organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2′-Cyano­bi­phenyl-4-yl)methyl]­morpholin-4-ium nitrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: nysima@126.com

(Received 24 June 2010; accepted 11 July 2010; online 17 July 2010)

The title ion pair, C18H19N2O+·NO3, features an N—H⋯O hydrogen bond linking the cation to the anion. The morpholine portion adopts a chair conformation; the aromatic rings of the biphenyl­ene portion are twisted [torsion angles for the four atoms involving the ar­yl–aryl bond = 35.1 (2)–40.4 (2)°].

Related literature

For the synthesis, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N2O+·NO3

  • Mr = 341.36

  • Monoclinic, P 21 /c

  • a = 12.670 (6) Å

  • b = 13.120 (5) Å

  • c = 10.865 (5) Å

  • β = 110.927 (8)°

  • V = 1687.0 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.981

  • 18242 measured reflections

  • 3852 independent reflections

  • 2848 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.178

  • S = 1.17

  • 3852 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.91 1.88 2.784 (2) 172

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our study of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009), organic-inorganic hybrids, we are interested in the dielectric properties (capacitance and dielectric loss measurements) of the title compound(I), unfortunately, there was no distinct anomaly observed from 93 K to 350 K. In thisarticle, the crystal structure of (I) has been presented.

The asymmetric unit of the title compound consists of one 4'-morpholinemethylbiphenyl-2-carbonitrile cation and one nitrate anion(fig1). The intermolecular N—H···O, N—H···N hydrogen bonds link the cations and anions to chains along b axis(fig2), and make great contribution to the stability of the structure.The title compound crystallizes in the monoclinic system, space groupP21/c.

Related literature top

For the synthesis, see: Li et al. (2008); Zhang et al. (2009).

Experimental top

4'-morpholinemethylbiphenyl-2-carbonitrile (10 mmol)was dissolved in 10 ml e thanol, to which nitrate acid(10 mmol) was added dropwise under stirring, the reaction solution was stirred for a few minutes.water was added untill all suspended substrates disappeared. Colorless crystals suitable for X-ray analysis were formed after several days by slow evaporation of the solvent at room temperature.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with C—H =0.93 to 0.97 Å, Uiso(H) = 1.2 Ueq(C), N—H = 0.91 Å, Uiso(H)= 1.5 Ueq(N).

Structure description top

As a continuation of our study of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009), organic-inorganic hybrids, we are interested in the dielectric properties (capacitance and dielectric loss measurements) of the title compound(I), unfortunately, there was no distinct anomaly observed from 93 K to 350 K. In thisarticle, the crystal structure of (I) has been presented.

The asymmetric unit of the title compound consists of one 4'-morpholinemethylbiphenyl-2-carbonitrile cation and one nitrate anion(fig1). The intermolecular N—H···O, N—H···N hydrogen bonds link the cations and anions to chains along b axis(fig2), and make great contribution to the stability of the structure.The title compound crystallizes in the monoclinic system, space groupP21/c.

For the synthesis, see: Li et al. (2008); Zhang et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
4-[(2'-Cyanobiphenyl-4-yl)methyl]morpholin-4-ium nitrate top
Crystal data top
C18H19N2O+·NO3F(000) = 720
Mr = 341.36Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3727 reflections
a = 12.670 (6) Åθ = 2.3–27.5°
b = 13.120 (5) ŵ = 0.10 mm1
c = 10.865 (5) ÅT = 293 K
β = 110.927 (8)°Prism, colourless
V = 1687.0 (12) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3852 independent reflections
Radiation source: fine-focus sealed tube2848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 1.7°
ω scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.981, Tmax = 0.981l = 1414
18242 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0839P)2 + 0.0408P]
where P = (Fo2 + 2Fc2)/3
3852 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H19N2O+·NO3V = 1687.0 (12) Å3
Mr = 341.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.670 (6) ŵ = 0.10 mm1
b = 13.120 (5) ÅT = 293 K
c = 10.865 (5) Å0.20 × 0.20 × 0.20 mm
β = 110.927 (8)°
Data collection top
Rigaku SCXmini
diffractometer
3852 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2848 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.981Rint = 0.052
18242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.17Δρmax = 0.24 e Å3
3852 reflectionsΔρmin = 0.24 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.45201 (13)0.21560 (12)0.92144 (15)0.0332 (4)
H2A0.48620.27160.90320.040*
O10.63116 (14)0.06839 (12)0.98832 (15)0.0521 (5)
C50.12498 (16)0.35987 (15)0.5246 (2)0.0358 (5)
C60.12785 (18)0.25575 (16)0.5517 (2)0.0417 (5)
H6A0.08400.21100.48730.050*
C70.45639 (18)0.13253 (16)0.8303 (2)0.0392 (5)
H7A0.42170.15560.73990.047*
H7B0.41400.07420.84230.047*
C90.26229 (17)0.28322 (17)0.7722 (2)0.0393 (5)
C100.51627 (19)0.18427 (17)1.06051 (19)0.0430 (5)
H10A0.47670.12911.08490.052*
H10B0.52060.24121.11900.052*
C110.19283 (18)0.42418 (16)0.6230 (2)0.0419 (5)
H11A0.19300.49370.60650.050*
C120.26004 (18)0.38675 (17)0.7450 (2)0.0441 (5)
H12A0.30410.43140.80930.053*
C130.05740 (17)0.40207 (15)0.3931 (2)0.0371 (5)
C150.5770 (2)0.10142 (19)0.8560 (2)0.0485 (6)
H15A0.57820.04670.79640.058*
H15B0.61810.15880.83890.058*
C160.05099 (18)0.36520 (16)0.3153 (2)0.0416 (5)
C170.19541 (18)0.21840 (17)0.6737 (2)0.0447 (5)
H17A0.19610.14880.69010.054*
C180.33288 (18)0.24421 (19)0.9069 (2)0.0459 (6)
H18A0.29600.18490.92650.055*
H18B0.33590.29620.97160.055*
C190.1012 (2)0.47979 (17)0.3390 (2)0.0482 (6)
H19A0.17130.50720.38830.058*
C200.1077 (2)0.40316 (19)0.1893 (2)0.0533 (6)
H20A0.17830.37740.13900.064*
C210.63421 (19)0.14995 (18)1.0763 (2)0.0494 (6)
H21A0.67580.20681.05880.059*
H21B0.67340.12781.16630.059*
C220.0438 (2)0.5178 (2)0.2140 (3)0.0586 (7)
H22A0.07550.57010.18070.070*
C230.11159 (19)0.29425 (19)0.3668 (2)0.0513 (6)
N10.1659 (2)0.2409 (2)0.4032 (3)0.0747 (7)
C250.0596 (2)0.4786 (2)0.1392 (3)0.0606 (7)
H25A0.09720.50310.05450.073*
O20.54586 (15)0.38211 (13)0.83891 (15)0.0550 (5)
N30.60177 (17)0.43391 (14)0.93873 (18)0.0465 (5)
O40.60072 (17)0.40818 (14)1.04806 (16)0.0646 (5)
O30.65691 (17)0.50803 (15)0.92616 (18)0.0771 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0332 (9)0.0350 (9)0.0292 (9)0.0012 (7)0.0086 (7)0.0015 (7)
O10.0519 (10)0.0499 (10)0.0448 (9)0.0160 (7)0.0054 (8)0.0012 (7)
C50.0265 (9)0.0401 (11)0.0396 (11)0.0025 (8)0.0102 (8)0.0027 (9)
C60.0344 (11)0.0383 (12)0.0457 (12)0.0037 (9)0.0063 (9)0.0019 (9)
C70.0430 (12)0.0375 (11)0.0322 (11)0.0007 (9)0.0075 (9)0.0028 (8)
C90.0290 (10)0.0500 (12)0.0385 (12)0.0021 (9)0.0115 (9)0.0009 (9)
C100.0486 (13)0.0479 (13)0.0275 (10)0.0041 (10)0.0073 (9)0.0029 (9)
C110.0402 (11)0.0350 (11)0.0454 (12)0.0045 (9)0.0089 (10)0.0062 (9)
C120.0394 (11)0.0441 (12)0.0418 (12)0.0035 (9)0.0059 (10)0.0089 (9)
C130.0327 (10)0.0347 (11)0.0406 (11)0.0066 (8)0.0092 (9)0.0026 (9)
C150.0489 (13)0.0535 (14)0.0397 (12)0.0093 (11)0.0116 (11)0.0016 (10)
C160.0348 (11)0.0423 (12)0.0436 (12)0.0057 (9)0.0089 (10)0.0037 (9)
C170.0367 (11)0.0400 (12)0.0508 (13)0.0032 (9)0.0077 (10)0.0064 (10)
C180.0361 (11)0.0621 (15)0.0405 (12)0.0040 (10)0.0149 (10)0.0049 (10)
C190.0422 (12)0.0469 (13)0.0503 (14)0.0010 (10)0.0102 (11)0.0017 (10)
C200.0441 (13)0.0616 (16)0.0428 (13)0.0069 (11)0.0015 (11)0.0046 (11)
C210.0446 (13)0.0540 (14)0.0388 (12)0.0050 (10)0.0018 (10)0.0002 (10)
C220.0632 (16)0.0534 (15)0.0562 (15)0.0029 (12)0.0178 (13)0.0099 (12)
C230.0306 (11)0.0584 (15)0.0557 (15)0.0016 (10)0.0043 (11)0.0023 (12)
N10.0444 (13)0.0834 (18)0.0884 (18)0.0072 (12)0.0139 (13)0.0157 (14)
C250.0644 (17)0.0659 (17)0.0423 (13)0.0150 (13)0.0075 (12)0.0088 (12)
O20.0617 (11)0.0570 (10)0.0381 (9)0.0137 (8)0.0075 (8)0.0069 (7)
N30.0480 (11)0.0412 (11)0.0392 (11)0.0038 (8)0.0022 (9)0.0047 (8)
O40.0876 (14)0.0602 (11)0.0383 (9)0.0121 (9)0.0129 (9)0.0019 (8)
O30.0796 (14)0.0641 (12)0.0676 (13)0.0319 (10)0.0018 (11)0.0168 (10)
Geometric parameters (Å, º) top
N2—C71.487 (3)C13—C191.388 (3)
N2—C101.495 (3)C13—C161.416 (3)
N2—C181.508 (3)C15—H15A0.9700
N2—H2A0.9100C15—H15B0.9700
O1—C151.422 (3)C16—C201.391 (3)
O1—C211.426 (3)C16—C231.441 (3)
C5—C111.392 (3)C17—H17A0.9300
C5—C61.395 (3)C18—H18A0.9700
C5—C131.485 (3)C18—H18B0.9700
C6—C171.386 (3)C19—C221.384 (3)
C6—H6A0.9300C19—H19A0.9300
C7—C151.508 (3)C20—C251.372 (4)
C7—H7A0.9700C20—H20A0.9300
C7—H7B0.9700C21—H21A0.9700
C9—C121.388 (3)C21—H21B0.9700
C9—C171.392 (3)C22—C251.372 (4)
C9—C181.506 (3)C22—H22A0.9300
C10—C211.511 (3)C23—N11.146 (3)
C10—H10A0.9700C25—H25A0.9300
C10—H10B0.9700O2—N31.261 (2)
C11—C121.384 (3)N3—O31.233 (2)
C11—H11A0.9300N3—O41.240 (2)
C12—H12A0.9300
C7—N2—C10109.59 (16)C7—C15—H15A109.4
C7—N2—C18112.76 (16)O1—C15—H15B109.4
C10—N2—C18109.72 (16)C7—C15—H15B109.4
C7—N2—H2A108.2H15A—C15—H15B108.0
C10—N2—H2A108.2C20—C16—C13121.0 (2)
C18—N2—H2A108.2C20—C16—C23117.0 (2)
C15—O1—C21109.68 (17)C13—C16—C23121.7 (2)
C11—C5—C6117.98 (19)C6—C17—C9121.2 (2)
C11—C5—C13119.90 (19)C6—C17—H17A119.4
C6—C5—C13122.03 (19)C9—C17—H17A119.4
C17—C6—C5120.6 (2)C9—C18—N2114.26 (17)
C17—C6—H6A119.7C9—C18—H18A108.7
C5—C6—H6A119.7N2—C18—H18A108.7
N2—C7—C15110.57 (17)C9—C18—H18B108.7
N2—C7—H7A109.5N2—C18—H18B108.7
C15—C7—H7A109.5H18A—C18—H18B107.6
N2—C7—H7B109.5C22—C19—C13122.1 (2)
C15—C7—H7B109.5C22—C19—H19A119.0
H7A—C7—H7B108.1C13—C19—H19A119.0
C12—C9—C17118.2 (2)C25—C20—C16120.1 (2)
C12—C9—C18120.0 (2)C25—C20—H20A119.9
C17—C9—C18121.8 (2)C16—C20—H20A119.9
N2—C10—C21110.85 (18)O1—C21—C10111.03 (18)
N2—C10—H10A109.5O1—C21—H21A109.4
C21—C10—H10A109.5C10—C21—H21A109.4
N2—C10—H10B109.5O1—C21—H21B109.4
C21—C10—H10B109.5C10—C21—H21B109.4
H10A—C10—H10B108.1H21A—C21—H21B108.0
C12—C11—C5121.4 (2)C25—C22—C19120.1 (3)
C12—C11—H11A119.3C25—C22—H22A120.0
C5—C11—H11A119.3C19—C22—H22A120.0
C11—C12—C9120.7 (2)N1—C23—C16175.7 (3)
C11—C12—H12A119.7C20—C25—C22120.1 (2)
C9—C12—H12A119.7C20—C25—H25A120.0
C19—C13—C16116.55 (19)C22—C25—H25A120.0
C19—C13—C5120.05 (19)O3—N3—O4121.4 (2)
C16—C13—C5123.37 (19)O3—N3—O2119.7 (2)
O1—C15—C7111.16 (18)O4—N3—O2118.84 (19)
O1—C15—H15A109.4
C11—C5—C6—C170.8 (3)C5—C13—C16—C239.9 (3)
C13—C5—C6—C17177.3 (2)C5—C6—C17—C90.2 (3)
C10—N2—C7—C1553.1 (2)C12—C9—C17—C60.3 (3)
C18—N2—C7—C15175.65 (17)C18—C9—C17—C6177.73 (19)
C7—N2—C10—C2152.7 (2)C12—C9—C18—N290.3 (3)
C18—N2—C10—C21177.06 (18)C17—C9—C18—N291.7 (3)
C6—C5—C11—C120.9 (3)C7—N2—C18—C961.1 (2)
C13—C5—C11—C12177.56 (19)C10—N2—C18—C9176.48 (18)
C5—C11—C12—C90.5 (3)C16—C13—C19—C221.7 (3)
C17—C9—C12—C110.1 (3)C5—C13—C19—C22176.6 (2)
C18—C9—C12—C11177.9 (2)C13—C16—C20—C251.0 (3)
C11—C5—C13—C1936.9 (3)C23—C16—C20—C25173.4 (2)
C6—C5—C13—C19139.6 (2)C15—O1—C21—C1060.9 (2)
C11—C5—C13—C16144.9 (2)N2—C10—C21—O157.1 (2)
C6—C5—C13—C1638.6 (3)C13—C19—C22—C250.1 (4)
C21—O1—C15—C761.6 (2)C20—C16—C23—N130 (4)
N2—C7—C15—O158.4 (2)C13—C16—C23—N1144 (4)
C19—C13—C16—C202.3 (3)C16—C20—C25—C221.0 (4)
C5—C13—C16—C20176.0 (2)C19—C22—C25—C201.5 (4)
C19—C13—C16—C23171.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.911.882.784 (2)172
N2—H2A···O40.912.483.158 (3)131
N2—H2A···N30.912.533.404 (3)160

Experimental details

Crystal data
Chemical formulaC18H19N2O+·NO3
Mr341.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.670 (6), 13.120 (5), 10.865 (5)
β (°) 110.927 (8)
V3)1687.0 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.981, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
18242, 3852, 2848
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.178, 1.17
No. of reflections3852
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected torsion angles (º) top
C11—C5—C13—C1936.9 (3)C11—C5—C13—C16144.9 (2)
C6—C5—C13—C19139.6 (2)C6—C5—C13—C1638.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.911.882.784 (2)171.5
 

Acknowledgements

The author acknowledges the starter fund of Southeast University for the purchase of the X-ray diffractometer.

References

First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds