metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetone 3-hy­dr­oxy-2-naphtho­yl­hydrazonato-κ3O,N′,O′)(methoxo-κO)oxidovanadate(V)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 July 2010; accepted 20 July 2010; online 24 July 2010)

The tridentate Schiff base ligand in the title compound, [V(C16H14N2O3)(CH3O)O], has its O, N and O′ atoms spanning three basal positions of the square-based-pyrimidally VV atom. The fourth basal site is occupied by a methoxo ligand, which results from a deprotonated methanol solvent molecule, and the oxido ligand occupies the apical position. The hy­droxy H atom forms an intra­molecular O—H⋯N hydrogen bond with an N-atom acceptor site.

Related literature

For related vanadium(V) structures, see: Shao et al. (1988[Shao, M.-C., Zhang, Y.-J., Zhang, Z.-Y. & Tang, Y.-Q. (1988). Sci. Chin. Ser. B (Engl. Ed.), 31, 781-788.]). The reaction of oxovanadium(IV) bis­(acetyl­acetonate), VO(acac)2, with aroylhydrazines in methanol yields Schiff-base complexes having the dinuclear [V(=O)(μ-OMe)2V(=O)]4+ core, see: Sarkari & Pal (2009[Sarkari, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807-3812.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C16H14N2O3)(CH3O)O]

  • Mr = 380.27

  • Triclinic, [P \overline 1]

  • a = 7.7379 (8) Å

  • b = 9.7753 (10) Å

  • c = 11.4411 (11) Å

  • α = 86.618 (1)°

  • β = 70.821 (1)°

  • γ = 85.974 (1)°

  • V = 814.77 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.831, Tmax = 0.939

  • 7840 measured reflections

  • 3716 independent reflections

  • 3013 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.03

  • 3716 reflections

  • 233 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.83 (1) 1.91 (2) 2.623 (2) 144 (3)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The reaction of oxovanadium(IV) bis(acetylacetonate), VO(acac)2, with aroylhydrazines in acetonitrile yields vanadium(V) compounds of the formulation V2O3L2 (where L represents the doubly-deprotonated Schiff base). In methanol, the reaction yields Schiff-base complexes having the dinuclear [V(=O)(µ-OMe)2V(=O)]4+ core (Sarkari & Pal, 2009). In the present study, the reaction with a hydroxy-substituted naphthanoic acid hydrazide yields the expected vanadium(V) complex of the doubly-deprotonated Schiff base but a molecule of the solvent is reduced to a methoxide ion (Scheme I). The metal center has square-based pyramidal coordination geometry, with the O,N,O'-atoms of the Schiff base spanning the basal sites, the fourth basal site is occupied by a methoxy ligand and the apical site is occupied by an oxo ligand.

Related literature top

For related vanadium(V) structures, see: Shao et al. (1988). The reaction of oxovanadium(IV) bis(acetylacetonate), VO(acac)2, with aroylhydrazines in methanol yields Schiff-base complexes having the dinuclear [V(=O)(µ-OMe)2V(=O)]4+ core, see: Sarkari & Pal (2009).

Experimental top

Bis(acetylacetonato)oxovanadium(IV) (0.20 g, 0.75 mmol) and 3-hydroxy-2-naphthoyl hydrazide (0.15 g, 0.75 mmol) were heated in methanol (100 ml) for one hour. The brown solution was filtered; slow evaporation of the filtrate afforded brown crystals.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The hydroxyl H-atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84 (1) Å; its isotropic displacement parameter was freely refined. There is no residual electron density near the methoxido O-atom.

Structure description top

The reaction of oxovanadium(IV) bis(acetylacetonate), VO(acac)2, with aroylhydrazines in acetonitrile yields vanadium(V) compounds of the formulation V2O3L2 (where L represents the doubly-deprotonated Schiff base). In methanol, the reaction yields Schiff-base complexes having the dinuclear [V(=O)(µ-OMe)2V(=O)]4+ core (Sarkari & Pal, 2009). In the present study, the reaction with a hydroxy-substituted naphthanoic acid hydrazide yields the expected vanadium(V) complex of the doubly-deprotonated Schiff base but a molecule of the solvent is reduced to a methoxide ion (Scheme I). The metal center has square-based pyramidal coordination geometry, with the O,N,O'-atoms of the Schiff base spanning the basal sites, the fourth basal site is occupied by a methoxy ligand and the apical site is occupied by an oxo ligand.

For related vanadium(V) structures, see: Shao et al. (1988). The reaction of oxovanadium(IV) bis(acetylacetonate), VO(acac)2, with aroylhydrazines in methanol yields Schiff-base complexes having the dinuclear [V(=O)(µ-OMe)2V(=O)]4+ core, see: Sarkari & Pal (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of VO(CH3O)(C16H14N2O3) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(Acetylacetone 3-hydroxy-2-naphthoylhydrazonato-κ3O,N',O')(methoxo- κO)oxidovanadate(V) top
Crystal data top
[V(C16H14N2O3)(CH3O)O]Z = 2
Mr = 380.27F(000) = 392
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7379 (8) ÅCell parameters from 2783 reflections
b = 9.7753 (10) Åθ = 2.8–28.1°
c = 11.4411 (11) ŵ = 0.64 mm1
α = 86.618 (1)°T = 100 K
β = 70.821 (1)°Prism, brown
γ = 85.974 (1)°0.30 × 0.10 × 0.10 mm
V = 814.77 (14) Å3
Data collection top
Bruker SMART APEX
diffractometer
3716 independent reflections
Radiation source: fine-focus sealed tube3013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.831, Tmax = 0.939k = 1212
7840 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.2795P]
where P = (Fo2 + 2Fc2)/3
3716 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 0.42 e Å3
Crystal data top
[V(C16H14N2O3)(CH3O)O]γ = 85.974 (1)°
Mr = 380.27V = 814.77 (14) Å3
Triclinic, P1Z = 2
a = 7.7379 (8) ÅMo Kα radiation
b = 9.7753 (10) ŵ = 0.64 mm1
c = 11.4411 (11) ÅT = 100 K
α = 86.618 (1)°0.30 × 0.10 × 0.10 mm
β = 70.821 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3716 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3013 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.939Rint = 0.027
7840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.75 e Å3
3716 reflectionsΔρmin = 0.42 e Å3
233 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V11.03271 (5)0.59868 (4)0.20412 (3)0.01980 (12)
O11.23385 (19)0.48290 (15)0.12970 (13)0.0226 (3)
O20.90127 (19)0.68028 (15)0.35967 (13)0.0215 (3)
O30.5685 (2)0.44133 (16)0.65797 (15)0.0270 (4)
H30.642 (3)0.413 (3)0.5925 (17)0.052 (9)*
O40.8957 (2)0.58562 (17)0.12891 (14)0.0268 (4)
O51.1345 (2)0.75747 (15)0.15366 (13)0.0242 (3)
N10.9533 (2)0.43490 (19)0.32837 (15)0.0200 (4)
N20.8269 (2)0.46643 (18)0.44290 (15)0.0197 (4)
C11.4016 (3)0.3021 (2)0.0049 (2)0.0262 (5)
H1A1.51570.33900.00560.039*
H1B1.37640.33450.07090.039*
H1C1.41380.20160.00770.039*
C21.2480 (3)0.3493 (2)0.11473 (19)0.0226 (5)
C31.1325 (3)0.2624 (2)0.1970 (2)0.0237 (5)
H3a1.14400.16810.17860.028*
C40.9969 (3)0.3040 (2)0.30769 (19)0.0211 (4)
C50.9049 (3)0.1972 (2)0.4039 (2)0.0246 (5)
H5A0.77160.21230.42630.037*
H5B0.94130.20400.47760.037*
H5C0.94180.10570.37040.037*
C60.8042 (3)0.5988 (2)0.45013 (18)0.0197 (4)
C70.6691 (3)0.6619 (2)0.55786 (18)0.0191 (4)
C80.5524 (3)0.5805 (2)0.65770 (19)0.0202 (4)
C90.4232 (3)0.6431 (2)0.75423 (19)0.0213 (4)
H90.34740.58830.81990.026*
C100.3994 (3)0.7875 (2)0.75869 (19)0.0197 (4)
C110.2617 (3)0.8555 (2)0.8555 (2)0.0240 (5)
H110.18390.80290.92210.029*
C120.2394 (3)0.9953 (2)0.8542 (2)0.0262 (5)
H120.14591.03860.91970.031*
C130.3529 (3)1.0762 (2)0.7572 (2)0.0257 (5)
H130.33561.17330.75720.031*
C140.4881 (3)1.0143 (2)0.6631 (2)0.0227 (5)
H140.56531.06920.59820.027*
C150.5148 (3)0.8695 (2)0.66085 (18)0.0187 (4)
C160.6479 (3)0.8029 (2)0.56254 (18)0.0194 (4)
H160.72590.85690.49720.023*
C171.2231 (3)0.8381 (2)0.2134 (2)0.0286 (5)
H17A1.13330.87410.28890.043*
H17B1.27890.91460.15770.043*
H17C1.31850.78130.23500.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01469 (19)0.0299 (2)0.01415 (19)0.00336 (14)0.00424 (14)0.00440 (14)
O10.0149 (7)0.0334 (8)0.0186 (8)0.0038 (6)0.0041 (6)0.0014 (6)
O20.0170 (7)0.0285 (8)0.0160 (7)0.0034 (6)0.0019 (6)0.0047 (6)
O30.0288 (9)0.0262 (8)0.0201 (8)0.0047 (7)0.0000 (7)0.0030 (6)
O40.0197 (8)0.0417 (9)0.0203 (8)0.0049 (7)0.0089 (6)0.0057 (7)
O50.0217 (8)0.0306 (8)0.0167 (8)0.0047 (6)0.0013 (6)0.0030 (6)
N10.0127 (8)0.0318 (10)0.0147 (9)0.0022 (7)0.0037 (7)0.0017 (7)
N20.0134 (8)0.0310 (10)0.0138 (8)0.0012 (7)0.0036 (7)0.0019 (7)
C10.0187 (11)0.0391 (13)0.0203 (11)0.0008 (9)0.0058 (9)0.0006 (9)
C20.0183 (11)0.0336 (12)0.0185 (11)0.0018 (9)0.0096 (9)0.0002 (9)
C30.0213 (11)0.0293 (11)0.0218 (11)0.0009 (9)0.0083 (9)0.0029 (9)
C40.0165 (10)0.0297 (11)0.0200 (11)0.0032 (8)0.0100 (8)0.0012 (9)
C50.0225 (11)0.0292 (12)0.0208 (11)0.0035 (9)0.0055 (9)0.0021 (9)
C60.0140 (10)0.0319 (12)0.0146 (10)0.0035 (8)0.0072 (8)0.0048 (8)
C70.0140 (10)0.0296 (11)0.0140 (10)0.0031 (8)0.0053 (8)0.0044 (8)
C80.0183 (10)0.0272 (11)0.0175 (10)0.0042 (8)0.0095 (8)0.0045 (8)
C90.0179 (10)0.0305 (11)0.0157 (10)0.0068 (9)0.0059 (8)0.0066 (8)
C100.0157 (10)0.0312 (11)0.0148 (10)0.0045 (8)0.0085 (8)0.0038 (8)
C110.0164 (10)0.0373 (13)0.0175 (11)0.0034 (9)0.0049 (8)0.0043 (9)
C120.0192 (11)0.0370 (13)0.0206 (11)0.0031 (9)0.0049 (9)0.0019 (9)
C130.0259 (12)0.0280 (11)0.0250 (12)0.0006 (9)0.0110 (9)0.0002 (9)
C140.0211 (11)0.0293 (11)0.0190 (11)0.0053 (9)0.0083 (9)0.0061 (9)
C150.0153 (10)0.0271 (11)0.0157 (10)0.0022 (8)0.0082 (8)0.0029 (8)
C160.0139 (10)0.0300 (11)0.0152 (10)0.0064 (8)0.0065 (8)0.0073 (8)
C170.0321 (13)0.0277 (12)0.0227 (12)0.0055 (10)0.0032 (10)0.0023 (9)
Geometric parameters (Å, º) top
V1—O41.5850 (15)C5—H5C0.9800
V1—O51.7693 (15)C6—C71.465 (3)
V1—O11.8504 (15)C7—C161.378 (3)
V1—O21.9242 (15)C7—C81.439 (3)
V1—N12.0632 (17)C8—C91.365 (3)
O1—C21.319 (3)C9—C101.412 (3)
O2—C61.322 (2)C9—H90.9500
O3—C81.357 (3)C10—C111.420 (3)
O3—H30.828 (10)C10—C151.425 (3)
O5—C171.416 (3)C11—C121.365 (3)
N1—C41.315 (3)C11—H110.9500
N1—N21.390 (2)C12—C131.408 (3)
N2—C61.297 (3)C12—H120.9500
C1—C21.488 (3)C13—C141.367 (3)
C1—H1A0.9800C13—H130.9500
C1—H1B0.9800C14—C151.417 (3)
C1—H1C0.9800C14—H140.9500
C2—C31.366 (3)C15—C161.408 (3)
C3—C41.414 (3)C16—H160.9500
C3—H3a0.9500C17—H17A0.9800
C4—C51.504 (3)C17—H17B0.9800
C5—H5A0.9800C17—H17C0.9800
C5—H5B0.9800
O4—V1—O5105.62 (8)N2—C6—O2120.77 (19)
O4—V1—O1105.47 (8)N2—C6—C7121.02 (18)
O5—V1—O198.56 (7)O2—C6—C7118.20 (18)
O4—V1—O2108.97 (7)C16—C7—C8118.74 (19)
O5—V1—O287.78 (6)C16—C7—C6119.59 (18)
O1—V1—O2141.78 (6)C8—C7—C6121.63 (19)
O4—V1—N198.68 (7)O3—C8—C9118.97 (19)
O5—V1—N1153.82 (7)O3—C8—C7121.06 (19)
O1—V1—N183.93 (7)C9—C8—C7120.0 (2)
O2—V1—N175.08 (7)C8—C9—C10121.51 (19)
C2—O1—V1131.01 (13)C8—C9—H9119.2
C6—O2—V1117.27 (13)C10—C9—H9119.2
C8—O3—H3112 (2)C9—C10—C11122.76 (19)
C17—O5—V1128.78 (13)C9—C10—C15119.14 (19)
C4—N1—N2116.69 (17)C11—C10—C15118.09 (19)
C4—N1—V1127.25 (14)C12—C11—C10120.9 (2)
N2—N1—V1115.79 (13)C12—C11—H11119.5
C6—N2—N1108.95 (17)C10—C11—H11119.5
C2—C1—H1A109.5C11—C12—C13121.0 (2)
C2—C1—H1B109.5C11—C12—H12119.5
H1A—C1—H1B109.5C13—C12—H12119.5
C2—C1—H1C109.5C14—C13—C12119.7 (2)
H1A—C1—H1C109.5C14—C13—H13120.1
H1B—C1—H1C109.5C12—C13—H13120.1
O1—C2—C3121.7 (2)C13—C14—C15120.9 (2)
O1—C2—C1114.88 (19)C13—C14—H14119.5
C3—C2—C1123.4 (2)C15—C14—H14119.5
C2—C3—C4124.2 (2)C16—C15—C14122.15 (19)
C2—C3—H3a117.9C16—C15—C10118.45 (19)
C4—C3—H3a117.9C14—C15—C10119.37 (19)
N1—C4—C3120.71 (19)C7—C16—C15122.19 (18)
N1—C4—C5119.81 (19)C7—C16—H16118.9
C3—C4—C5119.47 (19)C15—C16—H16118.9
C4—C5—H5A109.5O5—C17—H17A109.5
C4—C5—H5B109.5O5—C17—H17B109.5
H5A—C5—H5B109.5H17A—C17—H17B109.5
C4—C5—H5C109.5O5—C17—H17C109.5
H5A—C5—H5C109.5H17A—C17—H17C109.5
H5B—C5—H5C109.5H17B—C17—H17C109.5
O4—V1—O1—C260.18 (18)N1—N2—C6—O23.3 (2)
O5—V1—O1—C2169.10 (17)N1—N2—C6—C7175.95 (16)
O2—V1—O1—C293.57 (19)V1—O2—C6—N213.9 (2)
N1—V1—O1—C237.18 (17)V1—O2—C6—C7165.34 (13)
O4—V1—O2—C681.17 (14)N2—C6—C7—C16179.81 (18)
O5—V1—O2—C6173.06 (14)O2—C6—C7—C160.5 (3)
O1—V1—O2—C672.03 (17)N2—C6—C7—C82.0 (3)
N1—V1—O2—C613.05 (13)O2—C6—C7—C8177.25 (17)
O4—V1—O5—C17159.55 (17)C16—C7—C8—O3179.55 (18)
O1—V1—O5—C1791.66 (18)C6—C7—C8—O32.6 (3)
O2—V1—O5—C1750.46 (17)C16—C7—C8—C90.4 (3)
N1—V1—O5—C172.0 (3)C6—C7—C8—C9177.42 (18)
O4—V1—N1—C477.84 (18)O3—C8—C9—C10179.64 (18)
O5—V1—N1—C4124.0 (2)C7—C8—C9—C100.4 (3)
O1—V1—N1—C426.94 (17)C8—C9—C10—C11177.58 (19)
O2—V1—N1—C4174.72 (18)C8—C9—C10—C150.8 (3)
O4—V1—N1—N295.99 (14)C9—C10—C11—C12177.81 (19)
O5—V1—N1—N262.2 (2)C15—C10—C11—C120.6 (3)
O1—V1—N1—N2159.23 (13)C10—C11—C12—C130.3 (3)
O2—V1—N1—N211.45 (12)C11—C12—C13—C140.3 (3)
C4—N1—N2—C6177.68 (17)C12—C13—C14—C150.7 (3)
V1—N1—N2—C67.82 (19)C13—C14—C15—C16177.35 (19)
V1—O1—C2—C329.6 (3)C13—C14—C15—C100.4 (3)
V1—O1—C2—C1152.33 (15)C9—C10—C15—C160.4 (3)
O1—C2—C3—C44.0 (3)C11—C10—C15—C16178.07 (18)
C1—C2—C3—C4173.90 (19)C9—C10—C15—C14178.22 (18)
N2—N1—C4—C3176.11 (17)C11—C10—C15—C140.3 (3)
V1—N1—C4—C310.1 (3)C8—C7—C16—C150.8 (3)
N2—N1—C4—C52.5 (3)C6—C7—C16—C15177.05 (18)
V1—N1—C4—C5171.27 (14)C14—C15—C16—C7177.34 (19)
C2—C3—C4—N111.5 (3)C10—C15—C16—C70.4 (3)
C2—C3—C4—C5167.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.83 (1)1.91 (2)2.623 (2)144 (3)

Experimental details

Crystal data
Chemical formula[V(C16H14N2O3)(CH3O)O]
Mr380.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7379 (8), 9.7753 (10), 11.4411 (11)
α, β, γ (°)86.618 (1), 70.821 (1), 85.974 (1)
V3)814.77 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.831, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
7840, 3716, 3013
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.03
No. of reflections3716
No. of parameters233
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.83 (1)1.91 (2)2.623 (2)144 (3)
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSarkari, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807–3812.  Google Scholar
First citationShao, M.-C., Zhang, Y.-J., Zhang, Z.-Y. & Tang, Y.-Q. (1988). Sci. Chin. Ser. B (Engl. Ed.), 31, 781–788.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds