organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-2-methyl-4-phenyl­quinolin-1-ium chloride

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 July 2010; accepted 8 July 2010; online 14 July 2010)

An N—H⋯Cl hydrogen bond connects the ions in the title salt, C18H16NO+·Cl. The quinolin-1-ium residue is almost planar (r.m.s. deviation = 0.020 Å) but both the acetyl group [O—C—C—C torsion angle = 62.73 (17)°] and adjacent benzene ring [C—C—C—C torsion angle = −104.06 (14)°] are twisted out of this plane; the acetyl and benzene substituents are non-parallel [dihedral angle = 66.16 (7)°]. The crystal packing is consolidated by C—H⋯O and C—H⋯Cl contacts.

Related literature

For background to the pharmaceutical potential of quinoline derivatives, see: Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]). For related structures, see: Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]); Viji et al. (2010[Viji, A. J., Sarveswari, S., Vijayakumar, V., Tan, K. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1780.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16NO+·Cl

  • Mr = 297.77

  • Monoclinic, P 21 /c

  • a = 9.5046 (8) Å

  • b = 8.5787 (8) Å

  • c = 18.2538 (16) Å

  • β = 94.282 (1)°

  • V = 1484.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.32 × 0.23 × 0.17 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.980

  • 13696 measured reflections

  • 3409 independent reflections

  • 3047 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.07

  • 3409 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯Cl1 0.88 (1) 2.15 (1) 3.0265 (12) 175 (1)
C1—H1c⋯O1i 0.98 2.55 3.4972 (18) 163
C1—H1a⋯Cl1ii 0.98 2.83 3.7592 (15) 159
C7—H7⋯Cl1iii 0.95 2.82 3.6803 (14) 152
C8—H8⋯Cl1iv 0.95 2.81 3.7329 (14) 165
C18—H18⋯Cl1v 0.95 2.74 3.6175 (14) 154
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) -x, -y+2, -z+2; (iv) x+1, y, z; (v) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The potential pharmacological properties of quinoline derivatives (Musiol et al., 2006) motivate our studies into the structural chemistry of such derivatives (Kaiser et al., 2009; Viji et al., 2010). Herein, the crystal and molecular structure of the title salt is described.

The asymmetric unit comprises a 3-acetyl-2-methyl-4-phenylquinolin-1-ium cation and a chloride anion, being connected by a N–H···Cl hydrogen bond, Fig. 1 and Table 1. The non-hydrogen atoms comprising the quinolin-1-ium residue are planar with a r.m.s. deviation of 0.020 Å. The acetyl group at C3 and the adjacent benzene ring are twisted out of the plane of the quinolin-1-ium residue as seen in the values of the O1–C2–C3–C4 and C10–C11–C13–C14 torsion angles of 62.73 (17) and -104.06 (14) °, respectively. The acetyl and benzene substituents are splayed as seen in the dihedral angle formed between them of 66.16 (7) °.

In addition to the N–H···Cl hydrogen bond, the crystal structure features C–H···O and C–H···Cl contacts. The former lead to supramolecular chains along the b axis and these are consolidated in three-dimensions by the C–H···Cl contacts, Fig. 2 and Table 1.

Related literature top

For background to the pharmaceutical potential of quinoline derivatives, see: Musiol et al. (2006). For related structures, see: Kaiser et al. (2009); Viji et al. (2010).

Experimental top

A mixture of 2-aminobenzophenone (0.01 M), acetylacetone (0.01 M) and a catalytic amount of conc. HCl was irradiated under 240 W for about 5 min. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and petroleum ether, and recrystallized using ethanol. M.pt. 371–373 K. Yield: 65%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The pyridinium-H atom was refined with the distance restraint N–H = 0.88±0.1 Å, and with Uiso(H) = 1.2Uequiv(N).

Structure description top

The potential pharmacological properties of quinoline derivatives (Musiol et al., 2006) motivate our studies into the structural chemistry of such derivatives (Kaiser et al., 2009; Viji et al., 2010). Herein, the crystal and molecular structure of the title salt is described.

The asymmetric unit comprises a 3-acetyl-2-methyl-4-phenylquinolin-1-ium cation and a chloride anion, being connected by a N–H···Cl hydrogen bond, Fig. 1 and Table 1. The non-hydrogen atoms comprising the quinolin-1-ium residue are planar with a r.m.s. deviation of 0.020 Å. The acetyl group at C3 and the adjacent benzene ring are twisted out of the plane of the quinolin-1-ium residue as seen in the values of the O1–C2–C3–C4 and C10–C11–C13–C14 torsion angles of 62.73 (17) and -104.06 (14) °, respectively. The acetyl and benzene substituents are splayed as seen in the dihedral angle formed between them of 66.16 (7) °.

In addition to the N–H···Cl hydrogen bond, the crystal structure features C–H···O and C–H···Cl contacts. The former lead to supramolecular chains along the b axis and these are consolidated in three-dimensions by the C–H···Cl contacts, Fig. 2 and Table 1.

For background to the pharmaceutical potential of quinoline derivatives, see: Musiol et al. (2006). For related structures, see: Kaiser et al. (2009); Viji et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50° probability level.
[Figure 2] Fig. 2. 2-D array formed in the (1 0 1) plane in (I) mediated by C–H···O and Cl···O contacts shown as orange and purple dashed lines, respectively.
3-Acetyl-2-methyl-4-phenylquinolin-1-ium chloride top
Crystal data top
C18H16NO+·ClF(000) = 624
Mr = 297.77Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6610 reflections
a = 9.5046 (8) Åθ = 2.6–28.2°
b = 8.5787 (8) ŵ = 0.26 mm1
c = 18.2538 (16) ÅT = 100 K
β = 94.282 (1)°Block, colourless
V = 1484.2 (2) Å30.32 × 0.23 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3409 independent reflections
Radiation source: fine-focus sealed tube3047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.972, Tmax = 0.980k = 1011
13696 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.8555P]
where P = (Fo2 + 2Fc2)/3
3409 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C18H16NO+·ClV = 1484.2 (2) Å3
Mr = 297.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5046 (8) ŵ = 0.26 mm1
b = 8.5787 (8) ÅT = 100 K
c = 18.2538 (16) Å0.32 × 0.23 × 0.17 mm
β = 94.282 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3409 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3047 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.980Rint = 0.028
13696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
3409 reflectionsΔρmin = 0.18 e Å3
195 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23118 (3)0.81420 (4)0.951338 (18)0.01937 (10)
O10.07410 (11)0.19289 (12)0.74963 (6)0.0263 (2)
N10.02654 (11)0.56664 (13)0.90768 (6)0.0153 (2)
H1N0.0898 (14)0.6344 (16)0.9209 (8)0.018*
C10.02975 (15)0.03841 (16)0.84768 (8)0.0223 (3)
H1A0.04800.00800.87700.033*
H1B0.11580.05280.88000.033*
H1C0.04530.04340.81170.033*
C20.00653 (14)0.18746 (16)0.80845 (7)0.0173 (3)
C30.03851 (13)0.33644 (15)0.84823 (7)0.0151 (3)
C40.06597 (13)0.43859 (15)0.87103 (7)0.0158 (3)
C50.11193 (13)0.60797 (15)0.92460 (7)0.0144 (3)
C60.14307 (14)0.74822 (16)0.96245 (7)0.0173 (3)
H60.06950.81200.97830.021*
C70.28135 (15)0.79106 (16)0.97607 (7)0.0191 (3)
H70.30360.88611.00100.023*
C80.39122 (14)0.69582 (16)0.95347 (7)0.0190 (3)
H80.48660.72730.96330.023*
C90.36130 (13)0.55823 (16)0.91736 (7)0.0168 (3)
H90.43610.49470.90270.020*
C100.21954 (13)0.51013 (15)0.90172 (7)0.0144 (3)
C110.18018 (13)0.37150 (15)0.86232 (7)0.0143 (2)
C120.22057 (14)0.41010 (17)0.85588 (8)0.0210 (3)
H12A0.27340.48090.88580.031*
H12B0.24230.30200.86820.031*
H12C0.24730.42880.80370.031*
C130.29118 (13)0.27584 (15)0.83041 (7)0.0151 (3)
C140.30263 (14)0.28491 (15)0.75478 (7)0.0174 (3)
H140.23370.34000.72450.021*
C150.41504 (15)0.21323 (16)0.72377 (8)0.0202 (3)
H150.42510.22300.67260.024*
C160.51255 (15)0.12761 (17)0.76727 (8)0.0211 (3)
H160.59000.08000.74600.025*
C170.49715 (14)0.11120 (17)0.84204 (8)0.0209 (3)
H170.56130.04800.87130.025*
C180.38782 (14)0.18724 (16)0.87403 (7)0.0181 (3)
H180.37900.17880.92540.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01572 (16)0.02029 (17)0.02252 (17)0.00187 (12)0.00424 (12)0.00375 (12)
O10.0321 (6)0.0224 (5)0.0233 (5)0.0033 (4)0.0061 (4)0.0023 (4)
N10.0142 (5)0.0150 (5)0.0168 (5)0.0020 (4)0.0024 (4)0.0003 (4)
C10.0245 (7)0.0154 (7)0.0267 (7)0.0032 (5)0.0010 (6)0.0007 (5)
C20.0150 (6)0.0171 (6)0.0201 (6)0.0021 (5)0.0031 (5)0.0017 (5)
C30.0168 (6)0.0137 (6)0.0148 (6)0.0007 (5)0.0009 (5)0.0019 (5)
C40.0157 (6)0.0164 (6)0.0154 (6)0.0005 (5)0.0015 (5)0.0028 (5)
C50.0148 (6)0.0152 (6)0.0133 (6)0.0003 (5)0.0013 (4)0.0021 (5)
C60.0203 (6)0.0151 (6)0.0168 (6)0.0026 (5)0.0019 (5)0.0004 (5)
C70.0231 (7)0.0150 (6)0.0189 (6)0.0021 (5)0.0006 (5)0.0024 (5)
C80.0159 (6)0.0212 (7)0.0196 (6)0.0035 (5)0.0001 (5)0.0007 (5)
C90.0148 (6)0.0179 (6)0.0178 (6)0.0006 (5)0.0020 (5)0.0005 (5)
C100.0152 (6)0.0145 (6)0.0136 (6)0.0002 (5)0.0013 (4)0.0014 (5)
C110.0157 (6)0.0140 (6)0.0133 (6)0.0005 (5)0.0017 (5)0.0017 (5)
C120.0136 (6)0.0221 (7)0.0272 (7)0.0012 (5)0.0011 (5)0.0018 (6)
C130.0140 (6)0.0133 (6)0.0181 (6)0.0013 (5)0.0021 (5)0.0018 (5)
C140.0185 (6)0.0150 (6)0.0185 (6)0.0004 (5)0.0000 (5)0.0002 (5)
C150.0237 (7)0.0197 (7)0.0175 (6)0.0004 (5)0.0043 (5)0.0021 (5)
C160.0192 (6)0.0196 (7)0.0251 (7)0.0027 (5)0.0046 (5)0.0053 (6)
C170.0185 (6)0.0199 (7)0.0238 (7)0.0044 (5)0.0022 (5)0.0016 (5)
C180.0190 (6)0.0185 (7)0.0168 (6)0.0009 (5)0.0002 (5)0.0005 (5)
Geometric parameters (Å, º) top
O1—C21.2100 (17)C8—H80.9500
N1—C41.3257 (17)C9—C101.4177 (18)
N1—C51.3756 (16)C9—H90.9500
N1—H1N0.883 (9)C10—C111.4253 (18)
C1—C21.4933 (19)C11—C131.4892 (17)
C1—H1A0.9800C12—H12A0.9800
C1—H1B0.9800C12—H12B0.9800
C1—H1C0.9800C12—H12C0.9800
C2—C31.5158 (18)C13—C181.3950 (19)
C3—C111.3849 (18)C13—C141.3951 (18)
C3—C41.4103 (18)C14—C151.3893 (19)
C4—C121.4949 (18)C14—H140.9500
C5—C61.4079 (18)C15—C161.385 (2)
C5—C101.4102 (17)C15—H150.9500
C6—C71.3695 (19)C16—C171.391 (2)
C6—H60.9500C16—H160.9500
C7—C81.4116 (19)C17—C181.3917 (19)
C7—H70.9500C17—H170.9500
C8—C91.3713 (19)C18—H180.9500
C4—N1—C5123.81 (11)C10—C9—H9119.8
C4—N1—H1N120.7 (11)C5—C10—C9117.81 (12)
C5—N1—H1N115.4 (11)C5—C10—C11118.50 (11)
C2—C1—H1A109.5C9—C10—C11123.66 (12)
C2—C1—H1B109.5C3—C11—C10119.33 (12)
H1A—C1—H1B109.5C3—C11—C13121.00 (12)
C2—C1—H1C109.5C10—C11—C13119.36 (11)
H1A—C1—H1C109.5C4—C12—H12A109.5
H1B—C1—H1C109.5C4—C12—H12B109.5
O1—C2—C1123.14 (13)H12A—C12—H12B109.5
O1—C2—C3120.32 (12)C4—C12—H12C109.5
C1—C2—C3116.45 (11)H12A—C12—H12C109.5
C11—C3—C4120.43 (12)H12B—C12—H12C109.5
C11—C3—C2120.53 (12)C18—C13—C14119.90 (12)
C4—C3—C2119.04 (11)C18—C13—C11122.18 (11)
N1—C4—C3119.02 (12)C14—C13—C11117.79 (12)
N1—C4—C12117.76 (12)C15—C14—C13119.85 (12)
C3—C4—C12123.22 (12)C15—C14—H14120.1
N1—C5—C6119.53 (11)C13—C14—H14120.1
N1—C5—C10118.88 (12)C16—C15—C14120.20 (12)
C6—C5—C10121.56 (12)C16—C15—H15119.9
C7—C6—C5118.82 (12)C14—C15—H15119.9
C7—C6—H6120.6C15—C16—C17120.09 (13)
C5—C6—H6120.6C15—C16—H16120.0
C6—C7—C8120.84 (13)C17—C16—H16120.0
C6—C7—H7119.6C16—C17—C18120.06 (13)
C8—C7—H7119.6C16—C17—H17120.0
C9—C8—C7120.48 (12)C18—C17—H17120.0
C9—C8—H8119.8C17—C18—C13119.76 (12)
C7—C8—H8119.8C17—C18—H18120.1
C8—C9—C10120.48 (12)C13—C18—H18120.1
C8—C9—H9119.8
O1—C2—C3—C11117.58 (15)C8—C9—C10—C11177.83 (12)
C1—C2—C3—C1165.82 (16)C4—C3—C11—C101.52 (18)
O1—C2—C3—C462.73 (17)C2—C3—C11—C10178.17 (11)
C1—C2—C3—C4113.87 (14)C4—C3—C11—C13172.07 (12)
C5—N1—C4—C30.68 (19)C2—C3—C11—C138.24 (18)
C5—N1—C4—C12179.25 (12)C5—C10—C11—C30.50 (18)
C11—C3—C4—N11.62 (19)C9—C10—C11—C3178.43 (12)
C2—C3—C4—N1178.07 (11)C5—C10—C11—C13173.20 (11)
C11—C3—C4—C12178.31 (12)C9—C10—C11—C134.74 (19)
C2—C3—C4—C122.00 (19)C3—C11—C13—C18114.69 (15)
C4—N1—C5—C6178.67 (12)C10—C11—C13—C1871.73 (17)
C4—N1—C5—C100.33 (18)C3—C11—C13—C1469.53 (16)
N1—C5—C6—C7177.19 (12)C10—C11—C13—C14104.06 (14)
C10—C5—C6—C71.11 (19)C18—C13—C14—C153.8 (2)
C5—C6—C7—C80.8 (2)C11—C13—C14—C15172.11 (12)
C6—C7—C8—C90.0 (2)C13—C14—C15—C162.6 (2)
C7—C8—C9—C100.5 (2)C14—C15—C16—C170.9 (2)
N1—C5—C10—C9177.64 (11)C15—C16—C17—C183.3 (2)
C6—C5—C10—C90.67 (18)C16—C17—C18—C132.1 (2)
N1—C5—C10—C110.42 (17)C14—C13—C18—C171.5 (2)
C6—C5—C10—C11178.72 (12)C11—C13—C18—C17174.24 (12)
C8—C9—C10—C50.12 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···Cl10.88 (1)2.15 (1)3.0265 (12)175 (1)
C1—H1c···O1i0.982.553.4972 (18)163
C1—H1a···Cl1ii0.982.833.7592 (15)159
C7—H7···Cl1iii0.952.823.6803 (14)152
C8—H8···Cl1iv0.952.813.7329 (14)165
C18—H18···Cl1v0.952.743.6175 (14)154
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y+2, z+2; (iv) x+1, y, z; (v) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC18H16NO+·Cl
Mr297.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5046 (8), 8.5787 (8), 18.2538 (16)
β (°) 94.282 (1)
V3)1484.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.32 × 0.23 × 0.17
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
13696, 3409, 3047
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.07
No. of reflections3409
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···Cl10.883 (14)2.146 (14)3.0265 (12)175.2 (13)
C1—H1c···O1i0.982.553.4972 (18)163
C1—H1a···Cl1ii0.982.833.7592 (15)159
C7—H7···Cl1iii0.952.823.6803 (14)152
C8—H8···Cl1iv0.952.813.7329 (14)165
C18—H18···Cl1v0.952.743.6175 (14)154
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y+2, z+2; (iv) x+1, y, z; (v) x, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViji, A. J., Sarveswari, S., Vijayakumar, V., Tan, K. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1780.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds