metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(18-Crown-6)(tri­fluoro­methane­sulfonato)­sodium

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 30 June 2010; accepted 1 July 2010; online 7 July 2010)

The title compound, [Na(CF3O3S)(C12H24O6)], features a sodium cation that is coordinated by eight O atoms in an irregular hexa­gonal bipyramidal environment. The equatorial positions are occupied by the six O atoms of an 18-crown-6 ether ring. In the axial positions, there is one O atom of a trifluoro­methane­sulfonate anion and an ether O atom of a symmetry-equivalent crown ether ring. In this way, centrosymmetric dimers are formed.

Related literature

For the synthesis of hetereoleptic transition metal complexes with silyl ligands, see: Lerner (2005[Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781-798.]). For the reaction of Na2[Fe(CO)4] with tBu3SiO3SCF3, see: Lerner et al. (2002[Lerner, H.-W., Wiberg, N., Bolte, M., Nöth, H. & Knizek, J. (2002). Z. Naturforsch. Teil B, 57, 177-182.]). For the structure of similar complexes with trifluoro­methane­sulfonate, see: Bolte & Lerner (2001[Bolte, M. & Lerner, H.-W. (2001). Acta Cryst. E57, m231-m232.]); Lerner & Bolte (2003[Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, m625-m626.]); Sofina et al. (2003[Sofina, N., Peters, E. M. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 1431-1436.]); Dinnebier et al. (2004[Dinnebier, R., Sofina, N. & Jansen, M. (2004). Z. Anorg. Allg. Chem. 630, 1613-1616.]); Hilde­brandt et al. (2006[Hildebrandt, L., Dinnebier, R. & Jansen, M. (2006). Inorg. Chem. 45, 3217-3223.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(CF3O3S)(C12H24O6)]

  • Mr = 436.37

  • Monoclinic, P 21 /n

  • a = 9.4455 (9) Å

  • b = 15.1723 (12) Å

  • c = 14.0597 (14) Å

  • β = 100.828 (8)°

  • V = 1979.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.33 × 0.20 × 0.19 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.921, Tmax = 0.943

  • 11867 measured reflections

  • 3697 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 1.03

  • 3697 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We report here the X-ray crystal structure analysis of sodium trifluorosulfonate as 18-crown-6 ether complex, [Na(18-crown-6)]+[CF3SO3]-. A huge number of hetereoleptic transition metal complexes with silyl ligands are known. Most of these compounds are synthesized by addition of silanes, R3SiH, to reactive transition metal species (Lerner, 2005). In contrast, few complexes with Fe—Si bonds have been structurally characterized. We have now investigated the reaction of Collman reagent Na2[Fe(CO)4] with tBu3SiO3SCF3 (Lerner et al., 2002). When [Na(18-crown-6)]2[Fe(CO)4] was treated with two molar equivalents of tBu3SiO3SCF3, the title compound has been formed in nearly quantitative yield, as shown in the scheme below (scheme). The title compound, Na+[C12H24O6].F3CSO3-, (Fig. 1) features a sodium cation that is coordinated by eight O atoms in an irregular hexagonal bipyramidal environment. The equatorial positions are occupied by the six O atoms of an 18-crown-6 ether ring with Na···O bond distances ranging from 2.5595 (17)Å to 3.0614 (18) Å. In the axial positions there is one O atom of a trifluoromethanesulfonate anion [Na1—O1S 2.3222 (18) Å] and an ether O atom of a symmetry equivalent crown-ether ring [Na1—O10i 2.5792 (17) Å; symmetry operator (i): 1 - x, 1 - y, 1 - z]. In this way, centrosymmetric dimers are formed (Fig. 2).

For the structure of similar complexes with trifluoromethanesulfonate, see: Bolte & Lerner (2001); Lerner & Bolte (2003); Sofina et al. (2003); Dinnebier et al. (2004); Hildebrandt et al. (2006).

Related literature top

For the synthesis of hetereoleptic transition metal complexes with silyl ligands, see: Lerner (2005). For the reaction of Na2[Fe(CO)4] with tBu3SiO3SCF3, see: Lerner et al. (2002). Ffor the structure of similar complexes with trifluoromethanesulfonate, see: Bolte & Lerner (2001); Lerner & Bolte (2003); Sofina et al. (2003); Dinnebier et al. (2004); Hildebrandt et al. (2006).

Experimental top

To a solution of Na2[Fe(CO)4] (75 mg, 0.35 mmol) and 18-crown-6 (92 mg, 0.35 mmol) in 20 ml of tetrahydrofuran was added a solution of tBu3SiO3SCF3 (244 mg, 0.70 mmol) in 20 ml toluene at 195 K. The resulting orange-yellow solution was allowed to warm up to room temperature. Colourless crystals of the title compound were grown by storing this solution at room temperature for several days.

Refinement top

H atoms were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H = 0.99 Å.

Structure description top

We report here the X-ray crystal structure analysis of sodium trifluorosulfonate as 18-crown-6 ether complex, [Na(18-crown-6)]+[CF3SO3]-. A huge number of hetereoleptic transition metal complexes with silyl ligands are known. Most of these compounds are synthesized by addition of silanes, R3SiH, to reactive transition metal species (Lerner, 2005). In contrast, few complexes with Fe—Si bonds have been structurally characterized. We have now investigated the reaction of Collman reagent Na2[Fe(CO)4] with tBu3SiO3SCF3 (Lerner et al., 2002). When [Na(18-crown-6)]2[Fe(CO)4] was treated with two molar equivalents of tBu3SiO3SCF3, the title compound has been formed in nearly quantitative yield, as shown in the scheme below (scheme). The title compound, Na+[C12H24O6].F3CSO3-, (Fig. 1) features a sodium cation that is coordinated by eight O atoms in an irregular hexagonal bipyramidal environment. The equatorial positions are occupied by the six O atoms of an 18-crown-6 ether ring with Na···O bond distances ranging from 2.5595 (17)Å to 3.0614 (18) Å. In the axial positions there is one O atom of a trifluoromethanesulfonate anion [Na1—O1S 2.3222 (18) Å] and an ether O atom of a symmetry equivalent crown-ether ring [Na1—O10i 2.5792 (17) Å; symmetry operator (i): 1 - x, 1 - y, 1 - z]. In this way, centrosymmetric dimers are formed (Fig. 2).

For the structure of similar complexes with trifluoromethanesulfonate, see: Bolte & Lerner (2001); Lerner & Bolte (2003); Sofina et al. (2003); Dinnebier et al. (2004); Hildebrandt et al. (2006).

For the synthesis of hetereoleptic transition metal complexes with silyl ligands, see: Lerner (2005). For the reaction of Na2[Fe(CO)4] with tBu3SiO3SCF3, see: Lerner et al. (2002). Ffor the structure of similar complexes with trifluoromethanesulfonate, see: Bolte & Lerner (2001); Lerner & Bolte (2003); Sofina et al. (2003); Dinnebier et al. (2004); Hildebrandt et al. (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are omitted for clarity.
[Figure 2] Fig. 2. Partial packing diagram of the title compound showing the formation of a centrosymmetric dimer. Symmetry operator for generating equivalent atoms: 1 - x, 1 - y, 1 - z.
[Figure 3] Fig. 3. The preparation of the title compound.
(1,4,7,10,13,16-hexaoxacyclooctadecane)(trifluoromethanesulfonato)sodium top
Crystal data top
[Na(CF3O3S)(C12H24O6)]F(000) = 912
Mr = 436.37Dx = 1.465 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9688 reflections
a = 9.4455 (9) Åθ = 3.7–25.3°
b = 15.1723 (12) ŵ = 0.26 mm1
c = 14.0597 (14) ÅT = 173 K
β = 100.828 (8)°Block, colourless
V = 1979.0 (3) Å30.33 × 0.20 × 0.19 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
3697 independent reflections
Radiation source: fine-focus sealed tube2856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.6°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1111
Tmin = 0.921, Tmax = 0.943k = 1816
11867 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.056P)2 + 0.8425P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3697 reflectionsΔρmax = 0.55 e Å3
245 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (11)
Crystal data top
[Na(CF3O3S)(C12H24O6)]V = 1979.0 (3) Å3
Mr = 436.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4455 (9) ŵ = 0.26 mm1
b = 15.1723 (12) ÅT = 173 K
c = 14.0597 (14) Å0.33 × 0.20 × 0.19 mm
β = 100.828 (8)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3697 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
2856 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.943Rint = 0.039
11867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
3697 reflectionsΔρmin = 0.44 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17698 (6)0.56948 (4)0.77270 (4)0.02932 (18)
O1S0.30336 (19)0.58449 (15)0.73348 (12)0.0471 (5)
O2S0.0687 (2)0.63629 (17)0.75273 (14)0.0602 (6)
O3S0.1236 (3)0.48077 (17)0.76046 (16)0.0800 (8)
C10.2408 (3)0.5785 (2)0.90285 (18)0.0451 (7)
F10.3404 (2)0.51872 (14)0.93644 (11)0.0652 (6)
F20.2920 (3)0.65607 (15)0.92817 (15)0.0950 (8)
F30.1342 (2)0.5651 (2)0.95120 (13)0.0976 (9)
Na10.44188 (9)0.58543 (6)0.61340 (6)0.0272 (2)
O10.5534 (2)0.75492 (12)0.63049 (12)0.0429 (5)
C20.6072 (3)0.7698 (2)0.73050 (18)0.0479 (7)
H2A0.52650.77010.76630.057*
H2B0.65550.82790.73940.057*
C30.7129 (3)0.6982 (2)0.76966 (19)0.0453 (7)
H3A0.79140.69570.73190.054*
H3B0.75600.71040.83820.054*
O40.63713 (18)0.61655 (12)0.76219 (11)0.0385 (4)
C50.7169 (3)0.54774 (19)0.81833 (17)0.0411 (7)
H5A0.74710.56690.88650.049*
H5B0.80430.53320.79210.049*
C60.6208 (3)0.46921 (18)0.81295 (15)0.0356 (6)
H6A0.67080.42080.85300.043*
H6B0.53230.48430.83760.043*
O70.58458 (17)0.44233 (11)0.71374 (10)0.0304 (4)
C80.4890 (3)0.36874 (16)0.69957 (16)0.0297 (5)
H8A0.39150.38670.70820.036*
H8B0.52420.32170.74690.036*
C90.4847 (3)0.33610 (15)0.59799 (16)0.0281 (5)
H9A0.58410.32400.58860.034*
H9B0.42990.28020.58850.034*
O100.41817 (16)0.39975 (10)0.52663 (10)0.0247 (3)
C110.2659 (2)0.38518 (16)0.50056 (17)0.0299 (5)
H11A0.22410.37960.55980.036*
H11B0.24710.32970.46320.036*
C120.1974 (2)0.46051 (17)0.44098 (15)0.0300 (5)
H12A0.24970.47240.38760.036*
H12B0.09620.44580.41240.036*
O130.20166 (16)0.53687 (11)0.50144 (10)0.0271 (4)
C140.1175 (3)0.60634 (18)0.45126 (16)0.0348 (6)
H14A0.01590.58720.43230.042*
H14B0.15390.62130.39170.042*
C150.1263 (3)0.68530 (18)0.51541 (18)0.0378 (6)
H15A0.06330.73280.48300.045*
H15B0.09460.67000.57660.045*
O160.27303 (18)0.71387 (11)0.53489 (11)0.0346 (4)
C170.2986 (3)0.79133 (18)0.5926 (2)0.0442 (7)
H17A0.28830.77860.66000.053*
H17B0.22890.83800.56630.053*
C180.4496 (3)0.82041 (17)0.5897 (2)0.0461 (7)
H18A0.45850.83180.52180.055*
H18B0.47010.87610.62630.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0269 (3)0.0373 (4)0.0243 (3)0.0015 (3)0.0061 (2)0.0048 (2)
O1S0.0304 (10)0.0817 (16)0.0323 (9)0.0052 (10)0.0138 (7)0.0117 (9)
O2S0.0421 (12)0.0902 (18)0.0470 (11)0.0338 (12)0.0053 (9)0.0125 (11)
O3S0.116 (2)0.0615 (16)0.0580 (14)0.0449 (16)0.0047 (13)0.0051 (11)
C10.0474 (16)0.0597 (19)0.0290 (12)0.0230 (15)0.0091 (11)0.0047 (12)
F10.0718 (12)0.0926 (15)0.0305 (8)0.0447 (11)0.0077 (7)0.0110 (8)
F20.132 (2)0.0681 (15)0.0672 (13)0.0070 (14)0.0257 (13)0.0318 (11)
F30.0815 (15)0.179 (3)0.0427 (10)0.0480 (16)0.0394 (10)0.0185 (12)
Na10.0237 (5)0.0344 (5)0.0246 (4)0.0006 (4)0.0070 (3)0.0012 (4)
O10.0552 (12)0.0341 (10)0.0403 (10)0.0033 (9)0.0115 (8)0.0154 (8)
C20.066 (2)0.0401 (16)0.0391 (14)0.0176 (15)0.0135 (13)0.0194 (12)
C30.0407 (16)0.0529 (18)0.0414 (14)0.0238 (14)0.0050 (11)0.0228 (13)
O40.0343 (10)0.0438 (11)0.0334 (9)0.0105 (8)0.0041 (7)0.0058 (8)
C50.0356 (14)0.0611 (19)0.0228 (11)0.0009 (13)0.0047 (10)0.0059 (11)
C60.0392 (14)0.0506 (16)0.0162 (10)0.0062 (12)0.0031 (9)0.0020 (10)
O70.0337 (9)0.0384 (10)0.0194 (7)0.0051 (7)0.0055 (6)0.0012 (6)
C80.0322 (13)0.0283 (13)0.0310 (12)0.0021 (10)0.0121 (9)0.0083 (9)
C90.0294 (12)0.0218 (12)0.0345 (12)0.0034 (10)0.0101 (9)0.0014 (9)
O100.0210 (8)0.0252 (8)0.0288 (8)0.0018 (6)0.0067 (6)0.0010 (6)
C110.0222 (12)0.0322 (13)0.0353 (12)0.0101 (10)0.0052 (9)0.0049 (10)
C120.0232 (12)0.0432 (15)0.0222 (10)0.0071 (11)0.0005 (8)0.0050 (9)
O130.0233 (8)0.0359 (9)0.0206 (7)0.0048 (7)0.0002 (6)0.0046 (6)
C140.0225 (12)0.0502 (16)0.0304 (12)0.0101 (11)0.0020 (9)0.0152 (11)
C150.0275 (13)0.0443 (16)0.0441 (14)0.0162 (12)0.0130 (10)0.0163 (12)
O160.0358 (10)0.0300 (10)0.0425 (9)0.0062 (8)0.0185 (7)0.0015 (7)
C170.0585 (19)0.0302 (15)0.0487 (15)0.0136 (13)0.0225 (13)0.0000 (11)
C180.067 (2)0.0215 (13)0.0533 (16)0.0007 (13)0.0213 (14)0.0059 (11)
Geometric parameters (Å, º) top
S1—O1S1.4241 (18)O7—C81.426 (3)
S1—O2S1.430 (2)C8—C91.505 (3)
S1—O3S1.436 (2)C8—H8A0.9900
S1—C11.821 (3)C8—H8B0.9900
O1S—Na12.3222 (18)C9—O101.448 (3)
C1—F21.296 (4)C9—H9A0.9900
C1—F11.328 (3)C9—H9B0.9900
C1—F31.333 (4)O10—C111.433 (3)
Na1—O42.5595 (17)O10—Na1i2.5792 (17)
Na1—O10i2.5792 (17)C11—C121.491 (3)
Na1—O132.6129 (17)C11—H11A0.9900
Na1—O162.6265 (19)C11—H11B0.9900
Na1—O12.772 (2)C12—O131.433 (3)
Na1—O72.7939 (19)C12—H12A0.9900
O1—C21.421 (3)C12—H12B0.9900
O1—C181.437 (3)O13—C141.425 (3)
C2—C31.508 (4)C14—C151.493 (4)
C2—H2A0.9900C14—H14A0.9900
C2—H2B0.9900C14—H14B0.9900
C3—O41.425 (3)C15—O161.429 (3)
C3—H3A0.9900C15—H15A0.9900
C3—H3B0.9900C15—H15B0.9900
O4—C51.434 (3)O16—C171.423 (3)
C5—C61.491 (4)C17—C181.501 (4)
C5—H5A0.9900C17—H17A0.9900
C5—H5B0.9900C17—H17B0.9900
C6—O71.432 (3)C18—H18A0.9900
C6—H6A0.9900C18—H18B0.9900
C6—H6B0.9900
O1S—S1—O2S115.53 (13)C5—C6—H6B110.1
O1S—S1—O3S113.85 (16)H6A—C6—H6B108.4
O2S—S1—O3S114.78 (17)C8—O7—C6112.85 (17)
O1S—S1—C1103.51 (12)C8—O7—Na1107.78 (12)
O2S—S1—C1103.52 (12)C6—O7—Na1105.96 (14)
O3S—S1—C1103.50 (14)O7—C8—C9107.10 (17)
S1—O1S—Na1155.54 (12)O7—C8—H8A110.3
F2—C1—F1108.7 (3)C9—C8—H8A110.3
F2—C1—F3106.1 (3)O7—C8—H8B110.3
F1—C1—F3105.5 (2)C9—C8—H8B110.3
F2—C1—S1112.3 (2)H8A—C8—H8B108.5
F1—C1—S1112.63 (18)O10—C9—C8111.66 (18)
F3—C1—S1111.2 (2)O10—C9—H9A109.3
O1S—Na1—O479.91 (6)C8—C9—H9A109.3
O1S—Na1—O10i174.33 (7)O10—C9—H9B109.3
O4—Na1—O10i102.35 (6)C8—C9—H9B109.3
O1S—Na1—O1383.81 (6)H9A—C9—H9B108.0
O4—Na1—O13162.80 (6)C11—O10—C9110.99 (17)
O10i—Na1—O1394.38 (5)C11—O10—Na1i116.86 (12)
O1S—Na1—O1685.96 (7)C9—O10—Na1i111.66 (12)
O4—Na1—O16119.60 (7)O10—C11—C12109.53 (18)
O10i—Na1—O1688.42 (5)O10—C11—H11A109.8
O13—Na1—O1664.28 (6)C12—C11—H11A109.8
O1S—Na1—O1101.51 (7)O10—C11—H11B109.8
O4—Na1—O163.53 (6)C12—C11—H11B109.8
O10i—Na1—O175.19 (5)H11A—C11—H11B108.2
O13—Na1—O1125.92 (6)O13—C12—C11109.00 (17)
O16—Na1—O162.54 (6)O13—C12—H12A109.9
O1S—Na1—O784.97 (6)C11—C12—H12A109.9
O4—Na1—O761.67 (6)O13—C12—H12B109.9
O10i—Na1—O7100.68 (5)C11—C12—H12B109.9
O13—Na1—O7111.53 (6)H12A—C12—H12B108.3
O16—Na1—O7170.41 (6)C14—O13—C12110.70 (17)
O1—Na1—O7122.53 (6)C14—O13—Na1115.48 (14)
C2—O1—C18112.0 (2)C12—O13—Na1120.65 (13)
C2—O1—Na1107.03 (15)O13—C14—C15109.39 (18)
C18—O1—Na1112.78 (15)O13—C14—H14A109.8
O1—C2—C3109.6 (2)C15—C14—H14A109.8
O1—C2—H2A109.7O13—C14—H14B109.8
C3—C2—H2A109.7C15—C14—H14B109.8
O1—C2—H2B109.7H14A—C14—H14B108.2
C3—C2—H2B109.7O16—C15—C14107.54 (19)
H2A—C2—H2B108.2O16—C15—H15A110.2
O4—C3—C2108.1 (2)C14—C15—H15A110.2
O4—C3—H3A110.1O16—C15—H15B110.2
C2—C3—H3A110.1C14—C15—H15B110.2
O4—C3—H3B110.1H15A—C15—H15B108.5
C2—C3—H3B110.1C17—O16—C15114.5 (2)
H3A—C3—H3B108.4C17—O16—Na1110.39 (15)
C3—O4—C5112.80 (19)C15—O16—Na1110.24 (14)
C3—O4—Na1119.71 (15)O16—C17—C18106.7 (2)
C5—O4—Na1122.61 (14)O16—C17—H17A110.4
O4—C5—C6107.58 (19)C18—C17—H17A110.4
O4—C5—H5A110.2O16—C17—H17B110.4
C6—C5—H5A110.2C18—C17—H17B110.4
O4—C5—H5B110.2H17A—C17—H17B108.6
C6—C5—H5B110.2O1—C18—C17111.5 (2)
H5A—C5—H5B108.5O1—C18—H18A109.3
O7—C6—C5108.00 (18)C17—C18—H18A109.3
O7—C6—H6A110.1O1—C18—H18B109.3
C5—C6—H6A110.1C17—C18—H18B109.3
O7—C6—H6B110.1H18A—C18—H18B108.0
O2S—S1—O1S—Na180.8 (4)O1S—Na1—O7—C871.26 (13)
O3S—S1—O1S—Na155.2 (4)O4—Na1—O7—C8152.50 (14)
C1—S1—O1S—Na1166.8 (3)O10i—Na1—O7—C8109.13 (12)
O1S—S1—C1—F261.9 (2)O13—Na1—O7—C810.05 (13)
O2S—S1—C1—F259.0 (3)O1—Na1—O7—C8171.72 (12)
O3S—S1—C1—F2179.1 (2)O1S—Na1—O7—C649.80 (14)
O1S—S1—C1—F161.2 (3)O4—Na1—O7—C631.44 (13)
O2S—S1—C1—F1177.9 (2)O10i—Na1—O7—C6129.81 (14)
O3S—S1—C1—F157.8 (3)O13—Na1—O7—C6131.11 (14)
O1S—S1—C1—F3179.4 (2)O1—Na1—O7—C650.66 (15)
O2S—S1—C1—F359.7 (3)C6—O7—C8—C9168.50 (19)
O3S—S1—C1—F360.4 (3)Na1—O7—C8—C974.85 (18)
S1—O1S—Na1—O4169.0 (3)O7—C8—C9—O1066.6 (2)
S1—O1S—Na1—O135.4 (3)C8—C9—O10—C1190.6 (2)
S1—O1S—Na1—O1670.0 (3)C8—C9—O10—Na1i137.13 (15)
S1—O1S—Na1—O1130.9 (3)C9—O10—C11—C12170.05 (18)
S1—O1S—Na1—O7106.9 (3)Na1i—O10—C11—C1260.3 (2)
O1S—Na1—O1—C247.64 (17)O10—C11—C12—O1370.3 (2)
O4—Na1—O1—C224.84 (16)C11—C12—O13—C14170.82 (18)
O10i—Na1—O1—C2137.10 (17)C11—C12—O13—Na149.8 (2)
O13—Na1—O1—C2138.30 (16)O1S—Na1—O13—C1494.66 (15)
O16—Na1—O1—C2126.87 (17)O4—Na1—O13—C14113.5 (2)
O7—Na1—O1—C243.73 (18)O10i—Na1—O13—C1479.95 (14)
O1S—Na1—O1—C1876.03 (16)O16—Na1—O13—C146.18 (13)
O4—Na1—O1—C18148.50 (17)O1—Na1—O13—C145.08 (16)
O10i—Na1—O1—C1899.24 (16)O7—Na1—O13—C14176.75 (13)
O13—Na1—O1—C1814.64 (18)O1S—Na1—O13—C12127.82 (15)
O16—Na1—O1—C183.21 (15)O4—Na1—O13—C12108.9 (2)
O7—Na1—O1—C18167.39 (15)O10i—Na1—O13—C1257.58 (15)
C18—O1—C2—C3178.8 (2)O16—Na1—O13—C12143.70 (16)
Na1—O1—C2—C354.7 (2)O1—Na1—O13—C12132.44 (14)
O1—C2—C3—O463.7 (3)O7—Na1—O13—C1245.72 (16)
C2—C3—O4—C5165.5 (2)C12—O13—C14—C15178.97 (19)
C2—C3—O4—Na138.6 (3)Na1—O13—C14—C1537.4 (2)
O1S—Na1—O4—C3116.58 (19)O13—C14—C15—O1663.5 (2)
O10i—Na1—O4—C358.12 (18)C14—C15—O16—C17177.68 (19)
O13—Na1—O4—C3135.6 (2)C14—C15—O16—Na157.14 (19)
O16—Na1—O4—C337.1 (2)O1S—Na1—O16—C1769.56 (16)
O1—Na1—O4—C38.22 (17)O4—Na1—O16—C176.43 (17)
O7—Na1—O4—C3153.72 (19)O10i—Na1—O16—C17109.75 (15)
O1S—Na1—O4—C589.95 (18)O13—Na1—O16—C17154.63 (16)
O10i—Na1—O4—C595.35 (18)O1S—Na1—O16—C1557.94 (15)
O13—Na1—O4—C570.9 (3)O4—Na1—O16—C15133.92 (14)
O16—Na1—O4—C5169.38 (16)O10i—Na1—O16—C15122.76 (14)
O1—Na1—O4—C5161.69 (19)O13—Na1—O16—C1527.13 (14)
O7—Na1—O4—C50.25 (16)O1—Na1—O16—C15163.13 (15)
C3—O4—C5—C6174.10 (19)C15—O16—C17—C18169.6 (2)
Na1—O4—C5—C630.8 (3)Na1—O16—C17—C1865.3 (2)
O4—C5—C6—O761.9 (3)C2—O1—C18—C1793.2 (3)
C5—C6—O7—C8178.3 (2)Na1—O1—C18—C1727.7 (2)
C5—C6—O7—Na160.6 (2)O16—C17—C18—O162.0 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Na(CF3O3S)(C12H24O6)]
Mr436.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.4455 (9), 15.1723 (12), 14.0597 (14)
β (°) 100.828 (8)
V3)1979.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.33 × 0.20 × 0.19
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.921, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
11867, 3697, 2856
Rint0.039
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.03
No. of reflections3697
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.44

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBolte, M. & Lerner, H.-W. (2001). Acta Cryst. E57, m231–m232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDinnebier, R., Sofina, N. & Jansen, M. (2004). Z. Anorg. Allg. Chem. 630, 1613–1616.  Web of Science CSD CrossRef CAS Google Scholar
First citationHildebrandt, L., Dinnebier, R. & Jansen, M. (2006). Inorg. Chem. 45, 3217–3223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798.  Web of Science CrossRef CAS Google Scholar
First citationLerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, m625–m626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLerner, H.-W., Wiberg, N., Bolte, M., Nöth, H. & Knizek, J. (2002). Z. Naturforsch. Teil B, 57, 177–182.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSofina, N., Peters, E. M. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 1431–1436.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds