metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetone isonicotinoylhydrazonato-κ3O,N′,O′)dioxidovanadate(V) monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 July 2010; accepted 20 July 2010; online 24 July 2010)

The hydrazone anion in the title compound, [V(C11H12N3O2)O2]·H2O, is zwitterionic as its pyridyl N atom is protonated; the O, N and O′ atoms span the axial–equatorial–axial positions of the trigonal-bipyramidal coord­in­ation polyhedron of the metal atom. All non-H atoms lie on a crystallographic mirror plane apart from the oxide ligands, which are related by mirror symmetry. The pyridinium N atom acts as a hydrogen-bond donor to the solvent water mol­ecule, which is in turn a hydrogen-bond donor to the both oxide ligands. These hydrogen-bonding inter­actions give rise to a three-dimensional network motif.

Related literature

For related vanadium(V) structures, see: Shao et al. (1988[Shao, M.-C., Zhang, Y.-J., Zhang, Z.-Y. & Tang, Y.-Q. (1988). Sci. Chin. Ser. B (Engl. Ed.), 31, 781-788.]). The reaction of oxidovanadium(IV) bis­(acetyl­acetonate), VO(acac)2, with aroylhydrazines in methanol yields Schiff-base complexes having the dinuclear [V(=O)(μ-OMe)2V(=O)]4+ core, see: Sarkari & Pal (2009[Sarkari, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807-3812.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C11H12N3O2)O2]·H2O

  • Mr = 319.19

  • Orthorhombic, P n m a

  • a = 13.9848 (10) Å

  • b = 6.6630 (4) Å

  • c = 13.8904 (10) Å

  • V = 1294.32 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 0.858

  • 11995 measured reflections

  • 1610 independent reflections

  • 1416 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.121

  • S = 1.11

  • 1610 reflections

  • 125 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1w⋯O1 0.84 (1) 1.91 (1) 2.732 (2) 168 (3)
N3—H3⋯O1wi 0.86 (1) 1.87 (3) 2.683 (4) 158 (6)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The reaction of oxovanadium(IV) bis(acetylacetonate), VO(acac)2, with aroylhydrazines in acetonitrile yields vanadium(V) compounds of the formulation V2O3L2 (where L represents the doubly-deprotonated Schiff base). In methanol, the reaction yields Schiff-base complexes having the dinuclear [V(=O)(µ-OMe)2V(=O)]4+ core (Sarkari & Pal, 2009). In the present study, the reaction with isonicotinic acid hydrazide yields the expected vanadium(V) complex of the mono-deprotonated Schiff base as a negatively-charged zwitterion as the pyridyl N-atom is protonated (Scheme I). The metal atom shows trigonal bipyramidal coordination, with the O,N,O'-atoms of the Schiff base spanning the axial sites (Fig. 1).

All non-hydrogen atoms lie on a crystallographic mirror plane other than the oxo ligands, which are related by mirror symmetry. The pyridinium N atom acts as a hydrogen-bond donor to the solvate water molecule, which is in turn a hydrogen bond donor to the both oxo ligands. Hydrogen bonding gives rise to a three-dimensional network motif.

Related literature top

For related vanadium(V) structures, see: Shao et al. (1988). The reaction of oxovanadium(IV) bis(acetylacetonate), VO(acac)2, with aroylhydrazines in methanol yields Schiff-base complexes having the dinuclear [V(=O)(µ-OMe)2V(=O)]4+ core, see: Sarkari & Pal (2009).

Experimental top

Bis(acetylacetonato)oxovanadium(IV) (0.13 g, 0.5 mmol) and isonicotinic acid hydrazide (0.07 g, 0.75 mmol) heated in methanol (50 ml) for one hour. The brown solution was filtered; slow evaporation of the filtrate afforded brown crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The methyl carbons lies on a mirror plane, so that one of the H atoms lies on the plane whereas the other lies on a general position.

The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.86±0.01 and O–H 0.84±0.01 Å; their temperature factors were freely refined.

Structure description top

The reaction of oxovanadium(IV) bis(acetylacetonate), VO(acac)2, with aroylhydrazines in acetonitrile yields vanadium(V) compounds of the formulation V2O3L2 (where L represents the doubly-deprotonated Schiff base). In methanol, the reaction yields Schiff-base complexes having the dinuclear [V(=O)(µ-OMe)2V(=O)]4+ core (Sarkari & Pal, 2009). In the present study, the reaction with isonicotinic acid hydrazide yields the expected vanadium(V) complex of the mono-deprotonated Schiff base as a negatively-charged zwitterion as the pyridyl N-atom is protonated (Scheme I). The metal atom shows trigonal bipyramidal coordination, with the O,N,O'-atoms of the Schiff base spanning the axial sites (Fig. 1).

All non-hydrogen atoms lie on a crystallographic mirror plane other than the oxo ligands, which are related by mirror symmetry. The pyridinium N atom acts as a hydrogen-bond donor to the solvate water molecule, which is in turn a hydrogen bond donor to the both oxo ligands. Hydrogen bonding gives rise to a three-dimensional network motif.

For related vanadium(V) structures, see: Shao et al. (1988). The reaction of oxovanadium(IV) bis(acetylacetonate), VO(acac)2, with aroylhydrazines in methanol yields Schiff-base complexes having the dinuclear [V(=O)(µ-OMe)2V(=O)]4+ core, see: Sarkari & Pal (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of VO2(C11H12N3O2).H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry transformation: i = x, 1/2 – y, z.
(Acetylacetone isonicotinoylhydrazonato- κ3O,N',O')dioxidovanadate(V) monohydrate top
Crystal data top
[V(C11H12N3O2)O2]·H2OF(000) = 656
Mr = 319.19Dx = 1.638 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3731 reflections
a = 13.9848 (10) Åθ = 2.9–27.6°
b = 6.6630 (4) ŵ = 0.79 mm1
c = 13.8904 (10) ÅT = 100 K
V = 1294.32 (15) Å3Prism, brown
Z = 40.35 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
1610 independent reflections
Radiation source: fine-focus sealed tube1416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.770, Tmax = 0.858k = 88
11995 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0616P)2 + 2.2562P]
where P = (Fo2 + 2Fc2)/3
1610 reflections(Δ/σ)max = 0.001
125 parametersΔρmax = 0.75 e Å3
2 restraintsΔρmin = 0.72 e Å3
Crystal data top
[V(C11H12N3O2)O2]·H2OV = 1294.32 (15) Å3
Mr = 319.19Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 13.9848 (10) ŵ = 0.79 mm1
b = 6.6630 (4) ÅT = 100 K
c = 13.8904 (10) Å0.35 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
1610 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1416 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.858Rint = 0.033
11995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.75 e Å3
1610 reflectionsΔρmin = 0.72 e Å3
125 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.41194 (4)0.25000.31526 (4)0.01205 (19)
O10.41890 (11)0.0504 (3)0.24747 (12)0.0191 (4)
O20.27403 (16)0.25000.32874 (16)0.0204 (5)
O30.54634 (16)0.25000.35590 (16)0.0189 (5)
O1W0.47876 (17)0.25000.12798 (18)0.0194 (5)
H1W0.467 (2)0.148 (3)0.161 (2)0.040 (10)*
N10.40746 (18)0.25000.46744 (19)0.0138 (5)
N20.49679 (19)0.25000.51358 (19)0.0139 (5)
N30.84943 (19)0.25000.5420 (2)0.0155 (5)
H30.9099 (11)0.25000.554 (4)0.059 (18)*
C10.1102 (2)0.25000.3685 (3)0.0218 (7)
H1A0.10650.25000.29810.033*
H1B0.07840.37010.39370.033*0.50
H1C0.07840.12990.39370.033*0.50
C20.2135 (2)0.25000.3993 (2)0.0163 (6)
C30.2387 (2)0.25000.4946 (2)0.0165 (6)
H3A0.18890.25000.54120.020*
C40.3340 (2)0.25000.5277 (2)0.0137 (6)
C50.3508 (2)0.25000.6351 (2)0.0198 (7)
H5A0.41970.25000.64800.030*
H5B0.32180.12990.66350.030*0.50
H5C0.32180.37010.66350.030*0.50
C60.5624 (2)0.25000.4488 (2)0.0140 (6)
C70.6634 (2)0.25000.4810 (2)0.0133 (6)
C80.7378 (2)0.25000.4146 (2)0.0156 (6)
H80.72460.25000.34750.019*
C90.8314 (2)0.25000.4473 (2)0.0165 (6)
H90.88280.25000.40250.020*
C100.7787 (2)0.25000.6080 (2)0.0166 (6)
H100.79410.25000.67460.020*
C110.6845 (2)0.25000.5800 (2)0.0153 (6)
H110.63470.25000.62650.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0111 (3)0.0163 (3)0.0087 (3)0.0000.00041 (18)0.000
O10.0180 (8)0.0203 (8)0.0192 (8)0.0007 (6)0.0002 (6)0.0048 (7)
O20.0131 (11)0.0351 (14)0.0129 (11)0.0000.0001 (9)0.000
O30.0127 (11)0.0333 (14)0.0108 (11)0.0000.0004 (8)0.000
O1W0.0188 (12)0.0193 (12)0.0201 (12)0.0000.0066 (10)0.000
N10.0109 (12)0.0183 (13)0.0121 (13)0.0000.0012 (9)0.000
N20.0121 (12)0.0171 (12)0.0124 (12)0.0000.0019 (10)0.000
N30.0126 (12)0.0192 (13)0.0146 (13)0.0000.0021 (10)0.000
C10.0122 (15)0.035 (2)0.0187 (16)0.0000.0006 (13)0.000
C20.0128 (14)0.0195 (15)0.0165 (16)0.0000.0011 (12)0.000
C30.0144 (15)0.0194 (15)0.0158 (15)0.0000.0010 (12)0.000
C40.0154 (15)0.0141 (14)0.0115 (14)0.0000.0005 (11)0.000
C50.0178 (15)0.0314 (19)0.0102 (15)0.0000.0025 (12)0.000
C60.0143 (14)0.0150 (14)0.0126 (14)0.0000.0013 (12)0.000
C70.0140 (14)0.0131 (14)0.0128 (14)0.0000.0016 (11)0.000
C80.0170 (15)0.0180 (15)0.0117 (14)0.0000.0009 (12)0.000
C90.0154 (15)0.0195 (15)0.0145 (15)0.0000.0010 (12)0.000
C100.0185 (15)0.0191 (15)0.0123 (15)0.0000.0015 (12)0.000
C110.0156 (15)0.0181 (15)0.0122 (14)0.0000.0021 (12)0.000
Geometric parameters (Å, º) top
V1—O11.6323 (17)C1—H1C0.9800
V1—O1i1.6323 (17)C2—C31.369 (5)
V1—O21.938 (2)C3—C41.411 (4)
V1—O31.962 (2)C3—H3A0.9500
V1—N12.115 (3)C4—C51.510 (4)
O2—C21.295 (4)C5—H5A0.9800
O3—C61.310 (4)C5—H5B0.9800
O1W—H1W0.838 (10)C5—H5C0.9800
N1—C41.325 (4)C6—C71.481 (4)
N1—N21.404 (4)C7—C81.391 (4)
N2—C61.286 (4)C7—C111.407 (4)
N3—C91.340 (4)C8—C91.385 (4)
N3—C101.349 (4)C8—H80.9500
N3—H30.861 (10)C9—H90.9500
C1—C21.507 (4)C10—C111.373 (5)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C11—H110.9500
O1—V1—O1i109.11 (13)C2—C3—H3A118.1
O1—V1—O296.61 (7)C4—C3—H3A118.1
O1i—V1—O296.61 (7)N1—C4—C3121.8 (3)
O1—V1—O396.25 (7)N1—C4—C5120.3 (3)
O1i—V1—O396.25 (7)C3—C4—C5117.9 (3)
O2—V1—O3157.73 (10)C4—C5—H5A109.5
O1—V1—N1125.34 (6)C4—C5—H5B109.5
O1i—V1—N1125.34 (6)H5A—C5—H5B109.5
O2—V1—N182.75 (10)C4—C5—H5C109.5
O3—V1—N174.98 (10)H5A—C5—H5C109.5
C2—O2—V1136.3 (2)H5B—C5—H5C109.5
C6—O3—V1116.6 (2)N2—C6—O3124.5 (3)
C4—N1—N2113.6 (3)N2—C6—C7118.0 (3)
C4—N1—V1130.9 (2)O3—C6—C7117.5 (3)
N2—N1—V1115.46 (19)C8—C7—C11119.4 (3)
C6—N2—N1108.4 (3)C8—C7—C6120.9 (3)
C9—N3—C10122.0 (3)C11—C7—C6119.7 (3)
C9—N3—H3112 (4)C9—C8—C7119.3 (3)
C10—N3—H3126 (4)C9—C8—H8120.3
C2—C1—H1A109.5C7—C8—H8120.3
C2—C1—H1B109.5N3—C9—C8120.0 (3)
H1A—C1—H1B109.5N3—C9—H9120.0
C2—C1—H1C109.5C8—C9—H9120.0
H1A—C1—H1C109.5N3—C10—C11120.7 (3)
H1B—C1—H1C109.5N3—C10—H10119.7
O2—C2—C3124.3 (3)C11—C10—H10119.7
O2—C2—C1114.3 (3)C10—C11—C7118.6 (3)
C3—C2—C1121.4 (3)C10—C11—H11120.7
C2—C3—C4123.9 (3)C7—C11—H11120.7
O1—V1—O2—C2124.90 (6)N2—N1—C4—C3180.0
O1i—V1—O2—C2124.90 (6)V1—N1—C4—C30.0
O3—V1—O2—C20.0N2—N1—C4—C50.0
N1—V1—O2—C20.0V1—N1—C4—C5180.0
O1—V1—O3—C6124.96 (6)C2—C3—C4—N10.0
O1i—V1—O3—C6124.96 (6)C2—C3—C4—C5180.0
O2—V1—O3—C60.0N1—N2—C6—O30.0
N1—V1—O3—C60.0N1—N2—C6—C7180.0
O1—V1—N1—C492.98 (9)V1—O3—C6—N20.0
O1i—V1—N1—C492.98 (9)V1—O3—C6—C7180.0
O2—V1—N1—C40.0N2—C6—C7—C8180.0
O3—V1—N1—C4180.0O3—C6—C7—C80.0
O1—V1—N1—N287.02 (9)N2—C6—C7—C110.0
O1i—V1—N1—N287.02 (9)O3—C6—C7—C11180.0
O2—V1—N1—N2180.0C11—C7—C8—C90.0
O3—V1—N1—N20.0C6—C7—C8—C9180.0
C4—N1—N2—C6180.0C10—N3—C9—C80.0
V1—N1—N2—C60.0C7—C8—C9—N30.0
V1—O2—C2—C30.0C9—N3—C10—C110.0
V1—O2—C2—C1180.0N3—C10—C11—C70.0
O2—C2—C3—C40.0C8—C7—C11—C100.0
C1—C2—C3—C4180.0C6—C7—C11—C10180.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1w···O10.84 (1)1.91 (1)2.732 (2)168 (3)
N3—H3···O1wii0.86 (1)1.87 (3)2.683 (4)158 (6)
Symmetry code: (ii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[V(C11H12N3O2)O2]·H2O
Mr319.19
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)100
a, b, c (Å)13.9848 (10), 6.6630 (4), 13.8904 (10)
V3)1294.32 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.770, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
11995, 1610, 1416
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.121, 1.11
No. of reflections1610
No. of parameters125
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.72

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1w···O10.84 (1)1.91 (1)2.732 (2)168 (3)
N3—H3···O1wi0.86 (1)1.87 (3)2.683 (4)158 (6)
Symmetry code: (i) x+3/2, y, z+1/2.
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSarkari, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807–3812.  Google Scholar
First citationShao, M.-C., Zhang, Y.-J., Zhang, Z.-Y. & Tang, Y.-Q. (1988). Sci. Chin. Ser. B (Engl. Ed.), 31, 781–788.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds