metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­(5,5′-di­methyl-2,2′-bi­pyridine-κ2N,N′)copper(II)]-μ-2,2′-oxydibenzoato-κ2O:O′]

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: meichongzhen@163.com

(Received 12 May 2010; accepted 3 July 2010; online 10 July 2010)

In the title compound, [Cu(C14H8O5)(C12H12N2)(H2O)]n, the CuII ion is penta­coordinated in a square-pyramidal geometry. Two N atoms of the chelating 5,5′-dimethyl-2,2′-bipyridine (dbp) ligand and two O atoms of two different 2,2′-oxydibenzoic (odb) ligands occupy the basal plane while the water O atom completes the square-pyramidal geometry at the apical site. The non-water N2O2 donor atoms are nearly coplanar, with a mean deviation from the least-squares plane of 0.0518 (11) Å and the Cu atom is displaced by 0.1507 (11) Å from this plane towards the apical water O atom. Further coordination via the 2,2′-oxydibenzoate anions forms a one-dimensional coordination polymer extending parallel to [010]. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional supra­molecular structure.

Related literature

For background to the network topologies and applications of coordination polymers, see: Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]). For structures containing odb ligands, see: Gong et al. (2009[Gong, H.-Y., Bai, Y. & Liu, W. (2009). Acta Cryst. E65, m1589.]); Hong (2008a[Hong, J. (2008a). Acta Cryst. E64, m17.],b[Hong, J. (2008b). Acta Cryst. E64, m21.]); Wang et al. (2010[Wang, W., Zhang, D.-J., Fan, Y., Song, T.-Y. & Zhang, P. (2010). Acta Cryst. E66, m462.]); Yu (2008[Yu, C.-H. (2008). Acta Cryst. E64, m1106.]); Xu et al. (2008a[Xu, X., Wang, P. & Shi, S. (2008a). Acta Cryst. E64, m90.],b[Xu, M.-L., Zhou, R., Wang, G.-Y. & Ng, S. W. (2008b). Acta Cryst. E64, m712-m713.]). For complexes with 5,5′-dimethyl-2,2′-bipyridine (dbp), see: Zhao & Bai (2009[Zhao, Q.-L. & Bai, H.-F. (2009). Acta Cryst. E65, m866.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Kalateh et al. (2008[Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353-m1354.]); Dong et al. (2009[Dong, X.-Y., Xu, X. & Yang, L. (2009). Acta Cryst. E65, m1290.]); Ahmadi et al. (2008[Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.], 2010[Ahmadi, R., Kalateh, K. & Amani, V. (2010). Acta Cryst. E66, m562.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H8O5)(C12H12N2)(H2O)]

  • Mr = 522.00

  • Monoclinic, P 21 /c

  • a = 7.4235 (11) Å

  • b = 17.475 (3) Å

  • c = 18.053 (3) Å

  • β = 98.188 (3)°

  • V = 2318.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.827, Tmax = 0.858

  • 12080 measured reflections

  • 4071 independent reflections

  • 3150 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.097

  • S = 1.04

  • 4071 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O5 1.915 (2)
Cu1—O2i 1.9370 (19)
Cu1—N2 2.000 (2)
Cu1—N1 2.018 (2)
Cu1—O1W 2.388 (2)
O2—Cu1ii 1.9371 (19)
O5—Cu1—O2i 95.15 (8)
O5—Cu1—N2 165.19 (9)
O2i—Cu1—N2 93.03 (9)
O5—Cu1—N1 90.14 (10)
O2i—Cu1—N1 171.74 (10)
N2—Cu1—N1 80.48 (10)
O5—Cu1—O1W 96.74 (8)
O2i—Cu1—O1W 93.83 (8)
N2—Cu1—O1W 95.01 (8)
N1—Cu1—O1W 91.83 (9)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4 0.85 1.99 2.750 (3) 148
O1W—H1WB⋯O3iii 0.85 2.13 2.972 (3) 171
Symmetry code: (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

5,5'-Dimethyl-2,2'-bipyridine (dbp), is a good bidentate ligand, and numerous complexes with dbp have been prepared, such as that of Zn (Zhao & Bai, 2009; Khalighi et al. 2008), In (Kalateh et al. 2008), Cu (Dong et al. 2009) and Cd (Ahmadi et al. 2008, 2010).

Recently, great interest has been focused on the design and synthesis of coordination polymers because of their intriguing network topologies and promising applications (Yaghi et al. 1998). Hence we have employed 2,2'-oxydibenzoic (odb) and dbp as ligands in this work.

In the title complex the Cu2+ ion is is pentacoordinated, with two N atoms of chelating 5,5'-dimethyl-2,2'-bipyridine (dbp) ligand and two O atoms of two different odb ligands in the basal plane and the O atom of water molecule completing the square-pyramidal geometry from the apical site (Fig. 1). The atoms N1, N2, O5 and O2i [Symmetry code: (i) -x+1, y-1/2, -z+1/2] are nearly coplanar, with a mean deviation from the least-squares plane of 0.0518 (11) Å, and the Cu atom is displaced by 0.1507 (11) Å from this plane towards the apical O atom. Further coordination via the 2,2'-oxydibenzoate anions forms a one-dimensional coordination polymer extending parallel to [010]. In the crystal structure, O—H···O hydrogen bonds link the molecules into a 2D supramolecular structure as shown in Fig. 2.

Related literature top

For background to the network topologies and applications of coordination polymers, see: Yaghi et al. (1998). For structures containing odb ligands, see: Gong et al. (2009); Hong (2008a,b); Wang et al. (2010); Yu (2008); Xu et al. (2008a,b). For complexes with 5,5'-dimethyl-2,2'-bipyridine (dbp), see: Zhao & Bai (2009); Khalighi et al. (2008); Kalateh et al. (2008); Dong et al. (2009); Ahmadi et al. (2008, 2010).

Experimental top

Copper(II) acetate dihydrate (0.5 mmol), 5,5'-dimethyl-2,2'-bipyridine (0.5 mmol) and 2,2'-oxydibenzoic acid (0.5 mmol) were placed in a 30 ml teflon-lined, stainless-steel Parr autoclave together with water (20 ml). The autoclave was heated at 393 K for a week and was subsequently cooled slowly to room temperature. Blue single crystals were obtained.

Refinement top

The approximate positions of the water H atoms, obtained from a difference Fourier map, were restrained to ideal water geometry and fixed in the final stages of refinement (O—H 0.85 Å). All other H atoms were included in calculated positions, with C—H bond lengths fixed at 0.93Å (aryl group), 0.96 Å (methyl CH3) and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C, O) for the other H atoms.

Structure description top

5,5'-Dimethyl-2,2'-bipyridine (dbp), is a good bidentate ligand, and numerous complexes with dbp have been prepared, such as that of Zn (Zhao & Bai, 2009; Khalighi et al. 2008), In (Kalateh et al. 2008), Cu (Dong et al. 2009) and Cd (Ahmadi et al. 2008, 2010).

Recently, great interest has been focused on the design and synthesis of coordination polymers because of their intriguing network topologies and promising applications (Yaghi et al. 1998). Hence we have employed 2,2'-oxydibenzoic (odb) and dbp as ligands in this work.

In the title complex the Cu2+ ion is is pentacoordinated, with two N atoms of chelating 5,5'-dimethyl-2,2'-bipyridine (dbp) ligand and two O atoms of two different odb ligands in the basal plane and the O atom of water molecule completing the square-pyramidal geometry from the apical site (Fig. 1). The atoms N1, N2, O5 and O2i [Symmetry code: (i) -x+1, y-1/2, -z+1/2] are nearly coplanar, with a mean deviation from the least-squares plane of 0.0518 (11) Å, and the Cu atom is displaced by 0.1507 (11) Å from this plane towards the apical O atom. Further coordination via the 2,2'-oxydibenzoate anions forms a one-dimensional coordination polymer extending parallel to [010]. In the crystal structure, O—H···O hydrogen bonds link the molecules into a 2D supramolecular structure as shown in Fig. 2.

For background to the network topologies and applications of coordination polymers, see: Yaghi et al. (1998). For structures containing odb ligands, see: Gong et al. (2009); Hong (2008a,b); Wang et al. (2010); Yu (2008); Xu et al. (2008a,b). For complexes with 5,5'-dimethyl-2,2'-bipyridine (dbp), see: Zhao & Bai (2009); Khalighi et al. (2008); Kalateh et al. (2008); Dong et al. (2009); Ahmadi et al. (2008, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry code: (i) -x+1, y-1/2, -z+1/2]
[Figure 2] Fig. 2. A view of the structure along the c axis. dashed lines indicate the hydrogen-bonding.
catena-Poly[[aqua(5,5'-dimethyl-2,2'-bipyridine- κ2N,N')copper(II)]-µ-2,2'-oxydibenzoato- κ2O:O'] top
Crystal data top
[Cu(C14H8O5)(C12H12N2)(H2O)]F(000) = 1076
Mr = 522.00Dx = 1.496 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2235 reflections
a = 7.4235 (11) Åθ = 2.1–25.6°
b = 17.475 (3) ŵ = 0.99 mm1
c = 18.053 (3) ÅT = 296 K
β = 98.188 (3)°Block, blue
V = 2318.0 (6) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4071 independent reflections
Radiation source: fine-focus sealed tube3150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.827, Tmax = 0.858k = 2010
12080 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.050P)2 + 0.0178P]
where P = (Fo2 + 2Fc2)/3
4071 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Cu(C14H8O5)(C12H12N2)(H2O)]V = 2318.0 (6) Å3
Mr = 522.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4235 (11) ŵ = 0.99 mm1
b = 17.475 (3) ÅT = 296 K
c = 18.053 (3) Å0.20 × 0.18 × 0.16 mm
β = 98.188 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4071 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3150 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.858Rint = 0.042
12080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
4071 reflectionsΔρmin = 0.22 e Å3
318 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.41788 (4)0.62384 (2)0.109714 (18)0.03306 (13)
N10.3306 (3)0.65433 (15)0.00279 (13)0.0377 (6)
N20.3278 (3)0.52235 (13)0.06863 (12)0.0323 (5)
O10.4265 (2)0.93932 (11)0.19835 (11)0.0386 (5)
O20.4863 (3)1.08114 (12)0.29366 (10)0.0418 (5)
O30.1882 (3)1.09819 (15)0.29298 (12)0.0577 (6)
O40.3634 (3)0.77983 (13)0.19838 (16)0.0715 (8)
O50.5373 (3)0.72067 (11)0.12721 (11)0.0426 (5)
O1W0.1358 (3)0.66083 (13)0.14824 (12)0.0539 (6)
H1WA0.16900.70230.17080.065*
H1WB0.04850.64480.16980.065*
C10.3209 (4)1.08195 (16)0.26283 (15)0.0336 (7)
C20.2924 (3)1.06403 (16)0.18006 (15)0.0299 (6)
C30.1997 (4)1.11672 (18)0.13170 (17)0.0416 (7)
H30.15221.16050.15100.050*
C40.1763 (5)1.1054 (2)0.05493 (19)0.0591 (10)
H40.11611.14190.02300.071*
C50.2424 (5)1.0401 (3)0.02647 (19)0.0661 (11)
H50.22841.03270.02500.079*
C60.3294 (4)0.9855 (2)0.07367 (19)0.0532 (9)
H60.37130.94070.05420.064*
C70.3543 (3)0.99754 (17)0.15049 (16)0.0332 (7)
C80.6009 (4)0.91544 (17)0.18894 (15)0.0319 (6)
C90.7378 (4)0.97019 (18)0.19715 (17)0.0424 (8)
H90.71101.02070.20760.051*
C100.9132 (4)0.9495 (2)0.18986 (19)0.0504 (9)
H101.00520.98600.19570.060*
C110.9531 (4)0.8748 (2)0.17389 (18)0.0500 (9)
H111.07160.86090.16870.060*
C120.8167 (4)0.82106 (18)0.16569 (16)0.0396 (7)
H120.84450.77080.15460.048*
C130.6376 (3)0.83974 (17)0.17359 (14)0.0299 (6)
C140.4984 (4)0.77630 (16)0.16651 (16)0.0327 (7)
C150.3015 (5)0.8219 (2)0.1299 (2)0.0723 (12)
H15A0.35080.85480.08940.108*
H15B0.18300.83990.15090.108*
H15C0.38020.82220.16770.108*
C160.2864 (4)0.7414 (2)0.10098 (19)0.0529 (9)
C170.2245 (5)0.6804 (3)0.14685 (19)0.0643 (11)
H170.18990.68860.19780.077*
C180.2136 (4)0.6083 (2)0.11798 (18)0.0552 (9)
H180.17120.56780.14910.066*
C190.2660 (4)0.59610 (19)0.04244 (16)0.0381 (7)
C200.3397 (4)0.7244 (2)0.02617 (18)0.0474 (8)
H200.38420.76390.00580.057*
C210.2604 (4)0.52224 (18)0.00508 (16)0.0351 (7)
C220.1926 (4)0.4554 (2)0.03889 (18)0.0482 (9)
H220.14710.45510.08960.058*
C230.1919 (4)0.38961 (19)0.0019 (2)0.0527 (9)
H230.14530.34480.02120.063*
C240.2601 (4)0.38895 (18)0.07754 (19)0.0452 (8)
C250.2616 (5)0.3185 (2)0.1245 (2)0.0670 (11)
H25A0.36770.31870.16170.100*
H25B0.26370.27400.09330.100*
H25C0.15440.31740.14860.100*
C260.3266 (4)0.45785 (18)0.10777 (17)0.0404 (7)
H260.37330.45920.15840.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0383 (2)0.0272 (2)0.0334 (2)0.00240 (16)0.00395 (14)0.00399 (17)
N10.0390 (14)0.0389 (15)0.0359 (14)0.0015 (12)0.0077 (11)0.0017 (12)
N20.0340 (12)0.0318 (14)0.0316 (13)0.0041 (11)0.0064 (10)0.0061 (11)
O10.0331 (11)0.0267 (11)0.0592 (13)0.0026 (9)0.0180 (9)0.0021 (10)
O20.0402 (12)0.0403 (13)0.0417 (12)0.0130 (10)0.0054 (9)0.0067 (10)
O30.0453 (13)0.0819 (18)0.0500 (13)0.0019 (12)0.0210 (11)0.0035 (13)
O40.0533 (14)0.0459 (15)0.126 (2)0.0231 (12)0.0493 (15)0.0352 (15)
O50.0499 (12)0.0283 (11)0.0514 (13)0.0063 (10)0.0133 (10)0.0108 (10)
O1W0.0399 (12)0.0536 (15)0.0716 (16)0.0091 (11)0.0198 (11)0.0203 (13)
C10.0371 (17)0.0235 (15)0.0408 (17)0.0012 (13)0.0078 (14)0.0056 (14)
C20.0235 (13)0.0295 (16)0.0369 (16)0.0052 (12)0.0049 (11)0.0030 (13)
C30.0399 (16)0.0364 (18)0.0472 (18)0.0048 (15)0.0013 (14)0.0037 (15)
C40.056 (2)0.069 (3)0.047 (2)0.0104 (19)0.0089 (17)0.0112 (19)
C50.061 (2)0.098 (3)0.0355 (19)0.001 (2)0.0050 (17)0.007 (2)
C60.0492 (19)0.060 (2)0.051 (2)0.0011 (18)0.0081 (16)0.0185 (19)
C70.0255 (14)0.0331 (17)0.0407 (17)0.0081 (12)0.0034 (12)0.0026 (14)
C80.0298 (15)0.0320 (17)0.0351 (15)0.0048 (13)0.0086 (12)0.0002 (14)
C90.0422 (18)0.0319 (17)0.0544 (19)0.0101 (14)0.0115 (14)0.0043 (15)
C100.0339 (17)0.051 (2)0.066 (2)0.0191 (16)0.0065 (15)0.0003 (19)
C110.0255 (15)0.064 (2)0.060 (2)0.0004 (17)0.0041 (14)0.006 (2)
C120.0325 (16)0.0381 (18)0.0482 (18)0.0053 (14)0.0057 (13)0.0021 (15)
C130.0275 (15)0.0310 (16)0.0308 (15)0.0000 (12)0.0027 (11)0.0025 (13)
C140.0323 (16)0.0254 (16)0.0395 (16)0.0004 (13)0.0015 (13)0.0001 (14)
C150.070 (2)0.075 (3)0.070 (3)0.008 (2)0.005 (2)0.034 (2)
C160.0409 (18)0.067 (2)0.051 (2)0.0076 (18)0.0062 (15)0.0202 (19)
C170.059 (2)0.092 (3)0.039 (2)0.020 (2)0.0020 (16)0.014 (2)
C180.057 (2)0.069 (3)0.0380 (19)0.0188 (19)0.0025 (16)0.0017 (18)
C190.0316 (16)0.050 (2)0.0341 (16)0.0065 (14)0.0096 (13)0.0049 (15)
C200.0485 (19)0.048 (2)0.0455 (19)0.0052 (16)0.0052 (15)0.0036 (17)
C210.0258 (14)0.0451 (19)0.0357 (17)0.0042 (13)0.0090 (12)0.0073 (15)
C220.0474 (19)0.058 (2)0.0389 (18)0.0118 (17)0.0065 (14)0.0176 (18)
C230.056 (2)0.038 (2)0.064 (2)0.0134 (16)0.0109 (17)0.0206 (18)
C240.0435 (18)0.0355 (19)0.058 (2)0.0045 (15)0.0119 (15)0.0116 (16)
C250.083 (3)0.034 (2)0.082 (3)0.0090 (19)0.008 (2)0.003 (2)
C260.0398 (16)0.0388 (19)0.0421 (18)0.0015 (15)0.0046 (13)0.0065 (16)
Geometric parameters (Å, º) top
Cu1—O51.915 (2)C9—H90.9300
Cu1—O2i1.9370 (19)C10—C111.377 (5)
Cu1—N22.000 (2)C10—H100.9300
Cu1—N12.018 (2)C11—C121.374 (4)
Cu1—O1W2.388 (2)C11—H110.9300
N1—C201.336 (4)C12—C131.396 (4)
N1—C191.349 (4)C12—H120.9300
N2—C261.331 (4)C13—C141.508 (4)
N2—C211.353 (4)C15—C161.510 (5)
O1—C71.392 (3)C15—H15A0.9600
O1—C81.394 (3)C15—H15B0.9600
O2—C11.274 (3)C15—H15C0.9600
O2—Cu1ii1.9371 (19)C16—C201.384 (4)
O3—C11.225 (3)C16—C171.388 (5)
O4—C141.226 (3)C17—C181.371 (5)
O5—C141.261 (3)C17—H170.9300
O1W—H1WA0.8500C18—C191.380 (4)
O1W—H1WB0.8500C18—H180.9300
C1—C21.512 (4)C19—C211.460 (4)
C2—C31.383 (4)C20—H200.9300
C2—C71.384 (4)C21—C221.380 (4)
C3—C41.386 (4)C22—C231.366 (5)
C3—H30.9300C22—H220.9300
C4—C51.370 (5)C23—C241.387 (5)
C4—H40.9300C23—H230.9300
C5—C61.378 (5)C24—C261.384 (4)
C5—H50.9300C24—C251.494 (5)
C6—C71.389 (4)C25—H25A0.9600
C6—H60.9300C25—H25B0.9600
C8—C131.386 (4)C25—H25C0.9600
C8—C91.388 (4)C26—H260.9300
C9—C101.376 (4)
O5—Cu1—O2i95.15 (8)C12—C11—H11120.2
O5—Cu1—N2165.19 (9)C10—C11—H11120.2
O2i—Cu1—N293.03 (9)C11—C12—C13121.8 (3)
O5—Cu1—N190.14 (10)C11—C12—H12119.1
O2i—Cu1—N1171.74 (10)C13—C12—H12119.1
N2—Cu1—N180.48 (10)C8—C13—C12117.4 (3)
O5—Cu1—O1W96.74 (8)C8—C13—C14124.5 (2)
O2i—Cu1—O1W93.83 (8)C12—C13—C14118.1 (3)
N2—Cu1—O1W95.01 (8)O4—C14—O5124.8 (3)
N1—Cu1—O1W91.83 (9)O4—C14—C13121.3 (3)
C20—N1—C19119.2 (3)O5—C14—C13113.9 (2)
C20—N1—Cu1126.1 (2)C16—C15—H15A109.5
C19—N1—Cu1114.7 (2)C16—C15—H15B109.5
C26—N2—C21119.4 (3)H15A—C15—H15B109.5
C26—N2—Cu1125.53 (19)C16—C15—H15C109.5
C21—N2—Cu1115.0 (2)H15A—C15—H15C109.5
C7—O1—C8115.2 (2)H15B—C15—H15C109.5
C1—O2—Cu1ii126.63 (18)C20—C16—C17116.2 (3)
C14—O5—Cu1129.49 (18)C20—C16—C15120.8 (4)
Cu1—O1W—H1WA99.4C17—C16—C15123.0 (3)
Cu1—O1W—H1WB143.3C18—C17—C16120.8 (3)
H1WA—O1W—H1WB104.5C18—C17—H17119.6
O3—C1—O2126.5 (3)C16—C17—H17119.6
O3—C1—C2118.6 (3)C17—C18—C19119.6 (3)
O2—C1—C2114.8 (2)C17—C18—H18120.2
C3—C2—C7118.6 (3)C19—C18—H18120.2
C3—C2—C1118.2 (3)N1—C19—C18120.5 (3)
C7—C2—C1123.2 (3)N1—C19—C21114.7 (2)
C2—C3—C4121.1 (3)C18—C19—C21124.8 (3)
C2—C3—H3119.5N1—C20—C16123.7 (3)
C4—C3—H3119.5N1—C20—H20118.1
C5—C4—C3119.5 (3)C16—C20—H20118.1
C5—C4—H4120.2N2—C21—C22119.8 (3)
C3—C4—H4120.2N2—C21—C19115.0 (3)
C4—C5—C6120.4 (3)C22—C21—C19125.2 (3)
C4—C5—H5119.8C23—C22—C21120.2 (3)
C6—C5—H5119.8C23—C22—H22119.9
C5—C6—C7119.8 (3)C21—C22—H22119.9
C5—C6—H6120.1C22—C23—C24120.6 (3)
C7—C6—H6120.1C22—C23—H23119.7
C2—C7—C6120.5 (3)C24—C23—H23119.7
C2—C7—O1119.6 (2)C26—C24—C23116.2 (3)
C6—C7—O1119.6 (3)C26—C24—C25121.3 (3)
C13—C8—C9121.2 (3)C23—C24—C25122.5 (3)
C13—C8—O1121.5 (2)C24—C25—H25A109.5
C9—C8—O1117.3 (3)C24—C25—H25B109.5
C10—C9—C8119.8 (3)H25A—C25—H25B109.5
C10—C9—H9120.1C24—C25—H25C109.5
C8—C9—H9120.1H25A—C25—H25C109.5
C9—C10—C11120.3 (3)H25B—C25—H25C109.5
C9—C10—H10119.9N2—C26—C24123.8 (3)
C11—C10—H10119.9N2—C26—H26118.1
C12—C11—C10119.5 (3)C24—C26—H26118.1
O5—Cu1—N1—C2010.9 (3)C10—C11—C12—C130.4 (5)
N2—Cu1—N1—C20179.3 (3)C9—C8—C13—C120.9 (4)
O1W—Cu1—N1—C2085.9 (3)O1—C8—C13—C12179.5 (2)
O5—Cu1—N1—C19165.91 (19)C9—C8—C13—C14177.8 (3)
N2—Cu1—N1—C192.56 (19)O1—C8—C13—C140.8 (4)
O1W—Cu1—N1—C1997.33 (19)C11—C12—C13—C81.0 (4)
O5—Cu1—N2—C26131.0 (3)C11—C12—C13—C14177.7 (3)
O2i—Cu1—N2—C267.5 (2)Cu1—O5—C14—O44.9 (4)
N1—Cu1—N2—C26177.6 (2)Cu1—O5—C14—C13173.43 (17)
O1W—Cu1—N2—C2686.6 (2)C8—C13—C14—O426.1 (4)
O5—Cu1—N2—C2150.3 (4)C12—C13—C14—O4152.6 (3)
O2i—Cu1—N2—C21173.76 (19)C8—C13—C14—O5155.5 (3)
N1—Cu1—N2—C211.10 (18)C12—C13—C14—O525.8 (4)
O1W—Cu1—N2—C2192.12 (19)C20—C16—C17—C181.6 (5)
O2i—Cu1—O5—C1476.3 (3)C15—C16—C17—C18179.9 (3)
N2—Cu1—O5—C14160.5 (3)C16—C17—C18—C190.4 (5)
N1—Cu1—O5—C14110.1 (3)C20—N1—C19—C181.4 (4)
O1W—Cu1—O5—C1418.2 (3)Cu1—N1—C19—C18175.6 (2)
Cu1ii—O2—C1—O313.0 (4)C20—N1—C19—C21179.5 (3)
Cu1ii—O2—C1—C2164.26 (18)Cu1—N1—C19—C213.5 (3)
O3—C1—C2—C353.5 (4)C17—C18—C19—N11.2 (5)
O2—C1—C2—C3124.0 (3)C17—C18—C19—C21179.9 (3)
O3—C1—C2—C7126.4 (3)C19—N1—C20—C160.2 (5)
O2—C1—C2—C756.2 (4)Cu1—N1—C20—C16176.5 (2)
C7—C2—C3—C43.1 (4)C17—C16—C20—N11.3 (5)
C1—C2—C3—C4177.0 (3)C15—C16—C20—N1179.6 (3)
C2—C3—C4—C51.5 (5)C26—N2—C21—C220.4 (4)
C3—C4—C5—C60.9 (6)Cu1—N2—C21—C22179.2 (2)
C4—C5—C6—C71.6 (5)C26—N2—C21—C19179.2 (2)
C3—C2—C7—C62.4 (4)Cu1—N2—C21—C190.4 (3)
C1—C2—C7—C6177.8 (3)N1—C19—C21—N22.6 (4)
C3—C2—C7—O1171.6 (2)C18—C19—C21—N2176.4 (3)
C1—C2—C7—O18.3 (4)N1—C19—C21—C22177.0 (3)
C5—C6—C7—C20.0 (5)C18—C19—C21—C224.0 (5)
C5—C6—C7—O1173.9 (3)N2—C21—C22—C230.5 (4)
C8—O1—C7—C2125.2 (3)C19—C21—C22—C23179.1 (3)
C8—O1—C7—C660.8 (3)C21—C22—C23—C240.4 (5)
C7—O1—C8—C13123.0 (3)C22—C23—C24—C260.1 (5)
C7—O1—C8—C958.4 (3)C22—C23—C24—C25179.8 (3)
C13—C8—C9—C100.2 (4)C21—N2—C26—C240.1 (4)
O1—C8—C9—C10178.8 (3)Cu1—N2—C26—C24178.8 (2)
C8—C9—C10—C110.5 (5)C23—C24—C26—N20.0 (5)
C9—C10—C11—C120.4 (5)C25—C24—C26—N2179.7 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O40.851.992.750 (3)148
O1W—H1WB···O3iii0.852.132.972 (3)171
Symmetry code: (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C14H8O5)(C12H12N2)(H2O)]
Mr522.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4235 (11), 17.475 (3), 18.053 (3)
β (°) 98.188 (3)
V3)2318.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.827, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
12080, 4071, 3150
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.097, 1.04
No. of reflections4071
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

Selected geometric parameters (Å, º) top
Cu1—O51.915 (2)Cu1—N12.018 (2)
Cu1—O2i1.9370 (19)Cu1—O1W2.388 (2)
Cu1—N22.000 (2)O2—Cu1ii1.9371 (19)
O5—Cu1—O2i95.15 (8)N2—Cu1—N180.48 (10)
O5—Cu1—N2165.19 (9)O5—Cu1—O1W96.74 (8)
O2i—Cu1—N293.03 (9)O2i—Cu1—O1W93.83 (8)
O5—Cu1—N190.14 (10)N2—Cu1—O1W95.01 (8)
O2i—Cu1—N1171.74 (10)N1—Cu1—O1W91.83 (9)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O40.851.992.750 (3)148.3
O1W—H1WB···O3iii0.852.132.972 (3)171.0
Symmetry code: (iii) x, y1/2, z+1/2.
 

References

First citationAhmadi, R., Kalateh, K. & Amani, V. (2010). Acta Cryst. E66, m562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, X.-Y., Xu, X. & Yang, L. (2009). Acta Cryst. E65, m1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGong, H.-Y., Bai, Y. & Liu, W. (2009). Acta Cryst. E65, m1589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHong, J. (2008a). Acta Cryst. E64, m17.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHong, J. (2008b). Acta Cryst. E64, m21.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Zhang, D.-J., Fan, Y., Song, T.-Y. & Zhang, P. (2010). Acta Cryst. E66, m462.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, X., Wang, P. & Shi, S. (2008a). Acta Cryst. E64, m90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, M.-L., Zhou, R., Wang, G.-Y. & Ng, S. W. (2008b). Acta Cryst. E64, m712–m713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar
First citationYu, C.-H. (2008). Acta Cryst. E64, m1106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q.-L. & Bai, H.-F. (2009). Acta Cryst. E65, m866.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds