organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis[(2-cyano­eth­yl)sulfan­yl]-1,4,5,8-tetra­thia­fulvalene-6,7-dicarbo­nitrile

aKey Laboratory of Organism Functional Factors of the Changbai Moutain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 7 July 2010; accepted 16 July 2010; online 21 July 2010)

In the title compound, C14H8N4S6, the two five-membered rings lie in the same plane with an r.m.s. deviation of 0.0334 (5) Å. The crystal structure features inter­molecular S⋯N inter­actions of 3.295 (4) Å.

Related literature

For background to the electrical properties of tetra­thia­fulvalene derivatives, see: Fabre (2000[Fabre, J. M. (2000). J. Phys. IV, 10, 3-19.]); Batail (2004[Batail, P. (2004). Chem. Rev. 104, 4887-5782.]). For the synthesis, see Chen et al. (2005[Chen, T., Wang, C. L., Qiu, H., Jin, L. Y. & Yin, B. Z. (2005). Heterocycles, 65, 187-193.]). For a related structure, see: Hou et al. (2010[Hou, R.-B., Li, B., Chen, T., Yin, B.-Z. & Wu, L.-X. (2010). Acta Cryst. E66, o1379.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8N4S6

  • Mr = 424.66

  • Triclinic, [P \overline 1]

  • a = 7.3055 (15) Å

  • b = 8.5193 (17) Å

  • c = 15.386 (3) Å

  • α = 82.52 (3)°

  • β = 76.97 (3)°

  • γ = 72.43 (3)°

  • V = 887.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 290 K

  • 0.13 × 0.12 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.906, Tmax = 0.920

  • 8751 measured reflections

  • 4020 independent reflections

  • 3415 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.09

  • 4020 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The derivants of tetrathiafulvalene (TTF), especially functionalized with hydroxyl or amine groups, have been studies extensively for their interesting electrical properties (Fabre, 2000; Batail, 2004). Herein, we report the crystal structure of the title compound.

The title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2010). In the crystal, the two five-membered rings lie in the same plane with an r.m.s. deviation of 0.0334 (5) Å. The intermolecular S···N interactions with the distance of 3.295 (4) Å link the molecules into one-dimensional chain along a+c dirction.

Related literature top

For background to the electrical properties of tetrathiafulvalene derivatives, see: Fabre (2000); Batail (2004). For the synthesis, see Chen et al. (2005). For a related structure, see: Hou et al. (2010).

Experimental top

The title compound was synthesized as described in the literature for the analogous compound 2,3-Bis(butylthio)-6,7-dicarbonitrile-1,4,5,8- tetrathiafulvalene (Chen et al., 2005). Single crystals and single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.97 Å and were included in the refinement in the riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

The derivants of tetrathiafulvalene (TTF), especially functionalized with hydroxyl or amine groups, have been studies extensively for their interesting electrical properties (Fabre, 2000; Batail, 2004). Herein, we report the crystal structure of the title compound.

The title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2010). In the crystal, the two five-membered rings lie in the same plane with an r.m.s. deviation of 0.0334 (5) Å. The intermolecular S···N interactions with the distance of 3.295 (4) Å link the molecules into one-dimensional chain along a+c dirction.

For background to the electrical properties of tetrathiafulvalene derivatives, see: Fabre (2000); Batail (2004). For the synthesis, see Chen et al. (2005). For a related structure, see: Hou et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
2-{4,5-bis[(cyanomethyl)sulfanyl]-1,3-dithiolan-2-ylidene}-1,3-dithiolane- 4,5-dicarbonitrile top
Crystal data top
C14H8N4S6Z = 2
Mr = 424.66F(000) = 432
Triclinic, P1Dx = 1.589 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3055 (15) ÅCell parameters from 7465 reflections
b = 8.5193 (17) Åθ = 3.0–27.5°
c = 15.386 (3) ŵ = 0.77 mm1
α = 82.52 (3)°T = 290 K
β = 76.97 (3)°Block, black
γ = 72.43 (3)°0.13 × 0.12 × 0.11 mm
V = 887.4 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4020 independent reflections
Radiation source: fine-focus sealed tube3415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.906, Tmax = 0.920k = 119
8751 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.0566P]
where P = (Fo2 + 2Fc2)/3
4020 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H8N4S6γ = 72.43 (3)°
Mr = 424.66V = 887.4 (3) Å3
Triclinic, P1Z = 2
a = 7.3055 (15) ÅMo Kα radiation
b = 8.5193 (17) ŵ = 0.77 mm1
c = 15.386 (3) ÅT = 290 K
α = 82.52 (3)°0.13 × 0.12 × 0.11 mm
β = 76.97 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4020 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3415 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.920Rint = 0.021
8751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.09Δρmax = 0.35 e Å3
4020 reflectionsΔρmin = 0.20 e Å3
217 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3844 (2)0.29787 (18)0.14033 (10)0.0352 (3)
C20.2172 (2)0.25475 (16)0.09903 (9)0.0298 (3)
C30.0448 (2)0.14665 (16)0.13307 (9)0.0292 (3)
C40.0139 (2)0.06331 (18)0.21181 (10)0.0343 (3)
C50.01227 (19)0.24707 (15)0.00609 (9)0.0275 (3)
C60.09080 (19)0.27024 (15)0.07290 (9)0.0276 (3)
C70.3151 (2)0.25405 (16)0.18511 (9)0.0292 (3)
C80.14603 (19)0.36850 (16)0.21550 (8)0.0277 (3)
C90.4763 (2)0.01342 (18)0.30608 (10)0.0420 (4)
H9A0.44240.05670.27110.050*
H9B0.59600.04980.32580.050*
C100.3135 (2)0.05787 (19)0.38801 (10)0.0428 (4)
H10A0.19270.12050.36900.051*
H10B0.29280.04240.42100.051*
C110.3623 (2)0.1552 (2)0.44647 (10)0.0433 (4)
C120.1478 (2)0.56270 (19)0.33796 (10)0.0423 (4)
H12A0.17820.65170.37700.051*
H12B0.20040.60900.28470.051*
C130.2516 (3)0.4360 (2)0.38520 (11)0.0539 (4)
H13A0.39150.48870.39850.065*
H13B0.22810.34950.34540.065*
C140.1865 (3)0.3618 (2)0.46835 (13)0.0552 (4)
N10.5150 (2)0.33249 (19)0.17432 (10)0.0528 (4)
N20.0141 (2)0.00538 (19)0.27451 (10)0.0527 (4)
N30.4075 (2)0.22886 (19)0.49019 (10)0.0591 (4)
N40.1328 (3)0.3044 (2)0.53217 (12)0.0805 (6)
S10.23311 (5)0.34738 (4)0.00256 (2)0.03481 (10)
S20.14881 (5)0.11197 (4)0.07788 (2)0.03252 (10)
S30.04110 (5)0.40991 (4)0.15451 (2)0.03209 (10)
S40.33230 (5)0.16723 (4)0.08462 (2)0.03296 (10)
S50.11523 (6)0.48537 (4)0.30581 (2)0.03523 (10)
S60.52255 (5)0.19092 (5)0.23438 (2)0.03667 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (7)0.0404 (7)0.0378 (8)0.0074 (6)0.0108 (6)0.0051 (6)
C20.0279 (7)0.0340 (7)0.0304 (7)0.0099 (5)0.0106 (5)0.0011 (5)
C30.0290 (7)0.0339 (7)0.0276 (7)0.0101 (5)0.0094 (5)0.0024 (5)
C40.0298 (7)0.0405 (7)0.0339 (8)0.0080 (6)0.0107 (6)0.0040 (6)
C50.0256 (6)0.0296 (6)0.0279 (6)0.0058 (5)0.0082 (5)0.0033 (5)
C60.0266 (7)0.0298 (6)0.0265 (6)0.0061 (5)0.0071 (5)0.0036 (5)
C70.0284 (7)0.0358 (7)0.0247 (6)0.0073 (5)0.0090 (5)0.0039 (5)
C80.0299 (7)0.0316 (7)0.0232 (6)0.0087 (5)0.0079 (5)0.0026 (5)
C90.0485 (9)0.0365 (8)0.0406 (8)0.0009 (6)0.0209 (7)0.0058 (6)
C100.0468 (9)0.0429 (8)0.0410 (8)0.0129 (7)0.0177 (7)0.0061 (7)
C110.0442 (9)0.0469 (9)0.0318 (8)0.0025 (7)0.0095 (7)0.0002 (7)
C120.0417 (9)0.0431 (8)0.0338 (8)0.0021 (6)0.0044 (6)0.0126 (6)
C130.0451 (10)0.0769 (12)0.0416 (9)0.0216 (9)0.0003 (8)0.0158 (8)
C140.0595 (12)0.0595 (11)0.0473 (10)0.0259 (9)0.0031 (9)0.0079 (9)
N10.0366 (8)0.0634 (9)0.0596 (9)0.0057 (6)0.0221 (7)0.0064 (7)
N20.0516 (9)0.0652 (9)0.0444 (8)0.0106 (7)0.0157 (7)0.0181 (7)
N30.0653 (11)0.0632 (9)0.0453 (8)0.0030 (8)0.0172 (8)0.0165 (7)
N40.1064 (17)0.0812 (13)0.0587 (11)0.0397 (12)0.0161 (11)0.0099 (10)
S10.02631 (18)0.0407 (2)0.0367 (2)0.00195 (14)0.01004 (15)0.01111 (15)
S20.02509 (18)0.03996 (19)0.03258 (19)0.00337 (14)0.00934 (14)0.01026 (15)
S30.02685 (18)0.03621 (19)0.03086 (18)0.00055 (13)0.00891 (14)0.00827 (14)
S40.02534 (18)0.0421 (2)0.02945 (18)0.00093 (14)0.00827 (14)0.01089 (14)
S50.0400 (2)0.03828 (19)0.02918 (18)0.01030 (15)0.00711 (15)0.00961 (14)
S60.02798 (19)0.0510 (2)0.03197 (19)0.00714 (15)0.01181 (15)0.00518 (16)
Geometric parameters (Å, º) top
C1—N11.1341 (19)C9—C101.524 (2)
C1—C21.4316 (19)C9—S61.8232 (17)
C2—C31.355 (2)C9—H9A0.9700
C2—S11.7352 (15)C9—H9B0.9700
C3—C41.424 (2)C10—C111.464 (2)
C3—S21.7417 (14)C10—H10A0.9700
C4—N21.1404 (19)C10—H10B0.9700
C5—C61.3462 (19)C11—N31.136 (2)
C5—S21.7611 (15)C12—C131.520 (2)
C5—S11.7648 (14)C12—S51.8066 (17)
C6—S31.7527 (15)C12—H12A0.9700
C6—S41.7558 (14)C12—H12B0.9700
C7—C81.351 (2)C13—C141.465 (3)
C7—S61.7553 (14)C13—H13A0.9700
C7—S41.7628 (14)C13—H13B0.9700
C8—S51.7483 (14)C14—N41.136 (2)
C8—S31.7536 (14)
N1—C1—C2178.90 (18)C11—C10—C9111.21 (14)
C3—C2—C1122.75 (13)C11—C10—H10A109.4
C3—C2—S1118.32 (11)C9—C10—H10A109.4
C1—C2—S1118.92 (11)C11—C10—H10B109.4
C2—C3—C4123.46 (13)C9—C10—H10B109.4
C2—C3—S2117.65 (11)H10A—C10—H10B108.0
C4—C3—S2118.88 (10)N3—C11—C10177.38 (19)
N2—C4—C3178.71 (16)C13—C12—S5115.32 (11)
C6—C5—S2121.71 (11)C13—C12—H12A108.4
C6—C5—S1122.52 (11)S5—C12—H12A108.4
S2—C5—S1115.77 (8)C13—C12—H12B108.4
C5—C6—S3122.05 (11)S5—C12—H12B108.4
C5—C6—S4123.27 (11)H12A—C12—H12B107.5
S3—C6—S4114.67 (8)C14—C13—C12112.75 (15)
C8—C7—S6125.66 (11)C14—C13—H13A109.0
C8—C7—S4117.08 (10)C12—C13—H13A109.0
S6—C7—S4117.20 (8)C14—C13—H13B109.0
C7—C8—S5123.02 (11)C12—C13—H13B109.0
C7—C8—S3117.09 (10)H13A—C13—H13B107.8
S5—C8—S3119.69 (8)N4—C14—C13178.8 (2)
C10—C9—S6114.19 (10)C2—S1—C594.05 (7)
C10—C9—H9A108.7C3—S2—C594.21 (7)
S6—C9—H9A108.7C6—S3—C895.71 (7)
C10—C9—H9B108.7C6—S4—C795.29 (7)
S6—C9—H9B108.7C8—S5—C12102.98 (7)
H9A—C9—H9B107.6C7—S6—C9100.68 (7)
N1—C1—C2—C350 (9)C1—C2—S1—C5178.05 (12)
N1—C1—C2—S1129 (9)C6—C5—S1—C2179.46 (12)
C1—C2—C3—C41.2 (2)S2—C5—S1—C20.12 (8)
S1—C2—C3—C4179.88 (11)C2—C3—S2—C50.78 (12)
C1—C2—C3—S2177.64 (11)C4—C3—S2—C5179.67 (11)
S1—C2—C3—S21.04 (16)C6—C5—S2—C3179.05 (12)
C2—C3—C4—N2168 (8)S1—C5—S2—C30.29 (9)
S2—C3—C4—N214 (8)C5—C6—S3—C8178.64 (12)
S2—C5—C6—S3177.67 (7)S4—C6—S3—C82.39 (9)
S1—C5—C6—S33.04 (18)C7—C8—S3—C60.40 (12)
S2—C5—C6—S41.21 (18)S5—C8—S3—C6174.61 (8)
S1—C5—C6—S4178.08 (7)C5—C6—S4—C7177.40 (12)
S6—C7—C8—S55.36 (19)S3—C6—S4—C73.65 (9)
S4—C7—C8—S5171.73 (7)C8—C7—S4—C64.05 (12)
S6—C7—C8—S3179.81 (8)S6—C7—S4—C6178.61 (8)
S4—C7—C8—S33.10 (16)C7—C8—S5—C12162.25 (12)
S6—C9—C10—C1162.05 (14)S3—C8—S5—C1223.05 (10)
C9—C10—C11—N317 (4)C13—C12—S5—C873.13 (13)
S5—C12—C13—C1459.88 (18)C8—C7—S6—C993.08 (14)
C12—C13—C14—N435 (11)S4—C7—S6—C989.84 (9)
C3—C2—S1—C50.68 (12)C10—C9—S6—C772.76 (12)

Experimental details

Crystal data
Chemical formulaC14H8N4S6
Mr424.66
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)7.3055 (15), 8.5193 (17), 15.386 (3)
α, β, γ (°)82.52 (3), 76.97 (3), 72.43 (3)
V3)887.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.13 × 0.12 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.906, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
8751, 4020, 3415
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.09
No. of reflections4020
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.20

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

References

First citationBatail, P. (2004). Chem. Rev. 104, 4887–5782.  Web of Science CrossRef CAS Google Scholar
First citationChen, T., Wang, C. L., Qiu, H., Jin, L. Y. & Yin, B. Z. (2005). Heterocycles, 65, 187–193.  CAS Google Scholar
First citationFabre, J. M. (2000). J. Phys. IV, 10, 3–19.  Web of Science CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R.-B., Li, B., Chen, T., Yin, B.-Z. & Wu, L.-X. (2010). Acta Cryst. E66, o1379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds