organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,8-Di­bromo-2,11-di­thia­[3,3](2,6)pyridino­para­cyclo­phane

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: 78766912@163.com

(Received 1 July 2010; accepted 20 July 2010; online 24 July 2010)

The title compound, C15H13Br2NS2 [systematic name: 12,15-dibromo-2,7-dithia-1(1,4)-benzena-5(2,6)-pyridinaocta­phane], contains a dibromo-substituted benzene ring and a pyridine ring that are linked by a pair of bridging —CH2SCH2— groups. There is a weak ππ inter­action between the rings, the distance between the ring centroids being 3.572 (4) Å. The rings are not parallel, but form a dihedral angle of 18.29 (4)°.

Related literature

For the preparation of the title compound, see: Kay & Baek (1997[Kay, K. Y. & Baek, Y. G. (1997). Chem. Ber. Recl, 130, 581-584.]); Scheytza et al. (1999[Scheytza, H., Rademacher, O. & Reibig, H.-U. (1999). Eur. J. Org. Chem. 9, 2373-2381.]); Xu et al. (2008[Xu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723-730.]). For further information on paracyclo­phane and its derivatives, see: Wang et al. (2006[Wang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277-7285.]); Yamamoto et al. (1997[Yamamoto, M., Wu, L. P., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Munakata, M. (1997). Inorg. Chim. Acta, 258, 89-91.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13Br2NS2

  • Mr = 431.20

  • Monoclinic, P 21 /n

  • a = 8.9275 (15) Å

  • b = 18.879 (3) Å

  • c = 9.3213 (15) Å

  • β = 103.878 (3)°

  • V = 1525.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.58 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.452, Tmax = 0.573

  • 11428 measured reflections

  • 3775 independent reflections

  • 3018 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.03

  • 3775 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our research, we have synthesized the title compound 5,8-dibromo-2,11-dithia[3,3] (2,6)pyridinoparacyclophane. In the crystal structure, there are no classical hydrogen bonds, but is a weak ππ interaction. The distance between the centroid of the pyridine ring and the centroid of the benzene ring is 3.574 (4) Å, in addition, the angle between pyridine ring and the benzene ring is 18.29 (4)°.

Related literature top

For the preparation of the title compound, see: Kay & Baek (1997); Scheytza et al. (1999); Xu et al. (2008). For further information on paracyclophane and its derivatives, see: Wang et al. (2006); Yamamoto et al. (1997).

Experimental top

The title compound was synthesized according to a modified literature procedure (Scheytza et al., 1999).

A solution with equimolar amounts of the dithiol(3.26g, 10mmol) and 2,6-bis(bromomethyl) pyridine in degassed THF (500 mL) was added dropwise under N2 over 12 h to a refluxing solution of K2CO3(6.9g,50mmol) in EtOH (1.5 L). After an additional 2h at the reflux temperature, the mixture was cooled and the solvent. The resulting residue was treated with CH2Cl2 (500 mL) and water (500mL). The organic phase was separated, and the aqueous layer extracted with CH2Cl2 three times. The combined organic layers were dried over MgSO4, then the solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2 as eluent. Colourless single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane-n-hexane (1:30) solution over a period of 6 hours.

Refinement top

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H =0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms, and (C—H =0.97 Å) and Uiso(H) =1.2Ueq(C) for methylene.

Structure description top

In our research, we have synthesized the title compound 5,8-dibromo-2,11-dithia[3,3] (2,6)pyridinoparacyclophane. In the crystal structure, there are no classical hydrogen bonds, but is a weak ππ interaction. The distance between the centroid of the pyridine ring and the centroid of the benzene ring is 3.574 (4) Å, in addition, the angle between pyridine ring and the benzene ring is 18.29 (4)°.

For the preparation of the title compound, see: Kay & Baek (1997); Scheytza et al. (1999); Xu et al. (2008). For further information on paracyclophane and its derivatives, see: Wang et al. (2006); Yamamoto et al. (1997).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.
12,15-dibromo-2,7-dithia-1(1,4)-benzena-5(2,6)-pyridinaoctaphane top
Crystal data top
C15H13Br2NS2F(000) = 848
Mr = 431.20Dx = 1.878 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4039 reflections
a = 8.9275 (15) Åθ = 2.5–27.8°
b = 18.879 (3) ŵ = 5.58 mm1
c = 9.3213 (15) ÅT = 298 K
β = 103.878 (3)°Block, colorless
V = 1525.2 (4) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3775 independent reflections
Radiation source: fine-focus sealed tube3018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.452, Tmax = 0.573k = 2525
11428 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.2049P]
where P = (Fo2 + 2Fc2)/3
3775 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C15H13Br2NS2V = 1525.2 (4) Å3
Mr = 431.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9275 (15) ŵ = 5.58 mm1
b = 18.879 (3) ÅT = 298 K
c = 9.3213 (15) Å0.16 × 0.12 × 0.10 mm
β = 103.878 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3775 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3018 reflections with I > 2σ(I)
Tmin = 0.452, Tmax = 0.573Rint = 0.026
11428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
3775 reflectionsΔρmin = 0.46 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63099 (3)0.048688 (14)0.87832 (3)0.04897 (10)
Br20.22924 (4)0.139645 (16)0.22281 (3)0.05124 (10)
C10.3799 (3)0.03373 (12)0.6206 (3)0.0338 (5)
C20.5079 (3)0.07344 (12)0.6886 (3)0.0334 (5)
C30.5520 (3)0.13348 (12)0.6246 (3)0.0331 (5)
H30.63840.15870.67420.040*
C40.4686 (3)0.15680 (13)0.4867 (3)0.0324 (5)
C50.3444 (3)0.11522 (13)0.4148 (3)0.0338 (5)
C60.3002 (3)0.05574 (12)0.4802 (3)0.0372 (5)
H60.21540.02980.42950.045*
C70.5137 (3)0.22521 (13)0.4279 (3)0.0383 (6)
H7A0.51800.21810.32590.046*
H7B0.61680.23760.48350.046*
C80.3410 (3)0.28873 (14)0.6143 (3)0.0371 (5)
H8A0.43320.27270.68490.045*
H8B0.31340.33460.64710.045*
C90.2123 (3)0.23745 (12)0.6156 (2)0.0301 (5)
C100.0700 (3)0.24389 (14)0.5179 (3)0.0382 (5)
H100.05010.28100.45050.046*
C110.0417 (3)0.19455 (15)0.5220 (3)0.0414 (6)
H110.13890.19820.45800.050*
C120.0085 (3)0.13961 (13)0.6216 (3)0.0387 (6)
H120.08190.10500.62430.046*
C130.1362 (3)0.13660 (11)0.7180 (3)0.0308 (5)
C140.1781 (3)0.07834 (13)0.8309 (3)0.0384 (6)
H14A0.11710.08400.90340.046*
H14B0.28580.08350.88200.046*
C150.3230 (3)0.02833 (13)0.6927 (3)0.0426 (6)
H15A0.40360.04300.77700.051*
H15B0.30360.06740.62320.051*
N10.2443 (2)0.18540 (10)0.7172 (2)0.0302 (4)
S10.14839 (8)0.01069 (3)0.75438 (8)0.04531 (17)
S20.38563 (7)0.29931 (3)0.43559 (7)0.03722 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05493 (19)0.04386 (16)0.03946 (16)0.00297 (12)0.00566 (13)0.01018 (11)
Br20.0613 (2)0.05608 (19)0.02904 (15)0.00966 (13)0.00356 (12)0.00142 (11)
C10.0373 (13)0.0296 (11)0.0345 (13)0.0066 (9)0.0086 (10)0.0027 (10)
C20.0351 (13)0.0354 (12)0.0282 (12)0.0097 (10)0.0047 (10)0.0013 (9)
C30.0287 (12)0.0383 (12)0.0322 (12)0.0040 (9)0.0072 (10)0.0009 (10)
C40.0294 (12)0.0381 (12)0.0320 (12)0.0091 (9)0.0122 (10)0.0014 (10)
C50.0348 (13)0.0402 (12)0.0257 (11)0.0097 (10)0.0059 (9)0.0032 (10)
C60.0368 (13)0.0375 (12)0.0351 (13)0.0034 (10)0.0045 (11)0.0088 (10)
C70.0337 (13)0.0467 (14)0.0379 (13)0.0047 (10)0.0150 (10)0.0061 (11)
C80.0401 (14)0.0384 (13)0.0332 (13)0.0020 (10)0.0095 (11)0.0027 (10)
C90.0348 (12)0.0311 (11)0.0268 (11)0.0025 (9)0.0123 (9)0.0041 (9)
C100.0388 (13)0.0422 (13)0.0330 (13)0.0072 (11)0.0075 (10)0.0056 (10)
C110.0263 (12)0.0571 (16)0.0394 (14)0.0082 (11)0.0049 (10)0.0043 (12)
C120.0312 (13)0.0447 (14)0.0404 (14)0.0040 (10)0.0092 (11)0.0022 (11)
C130.0314 (12)0.0345 (12)0.0283 (12)0.0030 (9)0.0105 (9)0.0032 (9)
C140.0462 (15)0.0374 (13)0.0332 (13)0.0031 (11)0.0122 (11)0.0017 (10)
C150.0517 (16)0.0303 (12)0.0441 (15)0.0008 (11)0.0082 (12)0.0017 (11)
N10.0309 (10)0.0332 (10)0.0277 (10)0.0038 (7)0.0093 (8)0.0038 (8)
S10.0464 (4)0.0343 (3)0.0559 (4)0.0053 (3)0.0138 (3)0.0052 (3)
S20.0394 (3)0.0376 (3)0.0363 (3)0.0021 (2)0.0123 (3)0.0090 (3)
Geometric parameters (Å, º) top
Br1—C21.903 (2)C8—H8B0.9700
Br2—C51.895 (2)C9—N11.347 (3)
C1—C21.386 (3)C9—C101.379 (3)
C1—C61.395 (3)C10—C111.371 (4)
C1—C151.498 (4)C10—H100.9300
C2—C31.381 (3)C11—C121.377 (4)
C3—C41.393 (3)C11—H110.9300
C3—H30.9300C12—C131.386 (3)
C4—C51.392 (3)C12—H120.9300
C4—C71.496 (3)C13—N11.335 (3)
C5—C61.380 (3)C13—C141.506 (3)
C6—H60.9300C14—S11.820 (3)
C7—S21.819 (3)C14—H14A0.9700
C7—H7A0.9700C14—H14B0.9700
C7—H7B0.9700C15—S11.817 (3)
C8—C91.505 (3)C15—H15A0.9700
C8—S21.814 (2)C15—H15B0.9700
C8—H8A0.9700
C2—C1—C6116.5 (2)N1—C9—C10122.3 (2)
C2—C1—C15123.3 (2)N1—C9—C8116.2 (2)
C6—C1—C15120.2 (2)C10—C9—C8121.5 (2)
C3—C2—C1122.4 (2)C11—C10—C9118.9 (2)
C3—C2—Br1116.22 (18)C11—C10—H10120.6
C1—C2—Br1121.40 (18)C9—C10—H10120.6
C2—C3—C4120.9 (2)C10—C11—C12119.3 (2)
C2—C3—H3119.6C10—C11—H11120.3
C4—C3—H3119.6C12—C11—H11120.3
C5—C4—C3117.0 (2)C11—C12—C13119.0 (2)
C5—C4—C7124.3 (2)C11—C12—H12120.5
C3—C4—C7118.6 (2)C13—C12—H12120.5
C6—C5—C4121.7 (2)N1—C13—C12122.0 (2)
C6—C5—Br2117.85 (18)N1—C13—C14116.7 (2)
C4—C5—Br2120.44 (19)C12—C13—C14121.3 (2)
C5—C6—C1121.4 (2)C13—C14—S1114.34 (18)
C5—C6—H6119.3C13—C14—H14A108.7
C1—C6—H6119.3S1—C14—H14A108.7
C4—C7—S2115.00 (17)C13—C14—H14B108.7
C4—C7—H7A108.5S1—C14—H14B108.7
S2—C7—H7A108.5H14A—C14—H14B107.6
C4—C7—H7B108.5C1—C15—S1114.02 (17)
S2—C7—H7B108.5C1—C15—H15A108.7
H7A—C7—H7B107.5S1—C15—H15A108.7
C9—C8—S2114.50 (16)C1—C15—H15B108.7
C9—C8—H8A108.6S1—C15—H15B108.7
S2—C8—H8A108.6H15A—C15—H15B107.6
C9—C8—H8B108.6C13—N1—C9118.4 (2)
S2—C8—H8B108.6C15—S1—C14103.75 (12)
H8A—C8—H8B107.6C8—S2—C7103.29 (12)
C6—C1—C2—C32.6 (3)S2—C8—C9—C1053.5 (3)
C15—C1—C2—C3175.3 (2)N1—C9—C10—C111.6 (4)
C6—C1—C2—Br1178.55 (17)C8—C9—C10—C11178.4 (2)
C15—C1—C2—Br13.6 (3)C9—C10—C11—C120.8 (4)
C1—C2—C3—C40.2 (4)C10—C11—C12—C131.5 (4)
Br1—C2—C3—C4179.17 (17)C11—C12—C13—N10.1 (4)
C2—C3—C4—C52.8 (3)C11—C12—C13—C14179.1 (2)
C2—C3—C4—C7175.2 (2)N1—C13—C14—S1126.8 (2)
C3—C4—C5—C63.5 (3)C12—C13—C14—S154.2 (3)
C7—C4—C5—C6174.3 (2)C2—C1—C15—S1105.8 (2)
C3—C4—C5—Br2177.02 (16)C6—C1—C15—S171.9 (3)
C7—C4—C5—Br25.1 (3)C12—C13—N1—C92.4 (3)
C4—C5—C6—C11.2 (4)C14—C13—N1—C9178.6 (2)
Br2—C5—C6—C1179.31 (18)C10—C9—N1—C133.2 (3)
C2—C1—C6—C51.8 (3)C8—C9—N1—C13176.80 (19)
C15—C1—C6—C5176.1 (2)C1—C15—S1—C1440.3 (2)
C5—C4—C7—S272.8 (3)C13—C14—S1—C1583.7 (2)
C3—C4—C7—S2105.0 (2)C9—C8—S2—C783.4 (2)
S2—C8—C9—N1126.56 (19)C4—C7—S2—C840.9 (2)

Experimental details

Crystal data
Chemical formulaC15H13Br2NS2
Mr431.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.9275 (15), 18.879 (3), 9.3213 (15)
β (°) 103.878 (3)
V3)1525.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.58
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.452, 0.573
No. of measured, independent and
observed [I > 2σ(I)] reflections
11428, 3775, 3018
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.03
No. of reflections3775
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.46

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Professor Sheng-Hua Liu for technical assistance and Dr Jian-Long Xia for the data collection.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKay, K. Y. & Baek, Y. G. (1997). Chem. Ber. Recl, 130, 581–584.  CrossRef CAS Web of Science Google Scholar
First citationScheytza, H., Rademacher, O. & Reibig, H.-U. (1999). Eur. J. Org. Chem. 9, 2373–2381.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277–7285.  Web of Science CrossRef CAS Google Scholar
First citationXu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723–730.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamamoto, M., Wu, L. P., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Munakata, M. (1997). Inorg. Chim. Acta, 258, 89–91.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds