metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,2-Bis(2-pyridyl­meth­­oxy)benzene-κ4N,O,O′,N′]bis­­(nitrato-κO)copper(II)

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, bEngineering Research Center of Pesticides of Heilongjiang Province, Heilongjiang University, Harbin 150080, People's Republic of China, and cDalian Songliao Chemical Industry Corporation, Dalian 116031, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 17 June 2010; accepted 24 June 2010; online 3 July 2010)

In the title compound, [Cu(NO3)2(C18H16N2O2)], the CuII ion is six-coordinated in a Jahn–Teller-distorted octa­hedral environment defined by two O and two N atoms from the ligand and two O atoms from two monodentate nitrate anions.

Related literature

For the synthesis and general backround to flexible pyridyl-based ligands, see: Liu et al. (2010[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010). Cryst. Growth Des. 10, 1559-1568.]). For a related structure, see: Zhang et al. (2010[Zhang, S., Wang, Y.-J., Ma, D.-S., Liu, Y. & Gao, J.-S. (2010). Acta Cryst. E66, m701.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C18H16N2O2)]

  • Mr = 479.90

  • Triclinic, [P \overline 1]

  • a = 8.621 (5) Å

  • b = 10.826 (6) Å

  • c = 10.887 (6) Å

  • α = 78.75 (2)°

  • β = 77.590 (19)°

  • γ = 76.54 (2)°

  • V = 953.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 291 K

  • 0.31 × 0.30 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.705, Tmax = 0.808

  • 9416 measured reflections

  • 4314 independent reflections

  • 3150 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.111

  • S = 1.04

  • 4314 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3 1.968 (2)
Cu1—O6 1.973 (2)
Cu1—N1 2.062 (3)
Cu1—N2 2.070 (2)
Cu1—O2 2.451 (3)
Cu1—O1 2.491 (2)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent, our group has employed the flexible N-heterocyclic ligands reacting with transition metal to construct several supramolecular architectures (Liu et al. 2010; Zhang et al. 2010). As a part of our continuing work for bipyridyl aromatic ligands, we report the crystal s tructure of the title compound here.

1,2-Bis(pyridin-2-ylmethoxy)benzene molecule act as a chelating ligand to coordinate with CuII ion forming a discrete strucutre. Two nitrate anions also coordinate to the center CuII ion, resulting the CuII ion is six-coordinated in a typically Jahn-Teller distorted octahedral environment. Furthermore, a weak Cu—O bond, with distances of 2.742 (3) Å, between the CuII center and one nitrate anion link the coordination geometry into a distorted monocapped octahedron (Figure 1, Table 1).

Related literature top

For the synthesis and general backround to flexible pyridyl-based ligands, see: Liu et al. (2010). For a related structure, see: Zhang et al. (2010).

Experimental top

The 1,2-Bis(pyridin-2-ylmethoxy)benzene was synthesized by the reaction of ο-dihydroxybenzene and 2-chloromethylpyridine hydrochloride under nitrogen atmosphere and alkaline condition (Liu et al., 2010). Title ligand (0.58 g, 2 mmol) and Cu(NO3)2.H2O (0.48 g, 2 mmol) were dissolved in 15 ml e thanol, and then the mixture keep stirring for 30 minute. The resulting solution was filtered, and the filtrate was allowed to stand in a desiccator at room temperature for several days. Bule block crystals were obtained.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methene C), and with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent, our group has employed the flexible N-heterocyclic ligands reacting with transition metal to construct several supramolecular architectures (Liu et al. 2010; Zhang et al. 2010). As a part of our continuing work for bipyridyl aromatic ligands, we report the crystal s tructure of the title compound here.

1,2-Bis(pyridin-2-ylmethoxy)benzene molecule act as a chelating ligand to coordinate with CuII ion forming a discrete strucutre. Two nitrate anions also coordinate to the center CuII ion, resulting the CuII ion is six-coordinated in a typically Jahn-Teller distorted octahedral environment. Furthermore, a weak Cu—O bond, with distances of 2.742 (3) Å, between the CuII center and one nitrate anion link the coordination geometry into a distorted monocapped octahedron (Figure 1, Table 1).

For the synthesis and general backround to flexible pyridyl-based ligands, see: Liu et al. (2010). For a related structure, see: Zhang et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.
[1,2-Bis(2-pyridylmethoxy)benzene- κ4N,O,O',N']bis(nitrato-κO)copper(II) top
Crystal data top
[Cu(NO3)2(C18H16N2O2)]Z = 2
Mr = 479.90F(000) = 490
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.621 (5) ÅCell parameters from 6858 reflections
b = 10.826 (6) Åθ = 3.4–27.5°
c = 10.887 (6) ŵ = 1.20 mm1
α = 78.75 (2)°T = 291 K
β = 77.590 (19)°Block, blue
γ = 76.54 (2)°0.31 × 0.30 × 0.19 mm
V = 953.8 (9) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4314 independent reflections
Radiation source: fine-focus sealed tube3150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scanθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1110
Tmin = 0.705, Tmax = 0.808k = 1314
9416 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.2381P]
where P = (Fo2 + 2Fc2)/3
4314 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(NO3)2(C18H16N2O2)]γ = 76.54 (2)°
Mr = 479.90V = 953.8 (9) Å3
Triclinic, P1Z = 2
a = 8.621 (5) ÅMo Kα radiation
b = 10.826 (6) ŵ = 1.20 mm1
c = 10.887 (6) ÅT = 291 K
α = 78.75 (2)°0.31 × 0.30 × 0.19 mm
β = 77.590 (19)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4314 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3150 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.808Rint = 0.039
9416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
4314 reflectionsΔρmin = 0.40 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5717 (4)0.6307 (3)0.2015 (3)0.0476 (8)
H10.50160.57490.23940.057*
C20.7258 (4)0.5802 (4)0.1445 (3)0.0562 (9)
H20.75890.49230.14340.067*
C30.8307 (4)0.6624 (4)0.0890 (3)0.0551 (9)
H30.93500.63080.04860.066*
C40.7797 (4)0.7903 (4)0.0941 (3)0.0483 (8)
H40.84980.84650.05820.058*
C50.6229 (3)0.8369 (3)0.1529 (3)0.0379 (7)
C60.5702 (3)0.9769 (3)0.1585 (3)0.0437 (7)
H6A0.64791.00570.19330.052*
H6B0.56671.02370.07320.052*
C70.3364 (4)1.1288 (3)0.2277 (3)0.0438 (7)
C80.4092 (4)1.2346 (3)0.1885 (3)0.0523 (8)
H80.52111.22400.16340.063*
C90.3133 (5)1.3562 (4)0.1871 (4)0.0620 (10)
H90.36101.42790.16070.074*
C100.1485 (5)1.3722 (4)0.2244 (3)0.0586 (9)
H100.08521.45460.22240.070*
C110.0755 (4)1.2666 (3)0.2649 (3)0.0490 (8)
H110.03631.27760.28980.059*
C120.1699 (4)1.1457 (3)0.2678 (3)0.0424 (7)
C130.0517 (4)1.0379 (3)0.3337 (3)0.0481 (8)
H13A0.09551.07850.25740.058*
H13B0.10401.08880.40090.058*
C140.0837 (3)0.9041 (3)0.3722 (3)0.0407 (7)
C150.2393 (4)0.8881 (4)0.4305 (3)0.0555 (10)
H150.32010.95870.44950.067*
C160.2722 (4)0.7667 (5)0.4595 (3)0.0633 (11)
H160.37560.75410.49840.076*
C170.1513 (5)0.6645 (4)0.4307 (3)0.0626 (11)
H170.17240.58190.44750.075*
C180.0027 (4)0.6850 (4)0.3761 (3)0.0486 (8)
H180.08500.61470.35880.058*
Cu10.27619 (4)0.81850 (4)0.27623 (3)0.03697 (13)
N10.5180 (3)0.7571 (3)0.2049 (2)0.0391 (6)
N20.0374 (3)0.8036 (3)0.3473 (2)0.0399 (6)
N30.3327 (3)0.6879 (3)0.5135 (3)0.0522 (7)
N40.2099 (3)0.7793 (3)0.0525 (3)0.0485 (7)
O10.4174 (3)1.0028 (2)0.2342 (2)0.0579 (7)
O20.1161 (3)1.0317 (2)0.3109 (2)0.0541 (6)
O30.3212 (3)0.8020 (2)0.4491 (2)0.0479 (5)
O40.3539 (4)0.6751 (3)0.6242 (2)0.0797 (9)
O50.3246 (3)0.5986 (3)0.4623 (3)0.0697 (7)
O60.2278 (3)0.8736 (2)0.1024 (2)0.0483 (5)
O70.2304 (3)0.6710 (3)0.1141 (2)0.0646 (7)
O80.1728 (3)0.8034 (3)0.0531 (2)0.0794 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (17)0.044 (2)0.0546 (19)0.0102 (15)0.0042 (15)0.0046 (15)
C20.049 (2)0.052 (2)0.062 (2)0.0012 (16)0.0054 (17)0.0134 (17)
C30.0343 (17)0.074 (3)0.0494 (19)0.0028 (17)0.0021 (15)0.0115 (18)
C40.0292 (15)0.064 (2)0.0468 (17)0.0116 (15)0.0014 (14)0.0001 (16)
C50.0279 (14)0.0487 (19)0.0345 (14)0.0105 (13)0.0050 (12)0.0028 (13)
C60.0327 (15)0.050 (2)0.0473 (17)0.0182 (14)0.0010 (14)0.0005 (14)
C70.0417 (16)0.0371 (18)0.0511 (18)0.0123 (14)0.0040 (14)0.0024 (14)
C80.0495 (19)0.047 (2)0.060 (2)0.0182 (16)0.0063 (16)0.0008 (16)
C90.078 (3)0.040 (2)0.075 (2)0.0217 (19)0.018 (2)0.0074 (18)
C100.078 (3)0.0350 (19)0.064 (2)0.0062 (18)0.020 (2)0.0064 (16)
C110.0487 (19)0.047 (2)0.0480 (18)0.0010 (15)0.0106 (15)0.0081 (15)
C120.0436 (17)0.0357 (17)0.0473 (17)0.0096 (14)0.0070 (14)0.0036 (13)
C130.0330 (16)0.056 (2)0.0500 (18)0.0058 (14)0.0041 (14)0.0025 (16)
C140.0326 (15)0.059 (2)0.0325 (14)0.0162 (15)0.0063 (12)0.0020 (14)
C150.0326 (16)0.091 (3)0.0423 (17)0.0185 (18)0.0011 (14)0.0079 (18)
C160.0415 (19)0.107 (3)0.049 (2)0.042 (2)0.0039 (16)0.001 (2)
C170.066 (2)0.088 (3)0.0475 (19)0.054 (2)0.0157 (18)0.0114 (19)
C180.0539 (19)0.056 (2)0.0432 (17)0.0319 (17)0.0090 (15)0.0012 (15)
Cu10.02889 (19)0.0399 (2)0.0400 (2)0.01305 (15)0.00069 (14)0.00118 (15)
N10.0303 (12)0.0465 (16)0.0378 (13)0.0102 (11)0.0027 (10)0.0007 (11)
N20.0350 (13)0.0520 (16)0.0342 (12)0.0213 (12)0.0021 (11)0.0005 (11)
N30.0310 (13)0.065 (2)0.0543 (17)0.0149 (13)0.0011 (13)0.0023 (15)
N40.0308 (13)0.071 (2)0.0424 (15)0.0182 (14)0.0001 (12)0.0039 (15)
O10.0366 (12)0.0384 (13)0.0859 (17)0.0129 (10)0.0161 (12)0.0025 (12)
O20.0341 (11)0.0381 (13)0.0834 (17)0.0103 (10)0.0038 (11)0.0055 (12)
O30.0424 (12)0.0532 (15)0.0473 (12)0.0145 (11)0.0035 (10)0.0044 (11)
O40.0758 (19)0.110 (3)0.0458 (15)0.0190 (18)0.0146 (14)0.0102 (15)
O50.0650 (17)0.0577 (18)0.0864 (19)0.0236 (14)0.0116 (15)0.0006 (15)
O60.0458 (12)0.0476 (14)0.0471 (12)0.0159 (11)0.0040 (10)0.0069 (10)
O70.0703 (17)0.0573 (17)0.0655 (16)0.0189 (14)0.0083 (13)0.0044 (14)
O80.0679 (18)0.134 (3)0.0429 (14)0.0424 (19)0.0161 (13)0.0037 (15)
Geometric parameters (Å, º) top
C1—N11.344 (4)C13—C141.500 (5)
C1—C21.374 (4)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C31.380 (5)C14—N21.346 (4)
C2—H20.9300C14—C151.390 (4)
C3—C41.359 (5)C15—C161.371 (6)
C3—H30.9300C15—H150.9300
C4—C51.389 (4)C16—C171.366 (6)
C4—H40.9300C16—H160.9300
C5—N11.355 (4)C17—C181.383 (4)
C5—C61.487 (5)C17—H170.9300
C6—O11.395 (3)C18—N21.348 (4)
C6—H6A0.9700C18—H180.9300
C6—H6B0.9700Cu1—O31.968 (2)
C7—O11.376 (4)Cu1—O61.973 (2)
C7—C81.385 (4)Cu1—N12.062 (3)
C7—C121.387 (4)Cu1—N22.070 (2)
C8—C91.381 (5)Cu1—O22.451 (3)
C8—H80.9300Cu1—O12.491 (2)
C9—C101.371 (5)Cu1—O72.742 (3)
C9—H90.9300N3—O51.229 (4)
C10—C111.384 (5)N3—O41.233 (4)
C10—H100.9300N3—O31.290 (4)
C11—C121.370 (5)N4—O81.223 (4)
C11—H110.9300N4—O71.226 (4)
C12—O21.380 (4)N4—O61.298 (4)
C13—O21.403 (4)
N1—C1—C2122.8 (3)C17—C16—C15119.2 (3)
N1—C1—H1118.6C17—C16—H16120.4
C2—C1—H1118.6C15—C16—H16120.4
C1—C2—C3118.8 (3)C16—C17—C18119.5 (4)
C1—C2—H2120.6C16—C17—H17120.3
C3—C2—H2120.6C18—C17—H17120.3
C4—C3—C2119.2 (3)N2—C18—C17122.1 (4)
C4—C3—H3120.4N2—C18—H18119.0
C2—C3—H3120.4C17—C18—H18119.0
C3—C4—C5120.0 (3)O3—Cu1—O6168.05 (10)
C3—C4—H4120.0O3—Cu1—N191.68 (10)
C5—C4—H4120.0O6—Cu1—N190.92 (10)
N1—C5—C4121.1 (3)O3—Cu1—N291.37 (9)
N1—C5—C6119.8 (3)O6—Cu1—N290.77 (10)
C4—C5—C6119.1 (3)N1—Cu1—N2157.09 (11)
O1—C6—C5110.5 (2)O3—Cu1—O285.99 (10)
O1—C6—H6A109.5O6—Cu1—O283.59 (10)
C5—C6—H6A109.5N1—Cu1—O2131.82 (9)
O1—C6—H6B109.5N2—Cu1—O271.06 (9)
C5—C6—H6B109.5O3—Cu1—O183.11 (9)
H6A—C6—H6B108.1O6—Cu1—O186.74 (9)
O1—C7—C8125.0 (3)N1—Cu1—O170.71 (9)
O1—C7—C12114.9 (3)N2—Cu1—O1132.20 (9)
C8—C7—C12120.0 (3)O2—Cu1—O161.22 (8)
C9—C8—C7119.0 (3)O3—Cu1—O7140.28 (9)
C9—C8—H8120.5O6—Cu1—O751.65 (10)
C7—C8—H8120.5N1—Cu1—O783.49 (10)
C10—C9—C8120.6 (3)N2—Cu1—O779.70 (9)
C10—C9—H9119.7O2—Cu1—O7125.77 (9)
C8—C9—H9119.7O1—Cu1—O7130.79 (8)
C9—C10—C11120.5 (4)C1—N1—C5118.1 (3)
C9—C10—H10119.8C1—N1—Cu1117.6 (2)
C11—C10—H10119.8C5—N1—Cu1124.1 (2)
C12—C11—C10119.3 (3)C14—N2—C18118.0 (3)
C12—C11—H11120.4C14—N2—Cu1124.1 (2)
C10—C11—H11120.4C18—N2—Cu1117.8 (2)
C11—C12—O2126.0 (3)O5—N3—O4123.7 (3)
C11—C12—C7120.5 (3)O5—N3—O3119.2 (3)
O2—C12—C7113.4 (3)O4—N3—O3117.0 (3)
O2—C13—C14108.8 (3)O8—N4—O7123.4 (3)
O2—C13—H13A109.9O8—N4—O6118.3 (3)
C14—C13—H13A109.9O7—N4—O6118.3 (3)
O2—C13—H13B109.9C7—O1—C6117.7 (2)
C14—C13—H13B109.9C7—O1—Cu1123.01 (18)
H13A—C13—H13B108.3C6—O1—Cu1112.23 (19)
N2—C14—C15122.0 (3)C12—O2—C13117.3 (3)
N2—C14—C13119.4 (2)C12—O2—Cu1124.99 (18)
C15—C14—C13118.6 (3)C13—O2—Cu1113.57 (19)
C16—C15—C14119.1 (4)N3—O3—Cu1115.3 (2)
C16—C15—H15120.4N4—O6—Cu1112.66 (19)
C14—C15—H15120.4N4—O7—Cu177.37 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O6i0.972.583.333 (4)135
C13—H13A···O8ii0.972.483.444 (5)172
C13—H13B···O3iii0.972.453.370 (4)159
C17—H17···O5iv0.932.533.412 (5)159
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z; (iii) x, y+2, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C18H16N2O2)]
Mr479.90
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.621 (5), 10.826 (6), 10.887 (6)
α, β, γ (°)78.75 (2), 77.590 (19), 76.54 (2)
V3)953.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.31 × 0.30 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.705, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
9416, 4314, 3150
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.111, 1.04
No. of reflections4314
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.40

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O31.968 (2)Cu1—O22.451 (3)
Cu1—O61.973 (2)Cu1—O12.491 (2)
Cu1—N12.062 (3)Cu1—O72.742 (3)
Cu1—N22.070 (2)
 

Acknowledgements

The authors thank the Special Funds for the Research of Scientific and Technological Innovative Talents of Harbin Municipal Science and Technology Bureau (2009RFXXG027) and Heilongjiang University for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010). Cryst. Growth Des. 10, 1559–1568.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S., Wang, Y.-J., Ma, D.-S., Liu, Y. & Gao, J.-S. (2010). Acta Cryst. E66, m701.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds