organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(4-chloro­phen­yl)-3,3a,4,4a,5,12c-hexa­hydro-2-thia­naphtho­[1′,2′:3,2]furo[5,4-b]pyrrolizine-4a-carboxyl­ate

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 190, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 16 July 2010; accepted 19 July 2010; online 24 July 2010)

In the title compound, C25H22ClNO3S, both the pyrrolidinyl and thia­zolyl rings adopt envelope conformations whereas the dihydro­pyran ring adopts a half-chair conformation. The chloro­phenyl and naphthalenyl ring systems are oriented at a dihedral angle of 59.7 (1)°. The crystal packing is stabilized by an intra­molecular C—H⋯N hydrogen bond and weak inter­molecular C—H⋯π inter­actions.

Related literature

For related structures, see: Nirmala et al. (2009[Nirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1938.]); Selvanayagam et al. (2010[Selvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2010). Acta Cryst. E66, o1345.]). For the superposition of related structures, see: Gans & Shalloway (2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]). For ring-puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22ClNO3S

  • Mr = 451.95

  • Orthorhombic, P 21 21 21

  • a = 8.0740 (6) Å

  • b = 12.1109 (8) Å

  • c = 22.1813 (15) Å

  • V = 2169.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 292 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 25236 measured reflections

  • 5157 independent reflections

  • 4559 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.04

  • 5157 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2186 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the chloro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯N1 0.97 2.57 2.903 (3) 100
C25—H25ACgi 0.96 2.79 3.431 (3) 125
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

In continuation of our work on the crystal structure analysis of pyrrolizine derivatives, we have undertaken a single-crystal X-ray diffraction study for the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. A l l the bond lengths are normal and comparable to the standard values. Fig. 2 shows a superposition of the pyrrolidine ring of (I) with the related reported structures of Nirmala et al. (2009) and Selvanayagam et al. (2010), using Qmol (Gans & Shalloway, 2001); the r.m.s. deviation is 0.350 and 0.864 Å, respectively. The sum of the angles (331.9°) around atom N1 is in accordance with sp3 hybridization.

The chlorine atom deviates 0.118 (1) Å from the best plane of chlorophenyl ring. The naphthalene ring system (C2–C11) and the chlorophenyl ring are oriented with a dihedral angle of 59.7 (1)°. In the thiapyrrolizine ring system, both the pyrrolidine and thiazole rings N1/C1/C13–C15 and N1/C15/C16/S1/C17 adopt envelope conformations; the puckering parameters (Cremer & Pople, 1975) are: q2 = 0.447 (2) Å and φ = -118.7 (2)° for N1/C1/C13–C15 ring, and q2 = 0.508 (2) Å and φ = -59.9 (2)° for N1/C15/C16/S1/C17 ring. In the N1/C1/C13–C15 ring, atom C13 deviates by -0.675 (2) Å from the least-squares plane through the remaining four atoms, whereas in the ring N1/C15/C16/S1/C17, atom S1 deviates by -0.855 (1) Å from the plane through the remaining four atoms. The dihydropyran ring of the chromene unit adopts a half-chair conformation, with the lowest asymmetry parameter ΔC2(C2–C11) of 0.039 (1)° (Nardelli, 1983).

In addition to van der Waals interactions, the molecular packing is stabilized by intramolecular C—H···N hydrogen bond and intermolecular weak C—H···π interactions (Fig. 3).

Related literature top

For related structures, see: Nirmala et al. (2009); Selvanayagam et al. (2010). For the superposition of related structures, see: Gans & Shalloway (2001). For ring-puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of (Z)-methyl-2[(1-formylnaphthalen-2-yloxy)methyl]-3-(4-chlorophenyl) acrylate (20 mmol) and thiaproline (30 mmol) was refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Single crystals were grown by slow evapoartion of a chloroform-methanol (1:1) soution.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Structure description top

In continuation of our work on the crystal structure analysis of pyrrolizine derivatives, we have undertaken a single-crystal X-ray diffraction study for the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. A l l the bond lengths are normal and comparable to the standard values. Fig. 2 shows a superposition of the pyrrolidine ring of (I) with the related reported structures of Nirmala et al. (2009) and Selvanayagam et al. (2010), using Qmol (Gans & Shalloway, 2001); the r.m.s. deviation is 0.350 and 0.864 Å, respectively. The sum of the angles (331.9°) around atom N1 is in accordance with sp3 hybridization.

The chlorine atom deviates 0.118 (1) Å from the best plane of chlorophenyl ring. The naphthalene ring system (C2–C11) and the chlorophenyl ring are oriented with a dihedral angle of 59.7 (1)°. In the thiapyrrolizine ring system, both the pyrrolidine and thiazole rings N1/C1/C13–C15 and N1/C15/C16/S1/C17 adopt envelope conformations; the puckering parameters (Cremer & Pople, 1975) are: q2 = 0.447 (2) Å and φ = -118.7 (2)° for N1/C1/C13–C15 ring, and q2 = 0.508 (2) Å and φ = -59.9 (2)° for N1/C15/C16/S1/C17 ring. In the N1/C1/C13–C15 ring, atom C13 deviates by -0.675 (2) Å from the least-squares plane through the remaining four atoms, whereas in the ring N1/C15/C16/S1/C17, atom S1 deviates by -0.855 (1) Å from the plane through the remaining four atoms. The dihydropyran ring of the chromene unit adopts a half-chair conformation, with the lowest asymmetry parameter ΔC2(C2–C11) of 0.039 (1)° (Nardelli, 1983).

In addition to van der Waals interactions, the molecular packing is stabilized by intramolecular C—H···N hydrogen bond and intermolecular weak C—H···π interactions (Fig. 3).

For related structures, see: Nirmala et al. (2009); Selvanayagam et al. (2010). For the superposition of related structures, see: Gans & Shalloway (2001). For ring-puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Superposition of (I) (cyan) with the similar reported structures of Nirmala et al. (2009) (yellow) and Selvanayagam et al. (2010).
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along the b axis.
Methyl 4-(4-chlorophenyl)-3,3a,4,4a,5,12c-hexahydro-2- thianaphtho[1',2':3,2]furo[5,4-b]pyrrolizine-4a-carboxylate top
Crystal data top
C25H22ClNO3SF(000) = 944
Mr = 451.95Dx = 1.384 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 16148 reflections
a = 8.0740 (6) Åθ = 2.1–27.6°
b = 12.1109 (8) ŵ = 0.30 mm1
c = 22.1813 (15) ÅT = 292 K
V = 2169.0 (3) Å3Block, colourless
Z = 40.23 × 0.21 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4559 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.1°, θmin = 1.8°
ω scansh = 1010
25236 measured reflectionsk = 1516
5157 independent reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.2403P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5157 reflectionsΔρmax = 0.28 e Å3
281 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack (1983), 2186 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C25H22ClNO3SV = 2169.0 (3) Å3
Mr = 451.95Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0740 (6) ŵ = 0.30 mm1
b = 12.1109 (8) ÅT = 292 K
c = 22.1813 (15) Å0.23 × 0.21 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4559 reflections with I > 2σ(I)
25236 measured reflectionsRint = 0.024
5157 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.15 e Å3
5157 reflectionsAbsolute structure: Flack (1983), 2186 Friedel pairs
281 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39547 (9)0.77136 (7)0.50917 (3)0.0888 (2)
S10.28910 (8)1.01078 (6)0.12895 (3)0.07732 (19)
O10.2032 (2)0.67004 (11)0.21872 (8)0.0728 (5)
O20.2227 (2)0.98332 (12)0.25861 (7)0.0698 (4)
O30.21864 (19)0.84359 (14)0.32261 (7)0.0693 (4)
N10.13547 (18)0.82523 (13)0.15571 (7)0.0510 (4)
C10.03210 (19)0.86266 (14)0.17424 (8)0.0409 (3)
H10.04060.94290.16970.049*
C20.1710 (2)0.80726 (14)0.14034 (9)0.0479 (4)
C30.2357 (2)0.85149 (16)0.08546 (9)0.0514 (4)
C40.1812 (3)0.95119 (18)0.05993 (8)0.0586 (5)
H40.10060.99210.07990.070*
C50.2432 (3)0.9901 (3)0.00649 (10)0.0750 (6)
H50.20451.05630.00940.090*
C60.3656 (3)0.9295 (3)0.02419 (11)0.0887 (9)
H60.40550.95450.06110.106*
C70.4251 (3)0.8353 (3)0.00020 (12)0.0814 (8)
H70.50820.79710.02040.098*
C80.3646 (3)0.79322 (19)0.05482 (11)0.0647 (6)
C90.4312 (3)0.6989 (2)0.08106 (14)0.0822 (8)
H90.51460.66060.06110.099*
C100.3768 (3)0.66178 (18)0.13531 (15)0.0802 (7)
H100.42700.60100.15320.096*
C110.2438 (2)0.71561 (15)0.16450 (11)0.0596 (5)
C120.0538 (3)0.70803 (15)0.24674 (11)0.0570 (5)
H12A0.05510.68820.28910.068*
H12B0.04050.67200.22810.068*
C130.0355 (2)0.83233 (13)0.24070 (8)0.0401 (3)
C140.1375 (2)0.87464 (13)0.26073 (8)0.0416 (3)
H140.13060.95540.26080.050*
C150.2488 (2)0.84365 (17)0.20738 (8)0.0511 (4)
H150.30790.77500.21660.061*
C160.3753 (2)0.9351 (2)0.19154 (10)0.0695 (6)
H16A0.39220.98370.22580.083*
H16B0.48090.90280.18040.083*
C170.2033 (3)0.8788 (2)0.10353 (9)0.0636 (5)
H17A0.28940.83360.08560.076*
H17B0.11750.89100.07360.076*
C180.1970 (2)0.84189 (14)0.32279 (8)0.0447 (4)
C190.2712 (3)0.74099 (17)0.33593 (10)0.0611 (5)
H190.28150.68810.30580.073*
C200.3297 (3)0.71840 (19)0.39317 (11)0.0664 (6)
H200.38050.65120.40140.080*
C210.3120 (3)0.79610 (19)0.43776 (9)0.0585 (5)
C220.2352 (3)0.89380 (18)0.42702 (9)0.0594 (5)
H220.22100.94500.45790.071*
C230.1785 (2)0.91603 (15)0.36953 (9)0.0507 (4)
H230.12620.98310.36210.061*
C240.1702 (2)0.89594 (14)0.27369 (8)0.0441 (4)
C250.3441 (3)0.8996 (3)0.35799 (12)0.0927 (9)
H25A0.44690.89970.33630.139*
H25B0.35840.86190.39570.139*
H25C0.30990.97430.36540.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0877 (4)0.1109 (5)0.0676 (3)0.0124 (4)0.0262 (3)0.0256 (3)
S10.0624 (3)0.0981 (4)0.0715 (3)0.0219 (3)0.0083 (3)0.0120 (3)
O10.0696 (9)0.0436 (7)0.1053 (12)0.0169 (7)0.0198 (9)0.0080 (7)
O20.0752 (10)0.0577 (8)0.0764 (9)0.0241 (8)0.0210 (8)0.0036 (7)
O30.0568 (8)0.0881 (10)0.0630 (9)0.0065 (8)0.0181 (7)0.0179 (8)
N10.0377 (7)0.0616 (9)0.0536 (8)0.0053 (7)0.0014 (6)0.0136 (7)
C10.0361 (7)0.0378 (8)0.0490 (9)0.0001 (6)0.0001 (7)0.0084 (6)
C20.0380 (8)0.0436 (8)0.0622 (10)0.0047 (7)0.0031 (8)0.0183 (8)
C30.0396 (9)0.0584 (10)0.0560 (10)0.0130 (8)0.0042 (7)0.0246 (8)
C40.0552 (11)0.0717 (12)0.0488 (10)0.0096 (10)0.0044 (8)0.0121 (9)
C50.0699 (13)0.1004 (16)0.0549 (11)0.0197 (13)0.0044 (10)0.0034 (12)
C60.0671 (15)0.140 (3)0.0586 (14)0.0266 (18)0.0179 (12)0.0136 (15)
C70.0525 (12)0.117 (2)0.0743 (15)0.0184 (14)0.0228 (11)0.0421 (16)
C80.0415 (9)0.0743 (13)0.0783 (14)0.0148 (10)0.0118 (9)0.0323 (11)
C90.0540 (12)0.0672 (14)0.125 (2)0.0026 (11)0.0293 (14)0.0387 (15)
C100.0567 (12)0.0478 (11)0.136 (2)0.0087 (10)0.0226 (15)0.0153 (13)
C110.0502 (10)0.0388 (9)0.0899 (15)0.0004 (8)0.0112 (10)0.0130 (9)
C120.0566 (11)0.0405 (9)0.0739 (13)0.0020 (8)0.0084 (10)0.0057 (8)
C130.0345 (7)0.0346 (7)0.0510 (9)0.0001 (6)0.0008 (7)0.0017 (6)
C140.0337 (7)0.0401 (8)0.0511 (9)0.0012 (6)0.0019 (7)0.0004 (7)
C150.0374 (8)0.0641 (10)0.0518 (10)0.0081 (7)0.0012 (7)0.0060 (8)
C160.0389 (10)0.1115 (17)0.0580 (11)0.0141 (11)0.0023 (8)0.0057 (12)
C170.0440 (9)0.0976 (16)0.0491 (10)0.0024 (11)0.0040 (9)0.0129 (10)
C180.0350 (8)0.0460 (8)0.0530 (9)0.0001 (7)0.0004 (7)0.0019 (7)
C190.0650 (12)0.0503 (10)0.0680 (12)0.0094 (9)0.0068 (10)0.0009 (9)
C200.0659 (13)0.0591 (11)0.0742 (13)0.0068 (10)0.0101 (11)0.0146 (10)
C210.0465 (10)0.0742 (12)0.0547 (10)0.0105 (10)0.0059 (8)0.0164 (9)
C220.0547 (11)0.0701 (12)0.0535 (10)0.0023 (10)0.0019 (9)0.0027 (9)
C230.0442 (9)0.0528 (9)0.0553 (10)0.0042 (7)0.0006 (8)0.0006 (8)
C240.0336 (8)0.0499 (9)0.0489 (9)0.0028 (7)0.0009 (7)0.0022 (7)
C250.0586 (14)0.150 (3)0.0690 (15)0.0026 (16)0.0224 (12)0.0050 (16)
Geometric parameters (Å, º) top
Cl1—C211.7473 (19)C10—C111.413 (3)
S1—C161.803 (2)C10—H100.9300
S1—C171.831 (2)C12—C131.519 (2)
O1—C111.363 (3)C12—H12A0.9700
O1—C121.433 (3)C12—H12B0.9700
O2—C241.188 (2)C13—C241.520 (2)
O3—C241.316 (2)C13—C141.553 (2)
O3—C251.450 (3)C14—C181.511 (2)
N1—C171.435 (3)C14—C151.533 (2)
N1—C151.484 (2)C14—H140.9800
N1—C11.485 (2)C15—C161.547 (3)
C1—C21.507 (2)C15—H150.9800
C1—C131.519 (2)C16—H16A0.9700
C1—H10.9800C16—H16B0.9700
C2—C111.366 (3)C17—H17A0.9700
C2—C31.429 (3)C17—H17B0.9700
C3—C41.404 (3)C18—C231.380 (3)
C3—C81.429 (3)C18—C191.392 (3)
C4—C51.370 (3)C19—C201.382 (3)
C4—H40.9300C19—H190.9300
C5—C61.406 (4)C20—C211.373 (3)
C5—H50.9300C20—H200.9300
C6—C71.348 (4)C21—C221.357 (3)
C6—H60.9300C22—C231.381 (3)
C7—C81.410 (4)C22—H220.9300
C7—H70.9300C23—H230.9300
C8—C91.390 (4)C25—H25A0.9600
C9—C101.358 (4)C25—H25B0.9600
C9—H90.9300C25—H25C0.9600
C16—S1—C1786.54 (11)C24—C13—C14109.79 (13)
C11—O1—C12117.08 (16)C18—C14—C15116.91 (14)
C24—O3—C25115.36 (19)C18—C14—C13117.39 (14)
C17—N1—C15108.65 (15)C15—C14—C13103.06 (14)
C17—N1—C1115.64 (16)C18—C14—H14106.2
C15—N1—C1107.59 (13)C15—C14—H14106.2
N1—C1—C2113.81 (13)C13—C14—H14106.2
N1—C1—C13102.20 (14)N1—C15—C14105.76 (13)
C2—C1—C13111.28 (14)N1—C15—C16109.84 (16)
N1—C1—H1109.8C14—C15—C16112.78 (16)
C2—C1—H1109.8N1—C15—H15109.5
C13—C1—H1109.8C14—C15—H15109.5
C11—C2—C3118.79 (17)C16—C15—H15109.5
C11—C2—C1119.09 (17)C15—C16—S1106.49 (13)
C3—C2—C1122.02 (16)C15—C16—H16A110.4
C4—C3—C2123.46 (17)S1—C16—H16A110.4
C4—C3—C8117.4 (2)C15—C16—H16B110.4
C2—C3—C8119.1 (2)S1—C16—H16B110.4
C5—C4—C3122.0 (2)H16A—C16—H16B108.6
C5—C4—H4119.0N1—C17—S1106.90 (13)
C3—C4—H4119.0N1—C17—H17A110.3
C4—C5—C6119.7 (3)S1—C17—H17A110.3
C4—C5—H5120.1N1—C17—H17B110.3
C6—C5—H5120.1S1—C17—H17B110.3
C7—C6—C5120.1 (2)H17A—C17—H17B108.6
C7—C6—H6120.0C23—C18—C19117.43 (17)
C5—C6—H6120.0C23—C18—C14118.64 (15)
C6—C7—C8121.6 (2)C19—C18—C14123.92 (16)
C6—C7—H7119.2C20—C19—C18120.9 (2)
C8—C7—H7119.2C20—C19—H19119.6
C9—C8—C7121.7 (2)C18—C19—H19119.6
C9—C8—C3119.2 (2)C21—C20—C19119.39 (19)
C7—C8—C3119.0 (2)C21—C20—H20120.3
C10—C9—C8121.2 (2)C19—C20—H20120.3
C10—C9—H9119.4C22—C21—C20121.25 (18)
C8—C9—H9119.4C22—C21—Cl1119.01 (18)
C9—C10—C11119.9 (2)C20—C21—Cl1119.70 (17)
C9—C10—H10120.0C21—C22—C23118.9 (2)
C11—C10—H10120.0C21—C22—H22120.5
O1—C11—C2124.87 (17)C23—C22—H22120.5
O1—C11—C10113.6 (2)C18—C23—C22122.07 (18)
C2—C11—C10121.5 (2)C18—C23—H23119.0
O1—C12—C13111.22 (16)C22—C23—H23119.0
O1—C12—H12A109.4O2—C24—O3123.72 (17)
C13—C12—H12A109.4O2—C24—C13124.82 (16)
O1—C12—H12B109.4O3—C24—C13111.43 (15)
C13—C12—H12B109.4O3—C25—H25A109.5
H12A—C12—H12B108.0O3—C25—H25B109.5
C12—C13—C1109.08 (15)H25A—C25—H25B109.5
C12—C13—C24112.97 (15)O3—C25—H25C109.5
C1—C13—C24110.94 (14)H25A—C25—H25C109.5
C12—C13—C14112.92 (14)H25B—C25—H25C109.5
C1—C13—C14100.46 (13)
C17—N1—C1—C283.59 (19)C2—C1—C13—C14166.96 (12)
C15—N1—C1—C2154.79 (16)C12—C13—C14—C1853.3 (2)
C17—N1—C1—C13156.33 (15)C1—C13—C14—C18169.33 (14)
C15—N1—C1—C1334.71 (17)C24—C13—C14—C1873.75 (18)
N1—C1—C2—C1194.1 (2)C12—C13—C14—C1576.75 (19)
C13—C1—C2—C1120.8 (2)C1—C13—C14—C1539.28 (16)
N1—C1—C2—C389.84 (19)C24—C13—C14—C15156.20 (14)
C13—C1—C2—C3155.34 (15)C17—N1—C15—C14135.34 (16)
C11—C2—C3—C4173.48 (17)C1—N1—C15—C149.46 (19)
C1—C2—C3—C42.6 (3)C17—N1—C15—C1613.4 (2)
C11—C2—C3—C85.5 (2)C1—N1—C15—C16112.51 (17)
C1—C2—C3—C8178.41 (15)C18—C14—C15—N1149.27 (15)
C2—C3—C4—C5178.47 (18)C13—C14—C15—N118.92 (18)
C8—C3—C4—C52.6 (3)C18—C14—C15—C1690.68 (19)
C3—C4—C5—C60.2 (3)C13—C14—C15—C16138.98 (16)
C4—C5—C6—C72.0 (4)N1—C15—C16—S118.99 (19)
C5—C6—C7—C81.7 (4)C14—C15—C16—S198.69 (16)
C6—C7—C8—C9176.9 (2)C17—S1—C16—C1534.61 (15)
C6—C7—C8—C30.7 (3)C15—N1—C17—S139.89 (18)
C4—C3—C8—C9174.88 (19)C1—N1—C17—S181.16 (16)
C2—C3—C8—C94.1 (3)C16—S1—C17—N144.10 (15)
C4—C3—C8—C72.8 (3)C15—C14—C18—C23138.51 (17)
C2—C3—C8—C7178.22 (17)C13—C14—C18—C2398.24 (19)
C7—C8—C9—C10177.1 (2)C15—C14—C18—C1941.0 (2)
C3—C8—C9—C100.4 (3)C13—C14—C18—C1982.2 (2)
C8—C9—C10—C113.6 (4)C23—C18—C19—C202.5 (3)
C12—O1—C11—C212.4 (3)C14—C18—C19—C20176.99 (19)
C12—O1—C11—C10170.33 (19)C18—C19—C20—C211.0 (3)
C3—C2—C11—O1174.65 (18)C19—C20—C21—C221.3 (3)
C1—C2—C11—O11.6 (3)C19—C20—C21—Cl1176.54 (18)
C3—C2—C11—C102.4 (3)C20—C21—C22—C231.9 (3)
C1—C2—C11—C10178.61 (18)Cl1—C21—C22—C23175.99 (16)
C9—C10—C11—O1179.5 (2)C19—C18—C23—C222.0 (3)
C9—C10—C11—C22.2 (3)C14—C18—C23—C22177.58 (17)
C11—O1—C12—C1341.6 (3)C21—C22—C23—C180.2 (3)
O1—C12—C13—C159.6 (2)C25—O3—C24—O20.4 (3)
O1—C12—C13—C2464.3 (2)C25—O3—C24—C13178.41 (17)
O1—C12—C13—C14170.33 (16)C12—C13—C24—O2149.37 (19)
N1—C1—C13—C1273.74 (17)C1—C13—C24—O226.5 (2)
C2—C1—C13—C1248.09 (18)C14—C13—C24—O283.6 (2)
N1—C1—C13—C24161.19 (13)C12—C13—C24—O332.6 (2)
C2—C1—C13—C2476.98 (16)C1—C13—C24—O3155.50 (15)
N1—C1—C13—C1445.13 (15)C14—C13—C24—O394.37 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the chlorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···N10.972.572.903 (3)100
C25—H25A···Cgi0.962.793.431 (3)125
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H22ClNO3S
Mr451.95
Crystal system, space groupOrthorhombic, P212121
Temperature (K)292
a, b, c (Å)8.0740 (6), 12.1109 (8), 22.1813 (15)
V3)2169.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25236, 5157, 4559
Rint0.024
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.04
No. of reflections5157
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.15
Absolute structureFlack (1983), 2186 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the chlorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···N10.972.572.903 (3)100
C25—H25A···Cgi0.962.793.431 (3)125
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme. SS also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2010). Acta Cryst. E66, o1345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds