 83.18 (11) |
C13—Fe1—N1 | 88.99 (17) | N3—Y1—N7 | 100.36 (11) |
C11—Fe1—N1 | 94.48 (17) | O2—Y1—N7 | 25.85 (9) |
C14—Fe1—N2 | 97.11 (18) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1; (iii) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···N6iv | 0.99 | 1.78 | 2.762 (5) | 172 |
O7—H7B···N6 | 0.85 | 2.03 | 2.823 (5) | 154 |
Symmetry code: (iv) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [FeY(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O·0.5H2O |
Mr | 604.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 12.803 (3), 18.132 (4), 10.728 (2) |
β (°) | 103.439 (3) |
V (Å3) | 2422.2 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.04 |
Crystal size (mm) | 0.26 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.46, 0.55 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18891, 4760, 3490 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.107, 1.07 |
No. of reflections | 4760 |
No. of parameters | 316 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.57 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···N6i | 0.99 | 1.78 | 2.762 (5) | 171.8 |
O7—H7B···N6 | 0.85 | 2.03 | 2.823 (5) | 154.2 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
The authors thank the Natural Science Foundation of Jiangsu Province (No. BK2009196) for financial support.
References
Baca, S. G., Adams, H., Sykes, D., Faulkner, S. & Ward, M. D. (2007). Dalton Trans. pp. 2419–2430. Web of Science CSD CrossRef Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SADABS. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Karan, N. K., Mitra, S., Hossain, G. M. G. & Malik, K. M. A. (2002). Z. Naturforsch. Teil B, 57, 736–740. CAS Google Scholar
Li, J. R., Chen, W. T., Tong, M. L., Guo, G. C., Tao, Y., Yu, Q., Song, W. C. & Bu, X. H. (2008). Cryst. Growth Des. 8, 2780–2792. Web of Science CrossRef CAS Google Scholar
Liu, M., Yuan, W. B., Zhang, Q., Yan, L. & Yang, R. D. (2008). Chin. J. Appl. Chem. 25, 1194–1196. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sokol, J. J., Shores, M. P. & Long, J. R. (2002). Inorg. Chem. 41, 3052–3054. Web of Science CSD CrossRef PubMed CAS Google Scholar
Toma, L. M., Lescouezec, R., Lloret, F., Julve, M., Vaissermann, J. & Verdaguer, M. (2003). Chem. Commun. pp. 1850–1855. Web of Science CSD CrossRef Google Scholar
Wilson, D. C., Liu, S. M., Chen, X. N., Meyers, E. A., Bao, X. G., Prosvirin, A. V., Dunbar, K. R., Hadad, C. M. & Shore, S. G. (2009). Inorg. Chem. 48, 5725–5735. Web of Science CSD CrossRef CAS PubMed Google Scholar
Xu, Y., Zhou, H., Yuan, A.-H., Shen, X.-P. & Zhang, Q. (2009). Acta Cryst. C65, m177–m179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yuan, W. B., Yan, L. & Yang, R. D. (2004). Chin. J. Appl. Chem. 20, 829–831. Google Scholar
Zhou, B. C., Kou, H.-Z., He, Y., Xiong, M., Wang, R.-J. & Li, Y.-D. (2002). Acta Cryst. C58, m478–m480. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Much attention is currently devoted to the design and synthesis of mixed rare earth–transition metal complexes because rare earth ions have a rich coordination chemistry with high coordination numbers and significant coordination flexibility, which often leads to unanticipated but remarkable structures (Karan et al., 2002; Li et al., 2008; Wilson et al., 2009; Zhou et al., 2002.) [M(CN)x(L)y]n- [M = Cr, Fe, Ru and Mo; L = chelate ligand; and x = 2, 3, 4) can be used as the bricks to synthesize low-dimensional cyanide-bridged bimetallic compounds, which is a elaborate strategy as revealed by a few research groups (Sokol et al., 2002; Toma et al., 2003). However, the assemblies of [M(CN)x(L)y]n- with rare earth ions have rarely been reported so far (Xu et al., 2009). In this paper, we report a new cyano-bridged FeIIYIII bimetallic ladder-like chain complex, based on the [FeII(bipy)(CN)4]2- [bipy = 2,2'-bipyridine] building block.
The asymmetric unit in the structure of the title complex comprises one [FeII(bipy)(CN)4]2- anion, one [YIII(NO3)(CH3OH)3]2+ cation, one solvent methanol molecule and half a water molecule (Fig. 1). The crystal structure consists of one-dimensional ladder-like bimetallic chains, {[FeII(bipy)(CN)4][YIII(NO3)(CH3OH)3]}n, built up from alternating FeII and YIII metal centers linked through the cyano bridges (Fig. 2). The ladder-like bimetallic chains contain Fe2Y2 centrosymmetric motifs. The [Fe(bipy)(CN)4]2- fragment exhibits a distorted octahedral structure consisting of two N atoms from a planar bipy ligand and four C atoms from four CN- groups. The small bite angle subtended by the chelating bipy group [79.90 (15)° for N1—Fe1—N2] is one of the main factors accounting for this distortion. Three of the four cyano groups of the [Fe(bipy)(CN)4]2- unit are bridging, while the fourth is terminal. The Fe—C—N angles for both terminal [178.6 (5)°] and bridging [178.7 (4), 179.4 (4) and 174.4 (4)°] CN- groups deviate slightly from strict linearity. Each YIII cation is eight-coordinated, connecting with two O atoms from the NO3 group, three O atoms from three CH3OH units and three N atoms from three CN- ligands, building distorted YN3O5 dodecahedral surroundings (Fig. 1). The Y—O bond lengths fall in a very narrow range [2.385 (3)–2.448 (3)Å for Y—O(NO3) and 2.372 (3)–2.392 (3)(3) Å for Y—O(CH3OH)]. The Y—N(cyanide) bond distances [2.401 (4)–2.344 (4) Å] are somewhat smaller than those from {[Ru(phen)(CN)4]3[Ln(terpy)(H2O)3]2.nH2O}∞ [2.530 (9)–2.548 (11) Å; Baca et al., 2007]. The angles of YIII—N—C(cyano) are far from linear [165.9 (3)–169.9 (3)°]. The NO3- ion acts as a bidentate ligand toward YIII through two of its three O atoms, which is different from previously reported cases (Yuan et al., 2004; Liu et al., 2008), in which an NO3- ion coordinated to a rare earth ion acts as a monodenate ligand in rare earth–transition metal complexes.
The Fe···Y separations across cyanide bridges are 5.410 (4), 5.357 (3) and 5.424 (4) Å. The uncoordinated methanol solvent molecules are involved in hydrogen-bonding interactions with the one terminal cyanide group and a coordinated methanol molecule from another [YIII(NO3)(CH3OH)3]2- unit (Table 1). Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the [Fe(CN)4(bipy)]2- units in one chain and the OH donors of CH3OH ligands from [YIII(NO3)(CH3OH)3] units in neighboring chains. From this arrangement a two-dimensional structure is formed.