metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{[Na1(μ-H2O)Na2]2[(C2O4)2Cr(μ-OH)2Cr(C2O4)2]·H2O}n, a novel hydrated form

aDepartment of Inorganic Chemistry, Faculty of Science, POB 812, University of Yaounde I, Cameroon, bDepartment of Chemistry, Faculty of Science, University of Dschang, POB 67, Dschang, Cameroon, cInstituto de Investigaciones Químicas, CSIC, Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain, and dDepartamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
*Correspondence e-mail: ealvarez@iiq.csic.es

(Received 3 May 2010; accepted 21 June 2010; online 21 July 2010)

The unit cell of the title compound, poly[[μ-aqua-μ-hydroxido-di-μ-oxalato-chromium(III)disodium] monohydrate], {[CrNa2(C2O4)2(OH)(H2O)]·H2O}n, contains four [Na1(μ-H2O)Na2][(C2O4)2Cr(μ-OH)·H2O] formula units, each of which consists of two crystallographically independent Na+ sites (bridged by one aqua ligand), one half of a centrosymmetric di-μ-hydroxido-bis­[cis-bis­(oxalato)chromate(III)] dimer, [(C2O4)2Cr(μ-OH)2Cr(C2O4)2]4−, and one uncoordin­ated water mol­ecule. The structure is best described as a coordination polymer in which the three-dimensional lattice framework is realized by the inter­connection of the metallic atoms via the O atoms of the aqua, hydroxide and oxalate ligands. One Na atom is hepta­coordinated by one water, one hydroxide and five oxalate O atoms, whilst the other is penta­coordinated by one water and four oxalate O atoms. The coordination around the Cr3+ sites is pseudo-octa­hedral, involving four aqua and two hydroxide O atoms. Adjacent Na atoms are separated by 3.593 (2) Å, whereas the intra­dimer Cr⋯Cr spacing is 2.978 (1) Å. The crystal structure is consolidated by extended relatively weak O—H⋯O hydrogen bonding with O⋯O distances ranging from 2.808 (4) to 3.276 (5) Å.

Related literature

For general background, see: Ferreira et al. (2001[Ferreira, A., Lin, Z., Rocha, J., Morais, C. M., Lopes, M. & Fernandez, C. (2001). Inorg. Chem. 40, 3330-3335.]); Köse et al. (2009[Köse, D. A., Zümreoglu-Karan, B., Hökelek, T. & Sahin, E. (2009). Z. Anorg. Allg. Chem. 635, 563-566.]). For a related structure with a different number of water molecules, see: Scaringe et al. (1977[Scaringe, R. P., Hatfield, W. E. & Hodgson, D. J. (1977). Inorg. Chim. Acta, 22, 175-183.]).

[Scheme 1]

Experimental

Crystal data
  • [CrNa2(C2O4)2(OH)(H2O)]·H2O

  • Mr = 327.06

  • Monoclinic, P 21 /c

  • a = 9.4776 (10) Å

  • b = 8.603 (1) Å

  • c = 12.5353 (14) Å

  • β = 102.503 (2)°

  • V = 997.84 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 173 K

  • 0.60 × 0.12 × 0.10 mm

Data collection
  • Bruker–Nonius X8 Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.832, Tmax = 0.882

  • 13658 measured reflections

  • 2018 independent reflections

  • 1625 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.133

  • S = 1.14

  • 2018 reflections

  • 175 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11B⋯O9i 0.88 (2) 2.23 (2) 3.080 (5) 163 (5)
O11—H11A⋯O6 0.88 (4) 2.53 (4) 3.144 (5) 128 (4)
O11—H11A⋯O3 0.88 (4) 2.25 (4) 2.949 (4) 137 (4)
O10—H10B⋯O5ii 0.88 (4) 2.36 (4) 3.123 (4) 144 (5)
O10—H10A⋯O5iii 0.91 (2) 2.02 (2) 2.922 (5) 179 (4)
O1—H1⋯O11iv 0.85 2.01 2.808 (4) 156
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Scaringe et al. (1977) have previously studied the system Na4[Cr(ox)2OH]2.6H2O (ox = C2O42-), paying special attention to its structural-magnetic correlations. We report herein compound (I) as a novel hydrated form of this system, which involves a different number of water molecules and exhibits a different mode of coordinative polymerization.

Fig. 1 depicts the centrosymmetric anionic dimer, [(C2O4)2Cr(µ-OH)2Cr(C2O4)2]4-, which constitutes the main structural motif of (I). It is virtually identical to the motif reported previously (Scaringe et al.,1977), as revealed by the closely comparable geometric parameters (Table 1). A larger portion of the structure of (I) is shown in Fig. 2, highlighting heptacoordination of Na1, pentacoordination of Na2 by O atoms, and the bridging of these metallic sites by an aqua ligand (O10). The oxygen atom, O11, is seen to be part of a water molecule of crystallization.

Beyond their identical P21/c space group, the two structures present a number of differing features. The crystal data of (I) compare with the reported values (in square brackets) as follows: a = 9.478 (1) [19.530 (12)] Å; b = 8.603 (1) [9.860 (7)] Å; c = 12.535 (1) [12.657 (10)] Å; β = 102.50 [106.93]°; Rfinal = 4.4 [6.1] %; Z = 4 [4]; Dx = 2.177 [1.966] Mgm3-; T(K) = 173 [293]. The asymmetric unit of the reported structure contains six H2O molecules and four crystallographically independent Na+ sites, whereby Na1 and Na3 are bridged by the aqua oxygen atom, WO(2), and Na2 and Na4 by the aqua oxygen atom, WO(1), with each Na+ site assuming coordination number 6. The asymmetric unit of (I), by contrast, contains four Na+ ions (located at two crystallographically independent sites) and four H2O molecules. Note, furthermore, that coordination numbers 5 and 6 by O atoms have been frequently reported in the literature (Scaringe et al., 1977; Ferreira et al., 2001; Köse et al., 2009), but coordination number 7, if any, is rather scarce for Na+. Like in the reported material, the bulk structure of (I) is consolidated by O—H···O bridgings which are, however, stronger in the former than in the latter case (Table 2).

Preliminary observations from our laboratory promisingly suggest that a well conceived and systematically conducted preparative procedure may be applied generally to fabricate a whole range of homologous magnetic materials, provided appropriate paramagnetic transition metal centers are involved.

Related literature top

For general background [to what?], see: Ferreira et al. (2001); Köse et al. (2009). For a related structure, see: Scaringe et al. (1977).

Experimental top

Go In an initial attempt to prepare the targeted material of empirical formula [Ba2(H2O)6][Cr2(OH)2(C2O4)4].H2O, compound (I), instead, was obtained as follows: Cr(NO3)3.9H2O (4.0 g, 10 mmol, Riedel-de Haën, pure) was dissolved at room temperature in H2O (150 ml) and filtered. H2C2O4.2H2O (2.6 g, 20 mmol, Riedel-de Haën, 99.5–100.5%) was dissolved therein. This solution was added dropwise to a suspension of Na2CO3 (1.6 g, 15 mmol, Riedel-de Haën, 99%) and Ba(OH)2.8H2O (3.2 g, 10 mmol, Merck, p.a.) in 200 ml of water, and stirred overnight at ca 70 °C. The violet mass that had formed was filtered off, washed twice with 15 ml H2O and dried between filter papers. A second crop of material was obtained by concentrating the mother liquor to a volume of ca 20 ml, washing the material twice with 5 ml H2O and drying it as above. Recrystallization from oversaturated aqueous solution yielded prismatic violet crystals appropriate for X-ray diffractions.

Refinement top

The water hydrogen atoms were located from a difference Fourier map and refined isotropically, with the O–H distance restrained to 0.88 (4) Å, Uiso = 1.5Ueq (O). Other H atoms, for the OH group, were constrained to ideal geometries, with 0.85 Å.

Structure description top

Scaringe et al. (1977) have previously studied the system Na4[Cr(ox)2OH]2.6H2O (ox = C2O42-), paying special attention to its structural-magnetic correlations. We report herein compound (I) as a novel hydrated form of this system, which involves a different number of water molecules and exhibits a different mode of coordinative polymerization.

Fig. 1 depicts the centrosymmetric anionic dimer, [(C2O4)2Cr(µ-OH)2Cr(C2O4)2]4-, which constitutes the main structural motif of (I). It is virtually identical to the motif reported previously (Scaringe et al.,1977), as revealed by the closely comparable geometric parameters (Table 1). A larger portion of the structure of (I) is shown in Fig. 2, highlighting heptacoordination of Na1, pentacoordination of Na2 by O atoms, and the bridging of these metallic sites by an aqua ligand (O10). The oxygen atom, O11, is seen to be part of a water molecule of crystallization.

Beyond their identical P21/c space group, the two structures present a number of differing features. The crystal data of (I) compare with the reported values (in square brackets) as follows: a = 9.478 (1) [19.530 (12)] Å; b = 8.603 (1) [9.860 (7)] Å; c = 12.535 (1) [12.657 (10)] Å; β = 102.50 [106.93]°; Rfinal = 4.4 [6.1] %; Z = 4 [4]; Dx = 2.177 [1.966] Mgm3-; T(K) = 173 [293]. The asymmetric unit of the reported structure contains six H2O molecules and four crystallographically independent Na+ sites, whereby Na1 and Na3 are bridged by the aqua oxygen atom, WO(2), and Na2 and Na4 by the aqua oxygen atom, WO(1), with each Na+ site assuming coordination number 6. The asymmetric unit of (I), by contrast, contains four Na+ ions (located at two crystallographically independent sites) and four H2O molecules. Note, furthermore, that coordination numbers 5 and 6 by O atoms have been frequently reported in the literature (Scaringe et al., 1977; Ferreira et al., 2001; Köse et al., 2009), but coordination number 7, if any, is rather scarce for Na+. Like in the reported material, the bulk structure of (I) is consolidated by O—H···O bridgings which are, however, stronger in the former than in the latter case (Table 2).

Preliminary observations from our laboratory promisingly suggest that a well conceived and systematically conducted preparative procedure may be applied generally to fabricate a whole range of homologous magnetic materials, provided appropriate paramagnetic transition metal centers are involved.

For general background [to what?], see: Ferreira et al. (2001); Köse et al. (2009). For a related structure, see: Scaringe et al. (1977).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the anionic dimer, [(C2O4)2Cr(µ-OH)2Cr(C2O4)2]4-, in the title compound with atom labeling and numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Larger portion of the structure of (I) projected onto the (-110) crystallographic plane, highlighting the nonmolecular coordinative polymerization
Poly[[µ-aqua-µ-hydroxido-di-µ-oxalato-chromium(III)disodium] monohydrate] top
Crystal data top
[CrNa2(C2O4)2(OH)(H2O)]·H2OF(000) = 652
Mr = 327.06Dx = 2.177 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6874 reflections
a = 9.4776 (10) Åθ = 2.2–26.1°
b = 8.603 (1) ŵ = 1.29 mm1
c = 12.5353 (14) ÅT = 173 K
β = 102.503 (2)°Prism, violet
V = 997.84 (19) Å30.60 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius X8 Kappa APEXII CCD area-detector
diffractometer
2018 independent reflections
Radiation source: fine-focus sealed tube1625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.26 pixels mm-1θmax = 26.4°, θmin = 2.2°
phi and ω scans with narrow framesh = 1111
Absorption correction: multi-scan
(APEX2; Bruker 2005)
k = 1010
Tmin = 0.832, Tmax = 0.882l = 1515
13658 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.054P)2 + 4.054P]
where P = (Fo2 + 2Fc2)/3
2018 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.85 e Å3
6 restraintsΔρmin = 0.80 e Å3
Crystal data top
[CrNa2(C2O4)2(OH)(H2O)]·H2OV = 997.84 (19) Å3
Mr = 327.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4776 (10) ŵ = 1.29 mm1
b = 8.603 (1) ÅT = 173 K
c = 12.5353 (14) Å0.60 × 0.12 × 0.10 mm
β = 102.503 (2)°
Data collection top
Bruker–Nonius X8 Kappa APEXII CCD area-detector
diffractometer
2018 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker 2005)
1625 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.882Rint = 0.037
13658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.85 e Å3
2018 reflectionsΔρmin = 0.80 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.60366 (7)0.06037 (8)0.43610 (5)0.0210 (2)
Na10.36188 (17)0.3337 (2)0.48733 (13)0.0265 (4)
Na20.14538 (19)0.3470 (2)0.21413 (15)0.0327 (4)
O10.5272 (3)0.1171 (4)0.5646 (2)0.0237 (6)
H10.58190.15070.62290.028*
O20.7636 (3)0.0653 (3)0.5189 (2)0.0231 (6)
O30.7506 (3)0.2268 (4)0.4659 (2)0.0249 (6)
O40.9836 (3)0.0410 (4)0.6268 (2)0.0298 (7)
O50.9674 (3)0.2755 (4)0.5739 (3)0.0313 (7)
O60.6501 (3)0.0117 (4)0.2928 (2)0.0249 (6)
O70.4467 (3)0.1816 (4)0.3427 (2)0.0242 (6)
O80.5513 (3)0.0306 (4)0.1139 (2)0.0281 (7)
O90.3141 (3)0.1684 (4)0.1719 (2)0.0277 (7)
C10.8758 (4)0.0129 (5)0.5650 (3)0.0241 (9)
C20.8674 (4)0.1875 (6)0.5347 (3)0.0256 (9)
C30.4236 (4)0.1425 (5)0.2411 (3)0.0230 (8)
C40.5518 (4)0.0536 (5)0.2099 (3)0.0222 (8)
O100.1206 (3)0.4049 (4)0.3955 (3)0.0344 (8)
H10A0.094 (5)0.504 (2)0.405 (5)0.051*
H10B0.058 (5)0.345 (4)0.419 (4)0.051*
O110.7568 (4)0.3460 (4)0.2464 (3)0.0370 (8)
H11A0.777 (6)0.271 (4)0.295 (3)0.055*
H11B0.756 (6)0.438 (3)0.277 (4)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0155 (3)0.0329 (4)0.0148 (3)0.0002 (3)0.0036 (2)0.0002 (3)
Na10.0221 (8)0.0386 (10)0.0185 (8)0.0001 (7)0.0035 (6)0.0001 (7)
Na20.0212 (9)0.0438 (11)0.0309 (9)0.0028 (8)0.0005 (7)0.0031 (8)
O10.0202 (14)0.0366 (17)0.0142 (13)0.0032 (13)0.0033 (10)0.0020 (12)
O20.0176 (13)0.0314 (16)0.0195 (14)0.0025 (12)0.0022 (11)0.0005 (12)
O30.0201 (14)0.0319 (16)0.0220 (14)0.0023 (12)0.0031 (11)0.0025 (12)
O40.0205 (14)0.0414 (19)0.0256 (15)0.0007 (13)0.0006 (12)0.0036 (14)
O50.0218 (15)0.0393 (18)0.0310 (16)0.0061 (14)0.0015 (13)0.0006 (14)
O60.0194 (14)0.0391 (18)0.0168 (13)0.0036 (13)0.0050 (11)0.0013 (12)
O70.0216 (14)0.0355 (17)0.0163 (13)0.0012 (12)0.0060 (11)0.0006 (12)
O80.0287 (16)0.0378 (18)0.0178 (14)0.0059 (13)0.0054 (12)0.0004 (13)
O90.0215 (14)0.0433 (19)0.0169 (14)0.0033 (13)0.0012 (11)0.0011 (13)
C10.021 (2)0.038 (2)0.0150 (18)0.0019 (18)0.0076 (16)0.0012 (17)
C20.0187 (19)0.042 (3)0.0176 (19)0.0016 (18)0.0066 (15)0.0012 (18)
C30.022 (2)0.028 (2)0.0195 (19)0.0008 (17)0.0059 (15)0.0004 (17)
C40.0182 (18)0.028 (2)0.0199 (19)0.0029 (17)0.0043 (15)0.0018 (16)
O100.0274 (17)0.042 (2)0.0349 (17)0.0011 (15)0.0096 (14)0.0058 (16)
O110.0386 (19)0.046 (2)0.0235 (16)0.0009 (17)0.0009 (14)0.0064 (15)
Geometric parameters (Å, º) top
Cr1—O21.965 (3)O2—C11.286 (5)
Cr1—O11.965 (3)O2—Na1i2.591 (3)
Cr1—O1i1.966 (3)O3—C21.292 (5)
Cr1—O31.976 (3)O4—C11.231 (5)
Cr1—O71.979 (3)O4—Na2v2.368 (4)
Cr1—O61.985 (3)O5—C21.230 (5)
Cr1—Cr1i2.9781 (13)O5—Na2v2.400 (4)
Na1—O8ii2.368 (3)O6—C41.288 (5)
Na1—O102.406 (4)O6—Na2vi2.418 (3)
Na1—O8iii2.423 (3)O7—C31.289 (5)
Na1—O9iii2.452 (3)O8—C41.219 (5)
Na1—O12.492 (3)O8—Na1vi2.368 (3)
Na1—O72.505 (3)O8—Na1vii2.423 (3)
Na1—O2i2.591 (3)O9—C31.220 (5)
Na1—C3iii3.114 (4)O9—Na1vii2.452 (3)
Na1—C4iii3.129 (4)C1—C21.547 (7)
Na2—O92.359 (4)C1—Na2v3.067 (5)
Na2—O4iv2.368 (4)C2—Na2v3.086 (4)
Na2—O102.389 (4)C3—C41.556 (6)
Na2—O5iv2.400 (4)C3—Na1vii3.114 (4)
Na2—O6ii2.418 (3)C4—Na1vii3.129 (4)
Na2—C1iv3.067 (5)O10—H10A0.905 (19)
Na2—C2iv3.086 (4)O10—H10B0.88 (4)
Na2—C33.127 (5)O11—H11A0.88 (4)
O1—Cr1i1.966 (3)O11—H11B0.879 (19)
O1—H10.8500
O2—Cr1—O194.76 (12)O9—Na2—O4iv139.26 (13)
O2—Cr1—O1i89.36 (12)O9—Na2—O10124.12 (13)
O1—Cr1—O1i81.50 (13)O4iv—Na2—O1096.07 (13)
O2—Cr1—O382.37 (12)O9—Na2—O5iv87.29 (12)
O1—Cr1—O392.00 (12)O4iv—Na2—O5iv71.87 (12)
O1i—Cr1—O3169.05 (12)O10—Na2—O5iv126.18 (13)
O2—Cr1—O7175.76 (12)O9—Na2—O6ii77.65 (12)
O1—Cr1—O789.46 (12)O4iv—Na2—O6ii90.80 (12)
O1i—Cr1—O790.79 (12)O10—Na2—O6ii99.01 (12)
O3—Cr1—O797.99 (13)O5iv—Na2—O6ii132.29 (13)
O2—Cr1—O693.73 (12)O9—Na2—C1iv129.40 (12)
O1—Cr1—O6170.95 (12)O4iv—Na2—C1iv21.68 (12)
O1i—Cr1—O695.49 (12)O10—Na2—C1iv104.93 (13)
O3—Cr1—O692.21 (13)O5iv—Na2—C1iv50.62 (12)
O7—Cr1—O682.03 (12)O6ii—Na2—C1iv108.42 (13)
O2—Cr1—Cr1i92.71 (9)O9—Na2—C2iv106.68 (12)
O1—Cr1—Cr1i40.76 (9)O4iv—Na2—C2iv50.63 (12)
O1i—Cr1—Cr1i40.74 (8)O10—Na2—C2iv118.00 (13)
O3—Cr1—Cr1i132.15 (9)O5iv—Na2—C2iv21.61 (12)
O7—Cr1—Cr1i90.16 (9)O6ii—Na2—C2iv126.49 (13)
O6—Cr1—Cr1i135.64 (10)C1iv—Na2—C2iv29.13 (12)
O2—Cr1—Na1138.28 (9)O9—Na2—C320.12 (10)
O1—Cr1—Na145.45 (9)O4iv—Na2—C3153.25 (13)
O1i—Cr1—Na194.96 (9)O10—Na2—C3105.60 (12)
O3—Cr1—Na186.57 (9)O5iv—Na2—C3105.94 (12)
O7—Cr1—Na145.92 (9)O6ii—Na2—C370.73 (12)
O6—Cr1—Na1126.90 (9)C1iv—Na2—C3149.17 (12)
Cr1i—Cr1—Na166.06 (4)C2iv—Na2—C3126.28 (13)
O2—Cr1—Na1i46.42 (9)O9—Na2—Na185.31 (9)
O1—Cr1—Na1i92.56 (10)O4iv—Na2—Na1129.94 (10)
O1i—Cr1—Na1i43.47 (9)O10—Na2—Na141.66 (9)
O3—Cr1—Na1i128.78 (9)O5iv—Na2—Na1148.19 (11)
O7—Cr1—Na1i133.03 (9)O6ii—Na2—Na175.87 (8)
O6—Cr1—Na1i91.04 (10)C1iv—Na2—Na1145.29 (10)
Cr1i—Cr1—Na1i63.28 (4)C2iv—Na2—Na1155.93 (10)
Na1—Cr1—Na1i129.34 (3)C3—Na2—Na165.47 (8)
O8ii—Na1—O1088.06 (12)O9—Na2—Na1vii31.00 (8)
O8ii—Na1—O8iii73.25 (12)O4iv—Na2—Na1vii108.28 (10)
O10—Na1—O8iii133.10 (14)O10—Na2—Na1vii153.53 (10)
O8ii—Na1—O9iii131.85 (13)O5iv—Na2—Na1vii72.98 (9)
O10—Na1—O9iii95.89 (12)O6ii—Na2—Na1vii71.10 (9)
O8iii—Na1—O9iii69.37 (11)C1iv—Na2—Na1vii101.51 (9)
O8ii—Na1—O1118.75 (12)C2iv—Na2—Na1vii86.29 (9)
O10—Na1—O1145.98 (14)C3—Na2—Na1vii48.18 (8)
O8iii—Na1—O177.96 (11)Na1—Na2—Na1vii112.08 (6)
O9iii—Na1—O181.77 (11)Cr1—O1—Cr1i98.50 (13)
O8ii—Na1—O777.46 (11)Cr1—O1—Na1100.35 (12)
O10—Na1—O7101.98 (12)Cr1i—O1—Na1103.65 (12)
O8iii—Na1—O7114.66 (12)Cr1—O1—H1121.6
O9iii—Na1—O7146.39 (13)Cr1i—O1—H1122.4
O1—Na1—O767.50 (10)Na1—O1—H1107.1
O8ii—Na1—O2i146.29 (12)C1—O2—Cr1114.7 (3)
O10—Na1—O2i80.21 (12)C1—O2—Na1i144.1 (3)
O8iii—Na1—O2i136.02 (12)Cr1—O2—Na1i100.25 (12)
O9iii—Na1—O2i81.06 (11)C2—O3—Cr1113.8 (3)
O1—Na1—O2i65.86 (10)C1—O4—Na2v113.0 (3)
O7—Na1—O2i74.32 (10)C2—O5—Na2v112.4 (3)
O8ii—Na1—C3iii119.34 (12)C4—O6—Cr1114.1 (2)
O10—Na1—C3iii114.87 (12)C4—O6—Na2vi125.5 (2)
O8iii—Na1—C3iii49.52 (11)Cr1—O6—Na2vi119.51 (13)
O9iii—Na1—C3iii21.37 (10)C3—O7—Cr1113.1 (3)
O1—Na1—C3iii71.88 (11)C3—O7—Na1147.0 (3)
O7—Na1—C3iii139.02 (12)Cr1—O7—Na199.50 (11)
O2i—Na1—C3iii94.18 (11)C4—O8—Na1vi135.9 (3)
O8ii—Na1—C4iii93.25 (12)C4—O8—Na1vii114.3 (3)
O10—Na1—C4iii130.64 (13)Na1vi—O8—Na1vii106.75 (12)
O8iii—Na1—C4iii20.80 (10)C3—O9—Na2118.2 (3)
O9iii—Na1—C4iii49.37 (10)C3—O9—Na1vii111.6 (3)
O1—Na1—C4iii72.13 (11)Na2—O9—Na1vii119.28 (14)
O7—Na1—C4iii126.47 (11)O4—C1—O2125.4 (4)
O2i—Na1—C4iii118.33 (11)O4—C1—C2120.8 (4)
C3iii—Na1—C4iii28.86 (10)O2—C1—C2113.8 (3)
O8ii—Na1—Cr193.80 (9)O4—C1—Na2v45.3 (2)
O10—Na1—Cr1133.43 (11)O2—C1—Na2v168.2 (3)
O8iii—Na1—Cr191.29 (9)C2—C1—Na2v76.1 (2)
O9iii—Na1—Cr1115.97 (10)O5—C2—O3125.5 (4)
O1—Na1—Cr134.20 (7)O5—C2—C1120.3 (4)
O7—Na1—Cr134.58 (7)O3—C2—C1114.1 (4)
O2i—Na1—Cr172.85 (8)O5—C2—Na2v46.0 (2)
C3iii—Na1—Cr1104.50 (9)O3—C2—Na2v169.9 (3)
C4iii—Na1—Cr195.76 (9)C1—C2—Na2v74.8 (2)
O8ii—Na1—Cr1i144.36 (10)O9—C3—O7126.2 (4)
O10—Na1—Cr1i113.46 (10)O9—C3—C4120.1 (4)
O8iii—Na1—Cr1i105.90 (9)O7—C3—C4113.7 (3)
O9iii—Na1—Cr1i76.17 (9)O9—C3—Na1vii47.1 (2)
O1—Na1—Cr1i32.88 (7)O7—C3—Na1vii161.1 (3)
O7—Na1—Cr1i70.66 (8)C4—C3—Na1vii76.1 (2)
O2i—Na1—Cr1i33.33 (7)O7—C3—Na285.3 (2)
C3iii—Na1—Cr1i78.41 (9)C4—C3—Na2159.3 (3)
C4iii—Na1—Cr1i93.08 (9)Na1vii—C3—Na283.39 (11)
Cr1—Na1—Cr1i50.66 (3)O8—C4—O6126.7 (4)
O8ii—Na1—Na270.09 (9)O8—C4—C3119.5 (4)
O10—Na1—Na241.28 (9)O6—C4—C3113.8 (3)
O8iii—Na1—Na2142.94 (10)O6—C4—Na1vii169.2 (3)
O9iii—Na1—Na2135.70 (9)C3—C4—Na1vii75.1 (2)
O1—Na1—Na2125.14 (9)Na2—O10—Na197.06 (13)
O7—Na1—Na262.18 (8)Na2—O10—H10A114 (3)
O2i—Na1—Na280.56 (8)Na1—O10—H10A116 (4)
C3iii—Na1—Na2156.03 (10)Na2—O10—H10B114 (3)
C4iii—Na1—Na2160.00 (10)Na1—O10—H10B109 (3)
Cr1—Na1—Na296.31 (5)H10A—O10—H10B106 (3)
Cr1i—Na1—Na2106.90 (6)H11A—O11—H11B112 (3)
O2—Cr1—Na1—O8ii117.77 (15)O8ii—Na1—O1—Cr1i149.18 (12)
O1—Cr1—Na1—O8ii139.46 (15)O10—Na1—O1—Cr1i11.1 (3)
O1i—Cr1—Na1—O8ii147.61 (12)O8iii—Na1—O1—Cr1i147.75 (13)
O3—Cr1—Na1—O8ii43.26 (12)O9iii—Na1—O1—Cr1i77.21 (12)
O7—Cr1—Na1—O8ii61.33 (14)O7—Na1—O1—Cr1i88.88 (13)
O6—Cr1—Na1—O8ii46.93 (15)O2i—Na1—O1—Cr1i6.63 (10)
Cr1i—Cr1—Na1—O8ii177.08 (9)C3iii—Na1—O1—Cr1i96.70 (13)
Na1i—Cr1—Na1—O8ii177.08 (9)C4iii—Na1—O1—Cr1i127.07 (13)
O2—Cr1—Na1—O10151.31 (18)Cr1—Na1—O1—Cr1i101.47 (15)
O1—Cr1—Na1—O10129.62 (19)Na2—Na1—O1—Cr1i64.28 (14)
O1i—Cr1—Na1—O1056.69 (16)O1—Cr1—O2—C182.6 (3)
O3—Cr1—Na1—O10134.18 (16)O1i—Cr1—O2—C1164.0 (3)
O7—Cr1—Na1—O1029.59 (17)O3—Cr1—O2—C18.8 (3)
O6—Cr1—Na1—O1043.99 (19)O6—Cr1—O2—C1100.5 (3)
Cr1i—Cr1—Na1—O1086.16 (14)Cr1i—Cr1—O2—C1123.4 (3)
Na1i—Cr1—Na1—O1086.16 (14)Na1—Cr1—O2—C167.3 (3)
O2—Cr1—Na1—O8iii44.47 (16)Na1i—Cr1—O2—C1171.6 (3)
O1—Cr1—Na1—O8iii66.16 (14)O1—Cr1—O2—Na1i89.00 (12)
O1i—Cr1—Na1—O8iii139.09 (11)O1i—Cr1—O2—Na1i7.58 (12)
O3—Cr1—Na1—O8iii30.04 (12)O3—Cr1—O2—Na1i179.61 (12)
O7—Cr1—Na1—O8iii134.63 (15)O6—Cr1—O2—Na1i87.88 (13)
O6—Cr1—Na1—O8iii120.23 (14)Cr1i—Cr1—O2—Na1i48.20 (9)
Cr1i—Cr1—Na1—O8iii109.62 (9)Na1—Cr1—O2—Na1i104.33 (12)
Na1i—Cr1—Na1—O8iii109.62 (9)O2—Cr1—O3—C29.6 (3)
O2—Cr1—Na1—O9iii23.14 (18)O1—Cr1—O3—C284.9 (3)
O1—Cr1—Na1—O9iii1.45 (14)O1i—Cr1—O3—C231.6 (8)
O1i—Cr1—Na1—O9iii71.48 (13)O7—Cr1—O3—C2174.6 (3)
O3—Cr1—Na1—O9iii97.65 (13)O6—Cr1—O3—C2103.1 (3)
O7—Cr1—Na1—O9iii157.76 (17)Cr1i—Cr1—O3—C277.1 (3)
O6—Cr1—Na1—O9iii172.16 (14)Na1—Cr1—O3—C2130.1 (3)
Cr1i—Cr1—Na1—O9iii42.01 (10)Na1i—Cr1—O3—C210.0 (3)
Na1i—Cr1—Na1—O9iii42.01 (10)O2—Cr1—O6—C4168.9 (3)
O2—Cr1—Na1—O121.69 (18)O1i—Cr1—O6—C479.2 (3)
O1i—Cr1—Na1—O172.93 (16)O3—Cr1—O6—C4108.6 (3)
O3—Cr1—Na1—O196.20 (15)O7—Cr1—O6—C410.9 (3)
O7—Cr1—Na1—O1159.21 (18)Cr1i—Cr1—O6—C471.2 (3)
O6—Cr1—Na1—O1173.61 (17)Na1—Cr1—O6—C421.2 (3)
Cr1i—Cr1—Na1—O143.46 (12)Na1i—Cr1—O6—C4122.5 (3)
Na1i—Cr1—Na1—O143.46 (12)O2—Cr1—O6—Na2vi0.77 (18)
O2—Cr1—Na1—O7179.10 (18)O1i—Cr1—O6—Na2vi90.48 (17)
O1—Cr1—Na1—O7159.21 (18)O3—Cr1—O6—Na2vi81.72 (17)
O1i—Cr1—Na1—O786.29 (15)O7—Cr1—O6—Na2vi179.49 (18)
O3—Cr1—Na1—O7104.59 (15)Cr1i—Cr1—O6—Na2vi98.50 (16)
O6—Cr1—Na1—O714.40 (17)Na1—Cr1—O6—Na2vi169.10 (10)
Cr1i—Cr1—Na1—O7115.75 (13)Na1i—Cr1—O6—Na2vi47.15 (15)
Na1i—Cr1—Na1—O7115.75 (13)O1—Cr1—O7—C3159.9 (3)
O2—Cr1—Na1—O2i93.80 (14)O1i—Cr1—O7—C378.4 (3)
O1—Cr1—Na1—O2i72.11 (14)O3—Cr1—O7—C3108.1 (3)
O1i—Cr1—Na1—O2i0.82 (11)O6—Cr1—O7—C317.0 (3)
O3—Cr1—Na1—O2i168.31 (11)Cr1i—Cr1—O7—C3119.2 (3)
O7—Cr1—Na1—O2i87.10 (14)Na1—Cr1—O7—C3174.6 (3)
O6—Cr1—Na1—O2i101.50 (14)Na1i—Cr1—O7—C366.9 (3)
Cr1i—Cr1—Na1—O2i28.65 (7)O1—Cr1—O7—Na114.65 (13)
Na1i—Cr1—Na1—O2i28.65 (7)O1i—Cr1—O7—Na196.15 (12)
O2—Cr1—Na1—C3iii3.86 (17)O3—Cr1—O7—Na177.29 (13)
O1—Cr1—Na1—C3iii17.83 (14)O6—Cr1—O7—Na1168.42 (14)
O1i—Cr1—Na1—C3iii90.76 (12)Cr1i—Cr1—O7—Na155.41 (10)
O3—Cr1—Na1—C3iii78.37 (12)Na1i—Cr1—O7—Na1107.64 (11)
O7—Cr1—Na1—C3iii177.04 (16)O8ii—Na1—O7—C372.9 (5)
O6—Cr1—Na1—C3iii168.56 (14)O10—Na1—O7—C312.3 (5)
Cr1i—Cr1—Na1—C3iii61.29 (9)O8iii—Na1—O7—C3137.7 (5)
Na1i—Cr1—Na1—C3iii61.29 (9)O9iii—Na1—O7—C3132.9 (5)
O2—Cr1—Na1—C4iii24.11 (16)O1—Na1—O7—C3158.3 (5)
O1—Cr1—Na1—C4iii45.80 (14)O2i—Na1—O7—C388.4 (5)
O1i—Cr1—Na1—C4iii118.73 (11)C3iii—Na1—O7—C3166.4 (4)
O3—Cr1—Na1—C4iii50.39 (12)C4iii—Na1—O7—C3157.6 (5)
O7—Cr1—Na1—C4iii154.98 (15)Cr1—Na1—O7—C3170.8 (6)
O6—Cr1—Na1—C4iii140.59 (14)Cr1i—Na1—O7—C3123.2 (5)
Cr1i—Cr1—Na1—C4iii89.26 (9)Na2—Na1—O7—C31.0 (5)
Na1i—Cr1—Na1—C4iii89.27 (9)O8ii—Na1—O7—Cr1116.25 (13)
O2—Cr1—Na1—Cr1i65.15 (13)O10—Na1—O7—Cr1158.49 (13)
O1—Cr1—Na1—Cr1i43.46 (12)O8iii—Na1—O7—Cr151.52 (16)
O1i—Cr1—Na1—Cr1i29.47 (8)O9iii—Na1—O7—Cr137.9 (3)
O3—Cr1—Na1—Cr1i139.66 (9)O1—Na1—O7—Cr112.47 (11)
O7—Cr1—Na1—Cr1i115.75 (13)O2i—Na1—O7—Cr182.38 (12)
O6—Cr1—Na1—Cr1i130.15 (12)C3iii—Na1—O7—Cr14.4 (2)
Na1i—Cr1—Na1—Cr1i0.0C4iii—Na1—O7—Cr131.54 (19)
O2—Cr1—Na1—Na2171.87 (13)Cr1i—Na1—O7—Cr147.58 (9)
O1—Cr1—Na1—Na2150.17 (14)Na2—Na1—O7—Cr1169.83 (14)
O1i—Cr1—Na1—Na277.25 (9)O4iv—Na2—O9—C3144.0 (3)
O3—Cr1—Na1—Na2113.63 (9)O10—Na2—O9—C325.2 (4)
O7—Cr1—Na1—Na29.04 (12)O5iv—Na2—O9—C3158.2 (3)
O6—Cr1—Na1—Na223.44 (13)O6ii—Na2—O9—C367.4 (3)
Cr1i—Cr1—Na1—Na2106.71 (5)C1iv—Na2—O9—C3171.2 (3)
Na1i—Cr1—Na1—Na2106.71 (5)C2iv—Na2—O9—C3167.9 (3)
O8ii—Na1—Na2—O989.19 (13)Na1—Na2—O9—C39.2 (3)
O10—Na1—Na2—O9159.84 (17)Na1vii—Na2—O9—C3141.1 (4)
O8iii—Na1—Na2—O998.03 (19)O4iv—Na2—O9—Na1vii2.8 (3)
O9iii—Na1—Na2—O9140.65 (12)O10—Na2—O9—Na1vii166.37 (15)
O1—Na1—Na2—O922.57 (14)O5iv—Na2—O9—Na1vii60.65 (17)
O7—Na1—Na2—O93.21 (12)O6ii—Na2—O9—Na1vii73.77 (16)
O2i—Na1—Na2—O973.96 (11)C1iv—Na2—O9—Na1vii30.1 (2)
C3iii—Na1—Na2—O9152.9 (3)C2iv—Na2—O9—Na1vii50.98 (19)
C4iii—Na1—Na2—O9124.2 (3)C3—Na2—O9—Na1vii141.1 (4)
Cr1—Na1—Na2—O92.58 (10)Na1—Na2—O9—Na1vii150.31 (14)
Cr1i—Na1—Na2—O953.31 (10)Na2v—O4—C1—O2170.5 (3)
O8ii—Na1—Na2—O4iv68.17 (16)Na2v—O4—C1—C210.5 (4)
O10—Na1—Na2—O4iv42.79 (18)Cr1—O2—C1—O4174.5 (3)
O8iii—Na1—Na2—O4iv59.3 (2)Na1i—O2—C1—O48.7 (7)
O9iii—Na1—Na2—O4iv62.0 (2)Cr1—O2—C1—C26.5 (4)
O1—Na1—Na2—O4iv179.93 (15)Na1i—O2—C1—C2172.3 (3)
O7—Na1—Na2—O4iv154.15 (16)Cr1—O2—C1—Na2v139.7 (13)
O2i—Na1—Na2—O4iv128.68 (15)Na1i—O2—C1—Na2v26.1 (17)
C3iii—Na1—Na2—O4iv49.8 (3)Na2v—O5—C2—O3172.8 (3)
C4iii—Na1—Na2—O4iv33.1 (3)Na2v—O5—C2—C18.3 (4)
Cr1—Na1—Na2—O4iv159.94 (13)Cr1—O3—C2—O5172.4 (3)
Cr1i—Na1—Na2—O4iv149.33 (13)Cr1—O3—C2—C18.7 (4)
O8ii—Na1—Na2—O10110.96 (17)Cr1—O3—C2—Na2v141.6 (15)
O8iii—Na1—Na2—O10102.1 (2)O4—C1—C2—O51.5 (6)
O9iii—Na1—Na2—O1019.20 (19)O2—C1—C2—O5179.5 (4)
O1—Na1—Na2—O10137.27 (18)Na2v—C1—C2—O56.2 (3)
O7—Na1—Na2—O10163.05 (17)O4—C1—C2—O3177.5 (4)
O2i—Na1—Na2—O1085.88 (15)O2—C1—C2—O31.6 (5)
C3iii—Na1—Na2—O107.0 (3)Na2v—C1—C2—O3174.8 (3)
C4iii—Na1—Na2—O1075.9 (3)O4—C1—C2—Na2v7.7 (3)
Cr1—Na1—Na2—O10157.27 (15)O2—C1—C2—Na2v173.3 (3)
Cr1i—Na1—Na2—O10106.54 (14)Na2—O9—C3—O713.0 (6)
O8ii—Na1—Na2—O5iv166.4 (2)Na1vii—O9—C3—O7156.9 (4)
O10—Na1—Na2—O5iv82.7 (2)Na2—O9—C3—C4167.3 (3)
O8iii—Na1—Na2—O5iv175.2 (2)Na1vii—O9—C3—C423.4 (5)
O9iii—Na1—Na2—O5iv63.5 (3)Na2—O9—C3—Na1vii144.0 (4)
O1—Na1—Na2—O5iv54.6 (2)Na1vii—O9—C3—Na2144.0 (4)
O7—Na1—Na2—O5iv80.4 (2)Cr1—O7—C3—O9160.5 (4)
O2i—Na1—Na2—O5iv3.2 (2)Na1—O7—C3—O99.6 (8)
C3iii—Na1—Na2—O5iv75.7 (3)Cr1—O7—C3—C419.2 (4)
C4iii—Na1—Na2—O5iv158.6 (3)Na1—O7—C3—C4170.7 (3)
Cr1—Na1—Na2—O5iv74.6 (2)Cr1—O7—C3—Na1vii137.3 (8)
Cr1i—Na1—Na2—O5iv23.9 (2)Na1—O7—C3—Na1vii52.6 (12)
O8ii—Na1—Na2—O6ii10.76 (12)Cr1—O7—C3—Na2169.14 (17)
O10—Na1—Na2—O6ii121.73 (17)Na1—O7—C3—Na21.0 (5)
O8iii—Na1—Na2—O6ii19.60 (19)O4iv—Na2—C3—O958.6 (5)
O9iii—Na1—Na2—O6ii140.92 (17)O10—Na2—C3—O9158.5 (3)
O1—Na1—Na2—O6ii101.00 (13)O5iv—Na2—C3—O922.7 (3)
O7—Na1—Na2—O6ii75.22 (12)O6ii—Na2—C3—O9107.2 (3)
O2i—Na1—Na2—O6ii152.39 (11)C1iv—Na2—C3—O913.3 (4)
C3iii—Na1—Na2—O6ii128.7 (3)C2iv—Na2—C3—O914.5 (4)
C4iii—Na1—Na2—O6ii45.8 (3)Na1—Na2—C3—O9170.0 (3)
Cr1—Na1—Na2—O6ii81.01 (9)Na1vii—Na2—C3—O925.7 (3)
Cr1i—Na1—Na2—O6ii131.74 (9)O9—Na2—C3—O7169.5 (5)
O8ii—Na1—Na2—C1iv91.3 (2)O4iv—Na2—C3—O7131.9 (3)
O10—Na1—Na2—C1iv19.7 (2)O10—Na2—C3—O711.0 (3)
O8iii—Na1—Na2—C1iv82.5 (2)O5iv—Na2—C3—O7146.8 (2)
O9iii—Na1—Na2—C1iv38.9 (3)O6ii—Na2—C3—O783.3 (2)
O1—Na1—Na2—C1iv156.94 (19)C1iv—Na2—C3—O7177.1 (3)
O7—Na1—Na2—C1iv177.3 (2)C2iv—Na2—C3—O7155.1 (2)
O2i—Na1—Na2—C1iv105.5 (2)Na1—Na2—C3—O70.4 (2)
C3iii—Na1—Na2—C1iv26.6 (3)Na1vii—Na2—C3—O7164.8 (3)
C4iii—Na1—Na2—C1iv56.3 (3)O9—Na2—C3—C432.6 (7)
Cr1—Na1—Na2—C1iv176.93 (18)O4iv—Na2—C3—C426.0 (10)
Cr1i—Na1—Na2—C1iv126.20 (18)O10—Na2—C3—C4168.9 (8)
O8ii—Na1—Na2—C2iv149.3 (3)O5iv—Na2—C3—C455.3 (8)
O10—Na1—Na2—C2iv38.4 (3)O6ii—Na2—C3—C474.6 (8)
O8iii—Na1—Na2—C2iv140.5 (3)C1iv—Na2—C3—C419.2 (9)
O9iii—Na1—Na2—C2iv19.2 (3)C2iv—Na2—C3—C447.0 (8)
O1—Na1—Na2—C2iv98.9 (3)Na1—Na2—C3—C4157.5 (8)
O7—Na1—Na2—C2iv124.7 (3)Na1vii—Na2—C3—C46.9 (7)
O2i—Na1—Na2—C2iv47.5 (3)O9—Na2—C3—Na1vii25.7 (3)
C3iii—Na1—Na2—C2iv31.4 (4)O4iv—Na2—C3—Na1vii32.9 (3)
C4iii—Na1—Na2—C2iv114.3 (4)O10—Na2—C3—Na1vii175.79 (12)
Cr1—Na1—Na2—C2iv118.9 (3)O5iv—Na2—C3—Na1vii48.39 (13)
Cr1i—Na1—Na2—C2iv68.2 (3)O6ii—Na2—C3—Na1vii81.51 (11)
O8ii—Na1—Na2—C385.74 (12)C1iv—Na2—C3—Na1vii12.4 (3)
O10—Na1—Na2—C3163.30 (17)C2iv—Na2—C3—Na1vii40.15 (17)
O8iii—Na1—Na2—C394.57 (19)Na1—Na2—C3—Na1vii164.35 (11)
O9iii—Na1—Na2—C3144.10 (18)Na1vi—O8—C4—O632.1 (7)
O1—Na1—Na2—C326.02 (13)Na1vii—O8—C4—O6170.9 (4)
O7—Na1—Na2—C30.24 (12)Na1vi—O8—C4—C3148.0 (3)
O2i—Na1—Na2—C377.41 (11)Na1vii—O8—C4—C39.0 (5)
C3iii—Na1—Na2—C3156.3 (2)Na1vi—O8—C4—Na1vii157.0 (5)
C4iii—Na1—Na2—C3120.8 (3)Cr1—O6—C4—O8176.3 (4)
Cr1—Na1—Na2—C36.03 (9)Na2vi—O6—C4—O87.4 (6)
Cr1i—Na1—Na2—C356.76 (10)Cr1—O6—C4—C33.7 (4)
O8ii—Na1—Na2—Na1vii73.21 (9)Na2vi—O6—C4—C3172.7 (3)
O10—Na1—Na2—Na1vii175.83 (16)Cr1—O6—C4—Na1vii147.1 (15)
O8iii—Na1—Na2—Na1vii82.04 (16)Na2vi—O6—C4—Na1vii43.9 (18)
O9iii—Na1—Na2—Na1vii156.63 (15)O9—C3—C4—O810.8 (6)
O1—Na1—Na2—Na1vii38.55 (12)O7—C3—C4—O8169.4 (4)
O7—Na1—Na2—Na1vii12.77 (9)Na1vii—C3—C4—O86.6 (4)
O2i—Na1—Na2—Na1vii89.94 (9)Na2—C3—C4—O813.6 (10)
C3iii—Na1—Na2—Na1vii168.9 (3)O9—C3—C4—O6169.3 (4)
C4iii—Na1—Na2—Na1vii108.2 (3)O7—C3—C4—O610.5 (5)
Cr1—Na1—Na2—Na1vii18.56 (6)Na1vii—C3—C4—O6173.3 (4)
Cr1i—Na1—Na2—Na1vii69.29 (7)Na2—C3—C4—O6166.3 (6)
O2—Cr1—O1—Cr1i88.64 (13)O9—C3—C4—Na1vii17.4 (4)
O1i—Cr1—O1—Cr1i0.0O7—C3—C4—Na1vii162.9 (4)
O3—Cr1—O1—Cr1i171.14 (13)Na2—C3—C4—Na1vii7.0 (8)
O7—Cr1—O1—Cr1i90.88 (13)O9—Na2—O10—Na124.5 (2)
Na1—Cr1—O1—Cr1i105.65 (14)O4iv—Na2—O10—Na1148.41 (13)
Na1i—Cr1—O1—Cr1i42.17 (10)O5iv—Na2—O10—Na1139.64 (15)
O2—Cr1—O1—Na1165.71 (12)O6ii—Na2—O10—Na156.63 (15)
O1i—Cr1—O1—Na1105.65 (14)C1iv—Na2—O10—Na1168.56 (13)
O3—Cr1—O1—Na183.21 (13)C2iv—Na2—O10—Na1163.34 (14)
O7—Cr1—O1—Na114.77 (13)C3—Na2—O10—Na115.75 (16)
Cr1i—Cr1—O1—Na1105.65 (14)Na1vii—Na2—O10—Na18.7 (3)
Na1i—Cr1—O1—Na1147.82 (8)O8ii—Na1—O10—Na261.46 (14)
O8ii—Na1—O1—Cr147.71 (16)O8iii—Na1—O10—Na2126.21 (16)
O10—Na1—O1—Cr190.3 (2)O9iii—Na1—O10—Na2166.65 (13)
O8iii—Na1—O1—Cr1110.77 (13)O1—Na1—O10—Na282.6 (2)
O9iii—Na1—O1—Cr1178.69 (13)O7—Na1—O10—Na215.28 (15)
O7—Na1—O1—Cr112.59 (11)O2i—Na1—O10—Na286.80 (13)
O2i—Na1—O1—Cr194.84 (13)C3iii—Na1—O10—Na2176.89 (13)
C3iii—Na1—O1—Cr1161.83 (14)C4iii—Na1—O10—Na2154.08 (14)
C4iii—Na1—O1—Cr1131.45 (14)Cr1—Na1—O10—Na231.93 (19)
Cr1i—Na1—O1—Cr1101.47 (15)Cr1i—Na1—O10—Na289.20 (12)
Na2—Na1—O1—Cr137.20 (16)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11B···O9ii0.88 (2)2.23 (2)3.080 (5)163 (5)
O11—H11A···O60.88 (4)2.53 (4)3.144 (5)128 (4)
O11—H11A···O30.88 (4)2.25 (4)2.949 (4)137 (4)
O10—H10B···O5viii0.88 (4)2.36 (4)3.123 (4)144 (5)
O10—H10A···O5ix0.91 (2)2.02 (2)2.922 (5)179 (4)
O1—H1···O11iii0.852.012.808 (4)156
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (viii) x1, y, z; (ix) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CrNa2(C2O4)2(OH)(H2O)]·H2O
Mr327.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.4776 (10), 8.603 (1), 12.5353 (14)
β (°) 102.503 (2)
V3)997.84 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.60 × 0.12 × 0.10
Data collection
DiffractometerBruker–Nonius X8 Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(APEX2; Bruker 2005)
Tmin, Tmax0.832, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
13658, 2018, 1625
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.133, 1.14
No. of reflections2018
No. of parameters175
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.80

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11B···O9i0.879 (19)2.23 (2)3.080 (5)163 (5)
O11—H11A···O60.88 (4)2.53 (4)3.144 (5)128 (4)
O11—H11A···O30.88 (4)2.25 (4)2.949 (4)137 (4)
O10—H10B···O5ii0.88 (4)2.36 (4)3.123 (4)144 (5)
O10—H10A···O5iii0.905 (19)2.02 (2)2.922 (5)179 (4)
O1—H1···O11iv0.852.012.808 (4)156.3
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Y. A. Mbiangué for his help with the chemical structural drawing. Financial support from the Junta de Andalucía (Project P09-FQM-4826) and CSIC (PIF08–017-1) is gratefully acknowledged.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFerreira, A., Lin, Z., Rocha, J., Morais, C. M., Lopes, M. & Fernandez, C. (2001). Inorg. Chem. 40, 3330–3335.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKöse, D. A., Zümreoglu-Karan, B., Hökelek, T. & Sahin, E. (2009). Z. Anorg. Allg. Chem. 635, 563–566.  Google Scholar
First citationScaringe, R. P., Hatfield, W. E. & Hodgson, D. J. (1977). Inorg. Chim. Acta, 22, 175–183.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds