metal-organic compounds
Bis{μ-4,4′,6,6′-tetra-tert-butyl-2,2′-[N-(2-oxidoethyl)iminodimethylene]diphenolato}dialuminium(III)
aDepartments of Chemistry & Biochemistry, Kenyon College, Gambier, OH 43214-9623, USA, and bDepartment of Chemistry, Vassar College, 124 Raymond Ave., Box 406, Poughkeepsie, NY 12604-0744, USA
*Correspondence e-mail: getzlery@kenyon.edu
The title compound, [Al2(C32H48NO3)2], exists as a dimer with bridging ethoxide groups. It was isolated from a reaction mixture of the parent ligand and trimethylaluminium in tetrahydrofuran. The geometry around the AlIII atom is a slightly distorted trigonal-bipyramid, typical of atrane derivatives.
Related literature
For background to atranes, see: Voronkov & Baryshok (1982). For recent alumatrane work, see: Su et al. (2006) and references therein. For related structures and their activity in lactide polymerization, see: Johnson et al. (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
https://doi.org/10.1107/S1600536810027212/pk2252sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810027212/pk2252Isup2.hkl
Ligand Synthesis: In a 250 ml round-bottom flask equipped with a magnetic stir-bar and a reflux condenser, 2,4-di-tert-butylphenol (Acros - 97%, 13.126 g, 63.62 mmol, 2.26 eq.) was dissolved in toluene. Formaldehyde (Fisher - 37% w/w in water, 5.2 ml, 64.1 mmol 2.27 eq) and ethanolamine (1.75 ml, 28.2 mmol, 1.00 eq.) were added and the reaction was refluxed overnight. The separated brown oil observed in the morning was isolated by rotary evaporator, further dried under high vacuum, and redissolved in 35 ml of 4:1 EtOH:H2O at 80 °C. Over several days, the temperature was gradually lowered to 51 °C at a rate no faster then 1 °C/min with the first crystals appearing after sitting at 63 °C overnight. The highly crystalline solid was isolated by vacuum filtration and washed with copious amounts of cold 4:1 EtOH:H2O. A residual yellow color in the product was removed by boiling the solid in 1:1 EtOH:MeOH yielding fine white crystals of the desired product (2.492 g, 5.01 mmol, 17.8% yield). 1H NMR (CDCl3, 300 MHz) δ: 1.297 (s, 18H, t-Bu), 1.423 (s, 18H, t-Bu), 2.754 (t, J=5.2 Hz, 2H, NCH2), 3.783 (s, 4H, ArCH2N), 3.891 (t, J=5.2 Hz, 2H, HOCH2), 6.926 (d, J=2.3 Hz, 2H, ArH), 7.240 (d, J=2.3 Hz, 2H, ArH); 13C NMR (CDCl3, 75 MHz) δ: 29.77, 31.80, 34.26, 35.03, 53.55, 57.83, 61.09, 121.75, 123.64, 125.14, 136.14, 141.22, 152.74.
Complex Synthesis: The complex may be synthesized by either the Johnson method (Johnson et al., 2009) or as follows. Using standard Schlenk techniques, the free ligand was dissolved in THF and AlMe3 (Aldrich - 2.0 M in heptane, 1 equivalent) was added dropwise via syringe. Upon reaction completion, solvent was removed under high vacuum, quantitatively yielding a white powder which was pure by 1H NMR. Clear, colorless X-ray quality crystals may be obtained by layering hexanes on a concentrated THF solution of the complex or by cooling a concentrated solution of the complex in toluene. 1H NMR (C6D6, 300 MHz) δ: 1.417 (s, 18H, t-Bu), 1.523 (s, 18H,t-Bu), 2.441 (br s, 2H, NCH2), 3.302 (br s, 4H, ArCH2N), 3.580 (t, J=5.8 Hz, 2H, OCH2), 6.782 (s, 2H, ArH), 7.509 (d, J=2.1 Hz, 2H, ArH); 13C NMR (C6D6, 75 MHz) δ: 29.83, 32.12, 34.36, 35.31, 53.08, 56.40, 57.63, 121.51, 124.33, 124.55, 138.09, 139.47, 155.95.
Hydrogen atoms on carbon were added geometrically and refined using a riding model. Uiso values for hydrogen atoms were assigned to be 1.20 times the Ueq value of the atom to which they are attached, except for hydrogen atoms on methyl carbon atoms, which were assigned a Uiso of 1.50 times the Ueq of the methyl carbon atom to which they are attached.
Atranes are trigonal bipyramidal metal complexes featuring symmetric tripodal tetradentate ligands and a
between the transannular chelated metal and the ligand nitrogen (Voronkov and Baryshok, 1982). They have been prepared with a range of metals and substantial recent work has been devoted to the potential of both atranes (Su et al., 2006, and references therein) and their unsymmetric derivatives. In particular, previous work has shown that the monomeric alumatrane of tris(2-hydroxy-3,5-dimethylbenzyl)amine [N(CH2C6H2Me2OH)3] in the presence of 2-propanol shows activity for the melt polyermization of lactide (Johnson et al., 2009). Replacing one hydroxybenzyl arm with a hydroxyethyl yields a dimeric complex which is inactive for polymerization. We surmised, erroneously, that perhaps increasing the bulk of the hydroxybenzyl substituent from methyl to tert-butyl would yield a compound capable of lactide polymerization. Reported here is the synthesis and characterization of the title compound.The title compound (Fig. 1), exists as a dimer with bridging ethoxides. The molecule and its core {Al2O2} ring are centered on a point of crystallographic inversion. Aluminium has a slightly distorted trigonal-bipyramidal coordination geometry around the metal with equitorial O—Al—O angles ranging from 118.60 (6)° to 124.49 (5)° and an axial N—Al—O angle of 159.06 (5)°. Other bond lengths and angles are unremarkable. The Al—Al distance of 2.9022 (10) Å in the tert-butyl substituted title complex is barely distinguishable from the 2.8991 (7) Å A l—Al distance of the related methyl substituted compound (Johnson et al., 2009). The dimer is crowded, as evidence by the proximity of the tert-butyl H atoms of one side of the dimer to the ethyloxy H atoms of the other side of the dimer (Fig. 2), which range from 2.523 (H2A—H17B) to 2.844 (H2B—H28C).
Attempts at melt polymerization of racemic lactide using the title compound proved fruitless, returning only starting materials. Indeed, variable temperature 1H NMR (-10 to 100 °C) of the title compound in toluene-d8 showed no evidence of the dimer breaking apart, a presumed necessity for polymerization activity. At high temperatures, however, the broad singlet at 2.441 resolves into a triplet (J=5.2 Hz) and the broad singlet at 3.302 resolves into two doublets (J=13 Hz). These dynamics are consistent with a sterically congested molecule in which rapid conformational equilibrium is achieved at elevated temperatures.
For background to atranes, see: Voronkov & Baryshok (1982). For recent alumatrane work, see Su et al. (2006) and references therein. For related structures and their activity in lactide polymerization, see: Johnson et al. (2009).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).[Al2(C32H48NO3)2] | F(000) = 1136 |
Mr = 1043.39 | Dx = 1.120 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9619 reflections |
a = 13.385 (2) Å | θ = 2.4–29.0° |
b = 16.352 (3) Å | µ = 0.10 mm−1 |
c = 14.141 (2) Å | T = 125 K |
β = 90.063 (2)° | Block, colorless |
V = 3095.1 (8) Å3 | 0.26 × 0.16 × 0.09 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 8485 independent reflections |
Radiation source: fine-focus sealed tube | 5258 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.076 |
φ and ω scans | θmax = 29.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −18→18 |
Tmin = 0.975, Tmax = 0.991 | k = −22→22 |
42614 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.054P)2 + 0.1736P] where P = (Fo2 + 2Fc2)/3 |
8485 reflections | (Δ/σ)max = 0.001 |
346 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Al2(C32H48NO3)2] | V = 3095.1 (8) Å3 |
Mr = 1043.39 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.385 (2) Å | µ = 0.10 mm−1 |
b = 16.352 (3) Å | T = 125 K |
c = 14.141 (2) Å | 0.26 × 0.16 × 0.09 mm |
β = 90.063 (2)° |
Bruker APEXII CCD diffractometer | 8485 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 5258 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.991 | Rint = 0.076 |
42614 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.28 e Å−3 |
8485 reflections | Δρmin = −0.30 e Å−3 |
346 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An extinction parameter (EXTI in SHELXL-97) refined to zero and was removed from the refinement. |
x | y | z | Uiso*/Ueq | ||
Al | 0.48567 (3) | 0.00620 (3) | 0.60145 (3) | 0.01834 (12) | |
N | 0.45295 (9) | 0.11682 (8) | 0.66499 (9) | 0.0186 (3) | |
O1 | 0.48322 (8) | 0.06840 (6) | 0.49393 (7) | 0.0207 (2) | |
O2 | 0.59510 (8) | −0.01009 (6) | 0.66678 (7) | 0.0210 (2) | |
O3 | 0.37507 (8) | −0.03952 (6) | 0.63921 (7) | 0.0211 (2) | |
C1 | 0.40568 (12) | 0.16764 (9) | 0.59021 (11) | 0.0216 (3) | |
H1A | 0.4095 | 0.2262 | 0.6078 | 0.026* | |
H1B | 0.3344 | 0.1526 | 0.5834 | 0.026* | |
C2 | 0.46004 (12) | 0.15345 (9) | 0.49708 (11) | 0.0217 (3) | |
H2A | 0.4169 | 0.1688 | 0.4430 | 0.026* | |
H2B | 0.5219 | 0.1865 | 0.4944 | 0.026* | |
C3 | 0.54955 (11) | 0.15462 (9) | 0.69665 (11) | 0.0201 (3) | |
H3A | 0.5361 | 0.2098 | 0.7225 | 0.024* | |
H3B | 0.5943 | 0.1609 | 0.6414 | 0.024* | |
C4 | 0.62348 (11) | 0.02194 (10) | 0.75104 (11) | 0.0198 (3) | |
C5 | 0.60123 (11) | 0.10398 (9) | 0.77066 (11) | 0.0194 (3) | |
C6 | 0.62328 (11) | 0.13734 (10) | 0.85915 (11) | 0.0210 (3) | |
H6A | 0.6072 | 0.1929 | 0.8714 | 0.025* | |
C7 | 0.66820 (11) | 0.09106 (10) | 0.92947 (11) | 0.0212 (3) | |
C8 | 0.69347 (11) | 0.01025 (10) | 0.90613 (11) | 0.0223 (3) | |
H8A | 0.7260 | −0.0218 | 0.9530 | 0.027* | |
C9 | 0.67405 (11) | −0.02613 (9) | 0.81904 (11) | 0.0202 (3) | |
C10 | 0.68331 (12) | 0.12239 (10) | 1.03076 (11) | 0.0253 (4) | |
C11 | 0.65734 (15) | 0.21287 (11) | 1.04082 (13) | 0.0375 (5) | |
H11A | 0.5869 | 0.2213 | 1.0244 | 0.056* | |
H11B | 0.6996 | 0.2451 | 0.9983 | 0.056* | |
H11C | 0.6688 | 0.2302 | 1.1063 | 0.056* | |
C12 | 0.61407 (15) | 0.07270 (13) | 1.09584 (13) | 0.0392 (5) | |
H12A | 0.5446 | 0.0797 | 1.0753 | 0.059* | |
H12B | 0.6213 | 0.0921 | 1.1611 | 0.059* | |
H12C | 0.6322 | 0.0147 | 1.0925 | 0.059* | |
C13 | 0.79151 (13) | 0.10983 (13) | 1.06342 (13) | 0.0380 (5) | |
H13A | 0.7988 | 0.1292 | 1.1286 | 0.057* | |
H13B | 0.8366 | 0.1407 | 1.0221 | 0.057* | |
H13C | 0.8083 | 0.0516 | 1.0604 | 0.057* | |
C14 | 0.70394 (12) | −0.11522 (10) | 0.79799 (12) | 0.0247 (4) | |
C15 | 0.76285 (14) | −0.15419 (11) | 0.87969 (13) | 0.0345 (4) | |
H15A | 0.7803 | −0.2106 | 0.8632 | 0.052* | |
H15B | 0.7218 | −0.1540 | 0.9370 | 0.052* | |
H15C | 0.8241 | −0.1228 | 0.8910 | 0.052* | |
C16 | 0.77086 (13) | −0.11864 (11) | 0.70923 (12) | 0.0302 (4) | |
H16A | 0.7892 | −0.1755 | 0.6961 | 0.045* | |
H16B | 0.8315 | −0.0864 | 0.7202 | 0.045* | |
H16C | 0.7344 | −0.0961 | 0.6550 | 0.045* | |
C17 | 0.61021 (13) | −0.16820 (10) | 0.78223 (13) | 0.0316 (4) | |
H17A | 0.6304 | −0.2234 | 0.7631 | 0.047* | |
H17B | 0.5689 | −0.1437 | 0.7325 | 0.047* | |
H17C | 0.5718 | −0.1712 | 0.8411 | 0.047* | |
C18 | 0.38553 (11) | 0.10632 (9) | 0.74813 (11) | 0.0205 (3) | |
H18A | 0.3706 | 0.1608 | 0.7751 | 0.025* | |
H18B | 0.4210 | 0.0743 | 0.7972 | 0.025* | |
C19 | 0.28857 (11) | 0.06402 (9) | 0.72497 (11) | 0.0202 (3) | |
C20 | 0.28792 (11) | −0.00799 (9) | 0.67177 (11) | 0.0197 (3) | |
C21 | 0.19640 (12) | −0.04808 (9) | 0.65258 (11) | 0.0206 (3) | |
C22 | 0.11042 (12) | −0.01534 (10) | 0.69270 (11) | 0.0227 (3) | |
H22A | 0.0488 | −0.0424 | 0.6810 | 0.027* | |
C23 | 0.10895 (12) | 0.05482 (10) | 0.74907 (11) | 0.0218 (3) | |
C24 | 0.19948 (12) | 0.09479 (10) | 0.76260 (11) | 0.0223 (3) | |
H24A | 0.2009 | 0.1441 | 0.7982 | 0.027* | |
C25 | 0.19244 (12) | −0.12450 (10) | 0.58915 (12) | 0.0248 (4) | |
C26 | 0.25483 (14) | −0.19357 (10) | 0.63343 (13) | 0.0317 (4) | |
H26A | 0.2279 | −0.2072 | 0.6959 | 0.047* | |
H26B | 0.3244 | −0.1756 | 0.6399 | 0.047* | |
H26C | 0.2520 | −0.2420 | 0.5927 | 0.047* | |
C27 | 0.08587 (13) | −0.15707 (11) | 0.57662 (15) | 0.0380 (5) | |
H27A | 0.0440 | −0.1146 | 0.5480 | 0.057* | |
H27B | 0.0585 | −0.1722 | 0.6384 | 0.057* | |
H27C | 0.0870 | −0.2053 | 0.5354 | 0.057* | |
C28 | 0.23320 (14) | −0.10343 (11) | 0.49074 (12) | 0.0317 (4) | |
H28A | 0.1948 | −0.0579 | 0.4640 | 0.048* | |
H28B | 0.2272 | −0.1513 | 0.4494 | 0.048* | |
H28C | 0.3036 | −0.0876 | 0.4960 | 0.048* | |
C29 | 0.01071 (12) | 0.08307 (10) | 0.79368 (12) | 0.0259 (4) | |
C30 | −0.06841 (13) | 0.09706 (11) | 0.71690 (13) | 0.0346 (4) | |
H30A | −0.0467 | 0.1413 | 0.6749 | 0.052* | |
H30B | −0.1320 | 0.1120 | 0.7466 | 0.052* | |
H30C | −0.0772 | 0.0468 | 0.6801 | 0.052* | |
C31 | −0.02621 (13) | 0.01629 (11) | 0.86174 (13) | 0.0336 (4) | |
H31A | 0.0219 | 0.0097 | 0.9135 | 0.050* | |
H31B | −0.0328 | −0.0355 | 0.8275 | 0.050* | |
H31C | −0.0913 | 0.0321 | 0.8877 | 0.050* | |
C32 | 0.02250 (13) | 0.16235 (11) | 0.85008 (14) | 0.0354 (4) | |
H32A | 0.0470 | 0.2057 | 0.8083 | 0.053* | |
H32B | 0.0703 | 0.1538 | 0.9017 | 0.053* | |
H32C | −0.0423 | 0.1783 | 0.8764 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al | 0.0206 (2) | 0.0179 (2) | 0.0165 (2) | 0.00029 (19) | 0.00106 (18) | −0.00016 (19) |
N | 0.0186 (7) | 0.0212 (7) | 0.0160 (6) | −0.0004 (5) | 0.0006 (5) | 0.0005 (5) |
O1 | 0.0273 (6) | 0.0164 (5) | 0.0183 (5) | 0.0026 (4) | 0.0024 (5) | 0.0002 (4) |
O2 | 0.0211 (6) | 0.0213 (6) | 0.0205 (6) | 0.0009 (4) | −0.0022 (4) | −0.0023 (4) |
O3 | 0.0205 (6) | 0.0198 (6) | 0.0229 (6) | 0.0009 (4) | 0.0035 (5) | −0.0022 (5) |
C1 | 0.0251 (8) | 0.0189 (8) | 0.0208 (8) | 0.0044 (6) | −0.0022 (7) | 0.0012 (6) |
C2 | 0.0288 (9) | 0.0154 (8) | 0.0207 (8) | 0.0025 (6) | −0.0012 (7) | 0.0018 (6) |
C3 | 0.0213 (8) | 0.0179 (8) | 0.0211 (8) | −0.0025 (6) | 0.0009 (6) | 0.0000 (6) |
C4 | 0.0177 (8) | 0.0235 (8) | 0.0183 (8) | −0.0030 (6) | 0.0022 (6) | −0.0002 (6) |
C5 | 0.0178 (8) | 0.0203 (8) | 0.0202 (8) | −0.0017 (6) | 0.0016 (6) | 0.0018 (6) |
C6 | 0.0190 (8) | 0.0210 (8) | 0.0229 (8) | −0.0023 (6) | 0.0025 (6) | −0.0012 (7) |
C7 | 0.0183 (8) | 0.0254 (8) | 0.0201 (8) | −0.0022 (6) | 0.0013 (6) | −0.0005 (6) |
C8 | 0.0184 (8) | 0.0257 (9) | 0.0227 (8) | −0.0005 (6) | −0.0009 (6) | 0.0041 (7) |
C9 | 0.0161 (8) | 0.0209 (8) | 0.0235 (8) | −0.0006 (6) | 0.0013 (6) | 0.0031 (6) |
C10 | 0.0254 (9) | 0.0310 (9) | 0.0195 (8) | 0.0011 (7) | −0.0007 (7) | −0.0023 (7) |
C11 | 0.0502 (12) | 0.0365 (11) | 0.0258 (10) | 0.0045 (9) | −0.0069 (9) | −0.0102 (8) |
C12 | 0.0445 (12) | 0.0489 (12) | 0.0241 (10) | −0.0020 (9) | 0.0067 (8) | 0.0020 (9) |
C13 | 0.0316 (10) | 0.0525 (12) | 0.0300 (10) | 0.0046 (9) | −0.0082 (8) | −0.0122 (9) |
C14 | 0.0265 (9) | 0.0211 (8) | 0.0265 (9) | 0.0017 (7) | −0.0007 (7) | 0.0013 (7) |
C15 | 0.0380 (11) | 0.0272 (10) | 0.0383 (11) | 0.0064 (8) | −0.0041 (8) | 0.0023 (8) |
C16 | 0.0274 (9) | 0.0282 (9) | 0.0351 (10) | 0.0058 (7) | 0.0016 (8) | −0.0031 (8) |
C17 | 0.0342 (10) | 0.0220 (9) | 0.0385 (11) | −0.0040 (7) | 0.0006 (8) | 0.0008 (8) |
C18 | 0.0232 (8) | 0.0207 (8) | 0.0176 (8) | −0.0006 (6) | 0.0021 (6) | −0.0034 (6) |
C19 | 0.0212 (8) | 0.0206 (8) | 0.0188 (8) | −0.0014 (6) | 0.0007 (6) | 0.0004 (6) |
C20 | 0.0205 (8) | 0.0208 (8) | 0.0178 (8) | 0.0006 (6) | 0.0012 (6) | 0.0025 (6) |
C21 | 0.0226 (8) | 0.0203 (8) | 0.0188 (8) | −0.0011 (6) | −0.0001 (6) | 0.0003 (6) |
C22 | 0.0196 (8) | 0.0236 (8) | 0.0250 (8) | −0.0019 (6) | −0.0012 (6) | −0.0004 (7) |
C23 | 0.0207 (8) | 0.0242 (8) | 0.0206 (8) | 0.0018 (6) | 0.0000 (6) | 0.0012 (6) |
C24 | 0.0256 (9) | 0.0212 (8) | 0.0200 (8) | 0.0019 (7) | 0.0001 (7) | −0.0028 (6) |
C25 | 0.0241 (9) | 0.0222 (8) | 0.0280 (9) | −0.0028 (7) | 0.0004 (7) | −0.0054 (7) |
C26 | 0.0380 (10) | 0.0193 (9) | 0.0377 (10) | −0.0025 (7) | 0.0008 (8) | −0.0019 (7) |
C27 | 0.0314 (10) | 0.0326 (10) | 0.0500 (12) | −0.0071 (8) | 0.0028 (9) | −0.0169 (9) |
C28 | 0.0367 (10) | 0.0339 (10) | 0.0245 (9) | −0.0014 (8) | −0.0023 (8) | −0.0077 (8) |
C29 | 0.0195 (8) | 0.0284 (9) | 0.0299 (9) | 0.0021 (7) | 0.0009 (7) | −0.0049 (7) |
C30 | 0.0273 (10) | 0.0335 (10) | 0.0430 (11) | 0.0067 (8) | −0.0050 (8) | −0.0038 (8) |
C31 | 0.0231 (9) | 0.0435 (11) | 0.0340 (10) | 0.0028 (8) | 0.0071 (8) | 0.0005 (8) |
C32 | 0.0260 (9) | 0.0383 (11) | 0.0418 (11) | 0.0033 (8) | 0.0035 (8) | −0.0141 (9) |
Al—O3 | 1.7428 (11) | C15—H15A | 0.9800 |
Al—O2 | 1.7513 (11) | C15—H15B | 0.9800 |
Al—O1 | 1.8295 (11) | C15—H15C | 0.9800 |
Al—O1i | 1.8661 (11) | C16—H16A | 0.9800 |
Al—N | 2.0668 (14) | C16—H16B | 0.9800 |
Al—Ali | 2.9022 (10) | C16—H16C | 0.9800 |
N—C1 | 1.4858 (19) | C17—H17A | 0.9800 |
N—C18 | 1.4928 (19) | C17—H17B | 0.9800 |
N—C3 | 1.5011 (19) | C17—H17C | 0.9800 |
O1—C2 | 1.4255 (18) | C18—C19 | 1.506 (2) |
O1—Ali | 1.8661 (11) | C18—H18A | 0.9900 |
O2—C4 | 1.3554 (18) | C18—H18B | 0.9900 |
O3—C20 | 1.3564 (18) | C19—C20 | 1.397 (2) |
C1—C2 | 1.523 (2) | C19—C24 | 1.400 (2) |
C1—H1A | 0.9900 | C20—C21 | 1.415 (2) |
C1—H1B | 0.9900 | C21—C22 | 1.391 (2) |
C2—H2A | 0.9900 | C21—C25 | 1.539 (2) |
C2—H2B | 0.9900 | C22—C23 | 1.397 (2) |
C3—C5 | 1.503 (2) | C22—H22A | 0.9500 |
C3—H3A | 0.9900 | C23—C24 | 1.390 (2) |
C3—H3B | 0.9900 | C23—C29 | 1.530 (2) |
C4—C5 | 1.402 (2) | C24—H24A | 0.9500 |
C4—C9 | 1.414 (2) | C25—C27 | 1.533 (2) |
C5—C6 | 1.396 (2) | C25—C28 | 1.534 (2) |
C6—C7 | 1.386 (2) | C25—C26 | 1.538 (2) |
C6—H6A | 0.9500 | C26—H26A | 0.9800 |
C7—C8 | 1.404 (2) | C26—H26B | 0.9800 |
C7—C10 | 1.534 (2) | C26—H26C | 0.9800 |
C8—C9 | 1.392 (2) | C27—H27A | 0.9800 |
C8—H8A | 0.9500 | C27—H27B | 0.9800 |
C9—C14 | 1.540 (2) | C27—H27C | 0.9800 |
C10—C11 | 1.527 (2) | C28—H28A | 0.9800 |
C10—C13 | 1.533 (2) | C28—H28B | 0.9800 |
C10—C12 | 1.539 (2) | C28—H28C | 0.9800 |
C11—H11A | 0.9800 | C29—C32 | 1.530 (2) |
C11—H11B | 0.9800 | C29—C30 | 1.533 (2) |
C11—H11C | 0.9800 | C29—C31 | 1.538 (2) |
C12—H12A | 0.9800 | C30—H30A | 0.9800 |
C12—H12B | 0.9800 | C30—H30B | 0.9800 |
C12—H12C | 0.9800 | C30—H30C | 0.9800 |
C13—H13A | 0.9800 | C31—H31A | 0.9800 |
C13—H13B | 0.9800 | C31—H31B | 0.9800 |
C13—H13C | 0.9800 | C31—H31C | 0.9800 |
C14—C15 | 1.536 (2) | C32—H32A | 0.9800 |
C14—C17 | 1.541 (2) | C32—H32B | 0.9800 |
C14—C16 | 1.544 (2) | C32—H32C | 0.9800 |
O3—Al—O2 | 118.90 (6) | C17—C14—C16 | 109.57 (14) |
O3—Al—O1 | 118.60 (6) | C14—C15—H15A | 109.5 |
O2—Al—O1 | 122.49 (5) | C14—C15—H15B | 109.5 |
O3—Al—O1i | 97.54 (5) | H15A—C15—H15B | 109.5 |
O2—Al—O1i | 95.43 (5) | C14—C15—H15C | 109.5 |
O1—Al—O1i | 76.51 (5) | H15A—C15—H15C | 109.5 |
O3—Al—N | 93.55 (5) | H15B—C15—H15C | 109.5 |
O2—Al—N | 94.67 (5) | C14—C16—H16A | 109.5 |
O1—Al—N | 82.59 (5) | C14—C16—H16B | 109.5 |
O1i—Al—N | 159.06 (5) | H16A—C16—H16B | 109.5 |
O3—Al—Ali | 112.72 (4) | C14—C16—H16C | 109.5 |
O2—Al—Ali | 113.54 (4) | H16A—C16—H16C | 109.5 |
O1—Al—Ali | 38.70 (3) | H16B—C16—H16C | 109.5 |
O1i—Al—Ali | 37.81 (3) | C14—C17—H17A | 109.5 |
N—Al—Ali | 121.28 (4) | C14—C17—H17B | 109.5 |
C1—N—C18 | 111.57 (12) | H17A—C17—H17B | 109.5 |
C1—N—C3 | 110.36 (12) | C14—C17—H17C | 109.5 |
C18—N—C3 | 109.49 (11) | H17A—C17—H17C | 109.5 |
C1—N—Al | 105.68 (9) | H17B—C17—H17C | 109.5 |
C18—N—Al | 111.73 (9) | N—C18—C19 | 113.77 (12) |
C3—N—Al | 107.89 (9) | N—C18—H18A | 108.8 |
C2—O1—Al | 121.34 (9) | C19—C18—H18A | 108.8 |
C2—O1—Ali | 135.16 (9) | N—C18—H18B | 108.8 |
Al—O1—Ali | 103.50 (5) | C19—C18—H18B | 108.8 |
C4—O2—Al | 129.66 (10) | H18A—C18—H18B | 107.7 |
C20—O3—Al | 132.22 (10) | C20—C19—C24 | 120.18 (14) |
N—C1—C2 | 109.07 (12) | C20—C19—C18 | 120.58 (13) |
N—C1—H1A | 109.9 | C24—C19—C18 | 119.11 (14) |
C2—C1—H1A | 109.9 | O3—C20—C19 | 119.88 (13) |
N—C1—H1B | 109.9 | O3—C20—C21 | 120.22 (14) |
C2—C1—H1B | 109.9 | C19—C20—C21 | 119.89 (14) |
H1A—C1—H1B | 108.3 | C22—C21—C20 | 117.38 (14) |
O1—C2—C1 | 106.25 (12) | C22—C21—C25 | 121.49 (14) |
O1—C2—H2A | 110.5 | C20—C21—C25 | 121.13 (14) |
C1—C2—H2A | 110.5 | C21—C22—C23 | 124.13 (15) |
O1—C2—H2B | 110.5 | C21—C22—H22A | 117.9 |
C1—C2—H2B | 110.5 | C23—C22—H22A | 117.9 |
H2A—C2—H2B | 108.7 | C24—C23—C22 | 116.86 (14) |
N—C3—C5 | 112.12 (12) | C24—C23—C29 | 123.41 (14) |
N—C3—H3A | 109.2 | C22—C23—C29 | 119.72 (14) |
C5—C3—H3A | 109.2 | C23—C24—C19 | 121.44 (15) |
N—C3—H3B | 109.2 | C23—C24—H24A | 119.3 |
C5—C3—H3B | 109.2 | C19—C24—H24A | 119.3 |
H3A—C3—H3B | 107.9 | C27—C25—C28 | 107.76 (15) |
O2—C4—C5 | 118.98 (14) | C27—C25—C26 | 107.27 (14) |
O2—C4—C9 | 121.10 (14) | C28—C25—C26 | 109.92 (14) |
C5—C4—C9 | 119.93 (14) | C27—C25—C21 | 112.39 (13) |
C6—C5—C4 | 120.43 (14) | C28—C25—C21 | 109.52 (13) |
C6—C5—C3 | 120.36 (14) | C26—C25—C21 | 109.93 (14) |
C4—C5—C3 | 119.16 (14) | C25—C26—H26A | 109.5 |
C7—C6—C5 | 121.37 (15) | C25—C26—H26B | 109.5 |
C7—C6—H6A | 119.3 | H26A—C26—H26B | 109.5 |
C5—C6—H6A | 119.3 | C25—C26—H26C | 109.5 |
C6—C7—C8 | 116.73 (14) | H26A—C26—H26C | 109.5 |
C6—C7—C10 | 122.96 (14) | H26B—C26—H26C | 109.5 |
C8—C7—C10 | 120.15 (14) | C25—C27—H27A | 109.5 |
C9—C8—C7 | 124.44 (15) | C25—C27—H27B | 109.5 |
C9—C8—H8A | 117.8 | H27A—C27—H27B | 109.5 |
C7—C8—H8A | 117.8 | C25—C27—H27C | 109.5 |
C8—C9—C4 | 116.94 (14) | H27A—C27—H27C | 109.5 |
C8—C9—C14 | 121.81 (14) | H27B—C27—H27C | 109.5 |
C4—C9—C14 | 121.25 (14) | C25—C28—H28A | 109.5 |
C11—C10—C13 | 108.47 (15) | C25—C28—H28B | 109.5 |
C11—C10—C7 | 112.38 (14) | H28A—C28—H28B | 109.5 |
C13—C10—C7 | 111.10 (13) | C25—C28—H28C | 109.5 |
C11—C10—C12 | 108.58 (15) | H28A—C28—H28C | 109.5 |
C13—C10—C12 | 108.57 (15) | H28B—C28—H28C | 109.5 |
C7—C10—C12 | 107.64 (14) | C32—C29—C23 | 112.48 (14) |
C10—C11—H11A | 109.5 | C32—C29—C30 | 108.27 (14) |
C10—C11—H11B | 109.5 | C23—C29—C30 | 110.26 (14) |
H11A—C11—H11B | 109.5 | C32—C29—C31 | 107.96 (14) |
C10—C11—H11C | 109.5 | C23—C29—C31 | 108.69 (13) |
H11A—C11—H11C | 109.5 | C30—C29—C31 | 109.09 (14) |
H11B—C11—H11C | 109.5 | C29—C30—H30A | 109.5 |
C10—C12—H12A | 109.5 | C29—C30—H30B | 109.5 |
C10—C12—H12B | 109.5 | H30A—C30—H30B | 109.5 |
H12A—C12—H12B | 109.5 | C29—C30—H30C | 109.5 |
C10—C12—H12C | 109.5 | H30A—C30—H30C | 109.5 |
H12A—C12—H12C | 109.5 | H30B—C30—H30C | 109.5 |
H12B—C12—H12C | 109.5 | C29—C31—H31A | 109.5 |
C10—C13—H13A | 109.5 | C29—C31—H31B | 109.5 |
C10—C13—H13B | 109.5 | H31A—C31—H31B | 109.5 |
H13A—C13—H13B | 109.5 | C29—C31—H31C | 109.5 |
C10—C13—H13C | 109.5 | H31A—C31—H31C | 109.5 |
H13A—C13—H13C | 109.5 | H31B—C31—H31C | 109.5 |
H13B—C13—H13C | 109.5 | C29—C32—H32A | 109.5 |
C15—C14—C9 | 112.35 (14) | C29—C32—H32B | 109.5 |
C15—C14—C17 | 107.02 (14) | H32A—C32—H32B | 109.5 |
C9—C14—C17 | 110.38 (13) | C29—C32—H32C | 109.5 |
C15—C14—C16 | 107.38 (14) | H32A—C32—H32C | 109.5 |
C9—C14—C16 | 110.03 (13) | H32B—C32—H32C | 109.5 |
O3—Al—N—C1 | −94.79 (10) | C6—C7—C8—C9 | −1.8 (2) |
O2—Al—N—C1 | 145.82 (9) | C10—C7—C8—C9 | 173.74 (15) |
O1—Al—N—C1 | 23.61 (9) | C7—C8—C9—C4 | −1.4 (2) |
O1i—Al—N—C1 | 27.2 (2) | C7—C8—C9—C14 | 179.92 (14) |
Ali—Al—N—C1 | 24.58 (11) | O2—C4—C9—C8 | −175.28 (13) |
O3—Al—N—C18 | 26.74 (10) | C5—C4—C9—C8 | 4.2 (2) |
O2—Al—N—C18 | −92.66 (10) | O2—C4—C9—C14 | 3.4 (2) |
O1—Al—N—C18 | 145.14 (10) | C5—C4—C9—C14 | −177.13 (14) |
O1i—Al—N—C18 | 148.75 (14) | C6—C7—C10—C11 | −8.1 (2) |
Ali—Al—N—C18 | 146.11 (8) | C8—C7—C10—C11 | 176.65 (15) |
O3—Al—N—C3 | 147.15 (9) | C6—C7—C10—C13 | −129.89 (17) |
O2—Al—N—C3 | 27.76 (10) | C8—C7—C10—C13 | 54.9 (2) |
O1—Al—N—C3 | −94.45 (9) | C6—C7—C10—C12 | 111.36 (17) |
O1i—Al—N—C3 | −90.84 (17) | C8—C7—C10—C12 | −63.84 (19) |
Ali—Al—N—C3 | −93.48 (9) | C8—C9—C14—C15 | −4.4 (2) |
O3—Al—O1—C2 | 88.09 (12) | C4—C9—C14—C15 | 176.98 (15) |
O2—Al—O1—C2 | −92.74 (12) | C8—C9—C14—C17 | 114.95 (16) |
O1i—Al—O1—C2 | 179.41 (14) | C4—C9—C14—C17 | −63.65 (19) |
N—Al—O1—C2 | −1.91 (11) | C8—C9—C14—C16 | −124.00 (16) |
Ali—Al—O1—C2 | 179.41 (14) | C4—C9—C14—C16 | 57.40 (19) |
O3—Al—O1—Ali | −91.31 (6) | C1—N—C18—C19 | 61.03 (17) |
O2—Al—O1—Ali | 87.85 (7) | C3—N—C18—C19 | −176.50 (12) |
O1i—Al—O1—Ali | 0.0 | Al—N—C18—C19 | −57.03 (15) |
N—Al—O1—Ali | 178.68 (6) | N—C18—C19—C20 | 47.9 (2) |
O3—Al—O2—C4 | −74.98 (13) | N—C18—C19—C24 | −136.28 (14) |
O1—Al—O2—C4 | 105.86 (13) | Al—O3—C20—C19 | −33.4 (2) |
O1i—Al—O2—C4 | −176.69 (12) | Al—O3—C20—C21 | 147.05 (12) |
N—Al—O2—C4 | 21.68 (13) | C24—C19—C20—O3 | −176.94 (14) |
Ali—Al—O2—C4 | 148.83 (11) | C18—C19—C20—O3 | −1.1 (2) |
O2—Al—O3—C20 | 114.92 (13) | C24—C19—C20—C21 | 2.6 (2) |
O1—Al—O3—C20 | −65.88 (14) | C18—C19—C20—C21 | 178.45 (14) |
O1i—Al—O3—C20 | −144.59 (13) | O3—C20—C21—C22 | 176.23 (14) |
N—Al—O3—C20 | 17.61 (14) | C19—C20—C21—C22 | −3.3 (2) |
Ali—Al—O3—C20 | −108.54 (13) | O3—C20—C21—C25 | −4.2 (2) |
C18—N—C1—C2 | −161.42 (12) | C19—C20—C21—C25 | 176.21 (14) |
C3—N—C1—C2 | 76.61 (15) | C20—C21—C22—C23 | 1.0 (2) |
Al—N—C1—C2 | −39.79 (14) | C25—C21—C22—C23 | −178.53 (15) |
Al—O1—C2—C1 | −19.85 (16) | C21—C22—C23—C24 | 2.0 (2) |
Ali—O1—C2—C1 | 159.33 (11) | C21—C22—C23—C29 | −176.98 (15) |
N—C1—C2—O1 | 38.79 (17) | C22—C23—C24—C19 | −2.8 (2) |
C1—N—C3—C5 | −178.55 (12) | C29—C23—C24—C19 | 176.16 (15) |
C18—N—C3—C5 | 58.27 (16) | C20—C19—C24—C23 | 0.5 (2) |
Al—N—C3—C5 | −63.54 (13) | C18—C19—C24—C23 | −175.34 (14) |
Al—O2—C4—C5 | −38.36 (19) | C22—C21—C25—C27 | 0.5 (2) |
Al—O2—C4—C9 | 141.13 (12) | C20—C21—C25—C27 | −179.07 (15) |
O2—C4—C5—C6 | 175.61 (13) | C22—C21—C25—C28 | 120.19 (16) |
C9—C4—C5—C6 | −3.9 (2) | C20—C21—C25—C28 | −59.34 (19) |
O2—C4—C5—C3 | −1.9 (2) | C22—C21—C25—C26 | −118.94 (17) |
C9—C4—C5—C3 | 178.61 (14) | C20—C21—C25—C26 | 61.53 (19) |
N—C3—C5—C6 | −121.61 (15) | C24—C23—C29—C32 | 3.1 (2) |
N—C3—C5—C4 | 55.91 (18) | C22—C23—C29—C32 | −178.02 (15) |
C4—C5—C6—C7 | 0.6 (2) | C24—C23—C29—C30 | 124.02 (17) |
C3—C5—C6—C7 | 178.04 (14) | C22—C23—C29—C30 | −57.1 (2) |
C5—C6—C7—C8 | 2.2 (2) | C24—C23—C29—C31 | −116.44 (17) |
C5—C6—C7—C10 | −173.17 (14) | C22—C23—C29—C31 | 62.5 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Al2(C32H48NO3)2] |
Mr | 1043.39 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 125 |
a, b, c (Å) | 13.385 (2), 16.352 (3), 14.141 (2) |
β (°) | 90.063 (2) |
V (Å3) | 3095.1 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.26 × 0.16 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.975, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 42614, 8485, 5258 |
Rint | 0.076 |
(sin θ/λ)max (Å−1) | 0.690 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.124, 1.02 |
No. of reflections | 8485 |
No. of parameters | 346 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.30 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).
Acknowledgements
This work was generously supported by Kenyon College Startup Funds, Kenyon College Summer Science Scholars Program (SLH), the American Chemical Society's Petroleum Research Fund (42880-GB 7) (YDYLG) and the National Science Foundation (CHE-0521237) (JMT).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Johnson, A. L., Davidson, M. G., Pérez, Y., Jones, M. D., Merle, N., Raithby, P. R. & Richards, S. P. (2009). Dalton Trans. pp. 5551–5558. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, W., Kim, Y., Ellern, A., Guzei, I. A. & Verkade, J. G. (2006). J. Am. Chem. Soc. 128, 13727–13735. Web of Science CSD CrossRef PubMed CAS Google Scholar
Voronkov, M. G. & Baryshok, V. P. (1982). J. Organomet. Chem. 239, 199–249. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Atranes are trigonal bipyramidal metal complexes featuring symmetric tripodal tetradentate ligands and a dative bond between the transannular chelated metal and the ligand nitrogen (Voronkov and Baryshok, 1982). They have been prepared with a range of metals and substantial recent work has been devoted to the potential catalytic activity of both atranes (Su et al., 2006, and references therein) and their unsymmetric derivatives. In particular, previous work has shown that the monomeric alumatrane of tris(2-hydroxy-3,5-dimethylbenzyl)amine [N(CH2C6H2Me2OH)3] in the presence of 2-propanol shows activity for the melt polyermization of lactide (Johnson et al., 2009). Replacing one hydroxybenzyl arm with a hydroxyethyl yields a dimeric complex which is inactive for polymerization. We surmised, erroneously, that perhaps increasing the bulk of the hydroxybenzyl substituent from methyl to tert-butyl would yield a compound capable of lactide polymerization. Reported here is the synthesis and characterization of the title compound.
The title compound (Fig. 1), exists as a dimer with bridging ethoxides. The molecule and its core {Al2O2} ring are centered on a point of crystallographic inversion. Aluminium has a slightly distorted trigonal-bipyramidal coordination geometry around the metal with equitorial O—Al—O angles ranging from 118.60 (6)° to 124.49 (5)° and an axial N—Al—O angle of 159.06 (5)°. Other bond lengths and angles are unremarkable. The Al—Al distance of 2.9022 (10) Å in the tert-butyl substituted title complex is barely distinguishable from the 2.8991 (7) Å A l—Al distance of the related methyl substituted compound (Johnson et al., 2009). The dimer is crowded, as evidence by the proximity of the tert-butyl H atoms of one side of the dimer to the ethyloxy H atoms of the other side of the dimer (Fig. 2), which range from 2.523 (H2A—H17B) to 2.844 (H2B—H28C).
Attempts at melt polymerization of racemic lactide using the title compound proved fruitless, returning only starting materials. Indeed, variable temperature 1H NMR (-10 to 100 °C) of the title compound in toluene-d8 showed no evidence of the dimer breaking apart, a presumed necessity for polymerization activity. At high temperatures, however, the broad singlet at 2.441 resolves into a triplet (J=5.2 Hz) and the broad singlet at 3.302 resolves into two doublets (J=13 Hz). These dynamics are consistent with a sterically congested molecule in which rapid conformational equilibrium is achieved at elevated temperatures.