organic compounds
2-(4-Bromophenyl)-5-fluoro-3-phenylsulfinyl-1-benzofuran
aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr
In the title compound, C20H12BrFO2S, the O atom and the phenyl group of the phenylsulfinyl substituent lie on opposite sides of the plane through the benzofuran fragment; the phenyl ring is nearly perpendicular to this plane [dihedral angle = 86.98 (6)°]. The 4-bromophenyl ring is rotated slightly out of the benzofuran plane, making a dihedral angle of 1.56 (8)°. The features aromatic π–π interactions between the furan and phenyl rings of neighbouring molecules [centroid–centroid distance = 3.506 (3) Å], and an intermolecular C—H⋯π interaction. The also exhibits a short intermolecular S⋯S contact [3.2635 (8) Å].
Related literature
For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b,c). For short S⋯S interactions, see: Munshi & Guru Row (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810029958/pk2256sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810029958/pk2256Isup2.hkl
77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2-(4-bromophenyl)-5-fluoro-3-phenylsulfanyl-1-benzofuran (439 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 6h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by
(hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 68%, m.p. 465–466 K; Rf = 0.75 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Many compounds containing a benzofuran moiety have attracted considerable interest in view of their pharmacological properties such as antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the substituent effect on the solid state structures of 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2009a,b,c), we report the
of the title compound (Fig. 1).The benzofuran unit is essentially planar, with a mean deviation of 0.063 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the phenyl ring is 86.98 (6)°, and the 4-bromophenyl ring with 1.56 (8)° lies toward the benzofuran plane. The crystal packing (Fig. 2) is stabilized by aromatic π–π interactions between the furan and benzene rings of the adjacent molecules, with a Cg1···Cg2ii distance of 3.506 (3) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively). The molecular packing (Fig. 2) is further stabilized by an intermolecular C—H···π interaction between the benzene H atom and the phenyl ring of a neighbouring molecule, with a C5—H5···Cg3i (Table 1; Cg3 is the centroid of the C15–C20 phenyl ring). The also exhibits a short intermolecular S···S contact (Munshi & Guru Row, 2004), with a S···Siv distance of 3.2635 (8) Å
For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b,c). For short S···S interactions, see: Munshi & Guru Row (2004).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C20H12BrFO2S | Z = 2 |
Mr = 415.27 | F(000) = 416 |
Triclinic, P1 | Dx = 1.662 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1361 (4) Å | Cell parameters from 8238 reflections |
b = 9.8237 (5) Å | θ = 2.7–27.5° |
c = 11.4093 (5) Å | µ = 2.62 mm−1 |
α = 82.866 (3)° | T = 173 K |
β = 77.123 (3)° | Block, colourless |
γ = 69.155 (2)° | 0.29 × 0.26 × 0.21 mm |
V = 829.78 (7) Å3 |
Bruker SMART APEXII CCD diffractometer | 3833 independent reflections |
Radiation source: rotating anode | 3452 reflections with I > 2σ(I) |
Graphite multilayer monochromator | Rint = 0.033 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.6°, θmin = 1.8° |
φ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −12→12 |
Tmin = 0.664, Tmax = 0.746 | l = −14→14 |
14582 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 0.87 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
3833 reflections | (Δ/σ)max = 0.001 |
226 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.63 e Å−3 |
C20H12BrFO2S | γ = 69.155 (2)° |
Mr = 415.27 | V = 829.78 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1361 (4) Å | Mo Kα radiation |
b = 9.8237 (5) Å | µ = 2.62 mm−1 |
c = 11.4093 (5) Å | T = 173 K |
α = 82.866 (3)° | 0.29 × 0.26 × 0.21 mm |
β = 77.123 (3)° |
Bruker SMART APEXII CCD diffractometer | 3833 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3452 reflections with I > 2σ(I) |
Tmin = 0.664, Tmax = 0.746 | Rint = 0.033 |
14582 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 0.87 | Δρmax = 0.37 e Å−3 |
3833 reflections | Δρmin = −0.63 e Å−3 |
226 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | −0.21990 (3) | 0.22528 (2) | 0.998902 (16) | 0.03781 (11) | |
S | 0.47916 (5) | 0.16534 (4) | 0.44461 (4) | 0.02033 (12) | |
F | 0.64982 (17) | 0.61956 (15) | 0.12311 (11) | 0.0381 (3) | |
O1 | 0.17961 (16) | 0.57103 (13) | 0.53100 (11) | 0.0210 (3) | |
O2 | 0.66591 (17) | 0.14226 (15) | 0.37795 (13) | 0.0302 (3) | |
C1 | 0.3705 (2) | 0.35537 (18) | 0.46114 (14) | 0.0193 (3) | |
C2 | 0.4126 (2) | 0.46848 (19) | 0.37985 (15) | 0.0196 (3) | |
C3 | 0.5388 (2) | 0.4728 (2) | 0.27522 (16) | 0.0238 (4) | |
H3 | 0.6234 | 0.3885 | 0.2413 | 0.029* | |
C4 | 0.5298 (2) | 0.6096 (2) | 0.22567 (16) | 0.0264 (4) | |
C5 | 0.4074 (3) | 0.7387 (2) | 0.27342 (17) | 0.0280 (4) | |
H5 | 0.4087 | 0.8278 | 0.2353 | 0.034* | |
C6 | 0.2835 (2) | 0.7350 (2) | 0.37772 (16) | 0.0245 (4) | |
H6 | 0.2004 | 0.8197 | 0.4121 | 0.029* | |
C7 | 0.2906 (2) | 0.59795 (19) | 0.42783 (15) | 0.0201 (3) | |
C8 | 0.2314 (2) | 0.42188 (17) | 0.55135 (15) | 0.0191 (3) | |
C9 | 0.1288 (2) | 0.37299 (19) | 0.65891 (15) | 0.0203 (3) | |
C10 | −0.0123 (3) | 0.4752 (2) | 0.73078 (17) | 0.0273 (4) | |
H10 | −0.0387 | 0.5740 | 0.7092 | 0.033* | |
C11 | −0.1131 (3) | 0.4322 (2) | 0.83305 (18) | 0.0307 (4) | |
H11 | −0.2057 | 0.5011 | 0.8804 | 0.037* | |
C12 | −0.0740 (2) | 0.2854 (2) | 0.86369 (16) | 0.0256 (4) | |
C13 | 0.0653 (3) | 0.1814 (2) | 0.79636 (17) | 0.0293 (4) | |
H13 | 0.0911 | 0.0830 | 0.8194 | 0.035* | |
C14 | 0.1662 (3) | 0.2245 (2) | 0.69446 (17) | 0.0275 (4) | |
H14 | 0.2600 | 0.1546 | 0.6488 | 0.033* | |
C15 | 0.3563 (2) | 0.14738 (19) | 0.33775 (17) | 0.0217 (3) | |
C16 | 0.1896 (2) | 0.1320 (2) | 0.37783 (19) | 0.0289 (4) | |
H16 | 0.1418 | 0.1280 | 0.4597 | 0.035* | |
C17 | 0.0958 (3) | 0.1228 (2) | 0.2932 (2) | 0.0396 (5) | |
H17 | −0.0171 | 0.1142 | 0.3183 | 0.047* | |
C18 | 0.1684 (3) | 0.1263 (2) | 0.1723 (2) | 0.0432 (6) | |
H18 | 0.1041 | 0.1204 | 0.1164 | 0.052* | |
C19 | 0.3370 (4) | 0.1387 (3) | 0.1332 (2) | 0.0461 (6) | |
H19 | 0.3856 | 0.1406 | 0.0514 | 0.055* | |
C20 | 0.4327 (3) | 0.1481 (2) | 0.21686 (18) | 0.0347 (5) | |
H20 | 0.5465 | 0.1549 | 0.1918 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.03745 (16) | 0.05065 (18) | 0.02458 (14) | −0.02139 (12) | 0.00266 (9) | 0.00468 (10) |
S | 0.0185 (2) | 0.0151 (2) | 0.0247 (2) | −0.00334 (16) | −0.00247 (16) | −0.00170 (16) |
F | 0.0399 (7) | 0.0428 (7) | 0.0292 (6) | −0.0205 (6) | 0.0043 (5) | 0.0072 (5) |
O1 | 0.0219 (6) | 0.0140 (6) | 0.0237 (6) | −0.0041 (5) | −0.0017 (5) | 0.0004 (4) |
O2 | 0.0171 (6) | 0.0280 (7) | 0.0422 (8) | −0.0040 (5) | −0.0009 (5) | −0.0096 (6) |
C1 | 0.0199 (8) | 0.0158 (8) | 0.0213 (8) | −0.0059 (6) | −0.0031 (6) | 0.0000 (6) |
C2 | 0.0205 (8) | 0.0188 (8) | 0.0211 (8) | −0.0085 (7) | −0.0054 (6) | 0.0007 (6) |
C3 | 0.0226 (8) | 0.0260 (9) | 0.0225 (8) | −0.0097 (7) | −0.0014 (7) | −0.0012 (7) |
C4 | 0.0268 (9) | 0.0325 (10) | 0.0226 (8) | −0.0159 (8) | −0.0036 (7) | 0.0044 (7) |
C5 | 0.0328 (10) | 0.0262 (10) | 0.0292 (9) | −0.0154 (8) | −0.0113 (8) | 0.0095 (7) |
C6 | 0.0265 (9) | 0.0177 (8) | 0.0290 (9) | −0.0069 (7) | −0.0079 (7) | 0.0025 (7) |
C7 | 0.0202 (8) | 0.0198 (8) | 0.0205 (8) | −0.0074 (7) | −0.0045 (6) | 0.0008 (6) |
C8 | 0.0201 (8) | 0.0133 (8) | 0.0235 (8) | −0.0047 (6) | −0.0058 (6) | 0.0002 (6) |
C9 | 0.0198 (8) | 0.0192 (8) | 0.0221 (8) | −0.0072 (7) | −0.0037 (6) | −0.0007 (6) |
C10 | 0.0278 (9) | 0.0198 (9) | 0.0285 (9) | −0.0040 (7) | −0.0009 (7) | −0.0012 (7) |
C11 | 0.0274 (9) | 0.0302 (10) | 0.0283 (9) | −0.0060 (8) | 0.0027 (7) | −0.0054 (8) |
C12 | 0.0261 (8) | 0.0323 (10) | 0.0191 (8) | −0.0131 (8) | −0.0015 (7) | 0.0015 (7) |
C13 | 0.0345 (10) | 0.0234 (9) | 0.0283 (9) | −0.0114 (8) | −0.0029 (8) | 0.0040 (7) |
C14 | 0.0279 (9) | 0.0197 (9) | 0.0291 (9) | −0.0061 (7) | 0.0024 (7) | −0.0010 (7) |
C15 | 0.0215 (8) | 0.0150 (8) | 0.0283 (9) | −0.0054 (7) | −0.0053 (7) | −0.0012 (6) |
C16 | 0.0215 (9) | 0.0227 (9) | 0.0403 (11) | −0.0065 (7) | −0.0011 (8) | −0.0057 (8) |
C17 | 0.0263 (9) | 0.0240 (10) | 0.0699 (15) | −0.0047 (8) | −0.0149 (10) | −0.0091 (10) |
C18 | 0.0558 (14) | 0.0281 (11) | 0.0552 (14) | −0.0124 (10) | −0.0337 (12) | −0.0003 (10) |
C19 | 0.0761 (17) | 0.0456 (14) | 0.0295 (11) | −0.0333 (13) | −0.0178 (11) | 0.0040 (10) |
C20 | 0.0426 (12) | 0.0387 (12) | 0.0288 (10) | −0.0246 (10) | −0.0018 (9) | −0.0005 (8) |
Br—C12 | 1.8961 (18) | C9—C14 | 1.406 (2) |
S—Si | 3.2635 (8) | C10—C11 | 1.382 (3) |
S—O2 | 1.4903 (13) | C10—H10 | 0.9300 |
S—C1 | 1.7721 (17) | C11—C12 | 1.378 (3) |
S—C15 | 1.7996 (18) | C11—H11 | 0.9300 |
F—C4 | 1.365 (2) | C12—C13 | 1.379 (3) |
O1—C7 | 1.375 (2) | C13—C14 | 1.380 (3) |
O1—C8 | 1.3776 (19) | C13—H13 | 0.9300 |
C1—C8 | 1.374 (2) | C14—H14 | 0.9300 |
C1—C2 | 1.444 (2) | C15—C20 | 1.381 (3) |
C2—C7 | 1.391 (2) | C15—C16 | 1.387 (2) |
C2—C3 | 1.397 (2) | C16—C17 | 1.387 (3) |
C3—C4 | 1.376 (3) | C16—H16 | 0.9300 |
C3—H3 | 0.9300 | C17—C18 | 1.375 (4) |
C4—C5 | 1.389 (3) | C17—H17 | 0.9300 |
C5—C6 | 1.384 (3) | C18—C19 | 1.388 (4) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C6—C7 | 1.382 (2) | C19—C20 | 1.390 (3) |
C6—H6 | 0.9300 | C19—H19 | 0.9300 |
C8—C9 | 1.455 (2) | C20—H20 | 0.9300 |
C9—C10 | 1.401 (2) | ||
O2—S—C1 | 107.56 (8) | C11—C10—H10 | 119.3 |
O2—S—C15 | 106.43 (8) | C9—C10—H10 | 119.3 |
C1—S—C15 | 96.72 (8) | C12—C11—C10 | 118.90 (18) |
C7—O1—C8 | 106.98 (13) | C12—C11—H11 | 120.5 |
C8—C1—C2 | 107.73 (15) | C10—C11—H11 | 120.5 |
C8—C1—S | 126.85 (13) | C11—C12—C13 | 121.57 (17) |
C2—C1—S | 125.42 (13) | C11—C12—Br | 119.10 (14) |
C7—C2—C3 | 119.78 (16) | C13—C12—Br | 119.30 (14) |
C7—C2—C1 | 104.55 (14) | C12—C13—C14 | 119.45 (18) |
C3—C2—C1 | 135.66 (16) | C12—C13—H13 | 120.3 |
C4—C3—C2 | 115.72 (17) | C14—C13—H13 | 120.3 |
C4—C3—H3 | 122.1 | C13—C14—C9 | 120.77 (18) |
C2—C3—H3 | 122.1 | C13—C14—H14 | 119.6 |
F—C4—C3 | 117.95 (18) | C9—C14—H14 | 119.6 |
F—C4—C5 | 117.67 (17) | C20—C15—C16 | 121.65 (18) |
C3—C4—C5 | 124.38 (17) | C20—C15—S | 118.49 (14) |
C6—C5—C4 | 120.07 (17) | C16—C15—S | 119.87 (15) |
C6—C5—H5 | 120.0 | C17—C16—C15 | 118.6 (2) |
C4—C5—H5 | 120.0 | C17—C16—H16 | 120.7 |
C7—C6—C5 | 116.00 (17) | C15—C16—H16 | 120.7 |
C7—C6—H6 | 122.0 | C18—C17—C16 | 120.5 (2) |
C5—C6—H6 | 122.0 | C18—C17—H17 | 119.8 |
O1—C7—C6 | 124.94 (16) | C16—C17—H17 | 119.8 |
O1—C7—C2 | 111.03 (14) | C17—C18—C19 | 120.6 (2) |
C6—C7—C2 | 124.03 (16) | C17—C18—H18 | 119.7 |
C1—C8—O1 | 109.69 (14) | C19—C18—H18 | 119.7 |
C1—C8—C9 | 135.70 (15) | C18—C19—C20 | 119.7 (2) |
O1—C8—C9 | 114.61 (14) | C18—C19—H19 | 120.2 |
C10—C9—C14 | 117.93 (16) | C20—C19—H19 | 120.2 |
C10—C9—C8 | 119.97 (16) | C15—C20—C19 | 119.0 (2) |
C14—C9—C8 | 122.10 (16) | C15—C20—H20 | 120.5 |
C11—C10—C9 | 121.35 (17) | C19—C20—H20 | 120.5 |
O2—S—C1—C8 | −152.47 (14) | C7—O1—C8—C9 | 179.29 (13) |
C15—S—C1—C8 | 97.90 (16) | C1—C8—C9—C10 | −178.05 (18) |
O2—S—C1—C2 | 28.34 (17) | O1—C8—C9—C10 | 1.2 (2) |
C15—S—C1—C2 | −81.29 (15) | C1—C8—C9—C14 | 2.0 (3) |
C8—C1—C2—C7 | −0.77 (18) | O1—C8—C9—C14 | −178.71 (15) |
S—C1—C2—C7 | 178.55 (12) | C14—C9—C10—C11 | −0.5 (3) |
C8—C1—C2—C3 | 178.37 (18) | C8—C9—C10—C11 | 179.57 (17) |
S—C1—C2—C3 | −2.3 (3) | C9—C10—C11—C12 | −0.6 (3) |
C7—C2—C3—C4 | −0.9 (2) | C10—C11—C12—C13 | 1.5 (3) |
C1—C2—C3—C4 | −179.96 (18) | C10—C11—C12—Br | −176.61 (14) |
C2—C3—C4—F | −179.75 (14) | C11—C12—C13—C14 | −1.3 (3) |
C2—C3—C4—C5 | 0.6 (3) | Br—C12—C13—C14 | 176.79 (15) |
F—C4—C5—C6 | −179.58 (15) | C12—C13—C14—C9 | 0.2 (3) |
C3—C4—C5—C6 | 0.0 (3) | C10—C9—C14—C13 | 0.7 (3) |
C4—C5—C6—C7 | −0.4 (2) | C8—C9—C14—C13 | −179.38 (17) |
C8—O1—C7—C6 | −179.14 (16) | O2—S—C15—C20 | −13.32 (18) |
C8—O1—C7—C2 | 0.74 (17) | C1—S—C15—C20 | 97.26 (17) |
C5—C6—C7—O1 | 179.97 (15) | O2—S—C15—C16 | 166.15 (15) |
C5—C6—C7—C2 | 0.1 (2) | C1—S—C15—C16 | −83.27 (16) |
C3—C2—C7—O1 | −179.29 (14) | C20—C15—C16—C17 | −2.5 (3) |
C1—C2—C7—O1 | 0.02 (17) | S—C15—C16—C17 | 178.09 (15) |
C3—C2—C7—C6 | 0.6 (2) | C15—C16—C17—C18 | 1.1 (3) |
C1—C2—C7—C6 | 179.90 (16) | C16—C17—C18—C19 | 0.2 (3) |
C2—C1—C8—O1 | 1.26 (18) | C17—C18—C19—C20 | −0.3 (4) |
S—C1—C8—O1 | −178.05 (11) | C16—C15—C20—C19 | 2.4 (3) |
C2—C1—C8—C9 | −179.43 (17) | S—C15—C20—C19 | −178.13 (17) |
S—C1—C8—C9 | 1.3 (3) | C18—C19—C20—C15 | −1.0 (4) |
C7—O1—C8—C1 | −1.24 (17) |
Symmetry code: (i) −x+1, −y, −z+1. |
Cg3 is the centroid of the C15–C20 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg3ii | 0.93 | 2.85 | 3.644 (3) | 145 |
Symmetry code: (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C20H12BrFO2S |
Mr | 415.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 8.1361 (4), 9.8237 (5), 11.4093 (5) |
α, β, γ (°) | 82.866 (3), 77.123 (3), 69.155 (2) |
V (Å3) | 829.78 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.62 |
Crystal size (mm) | 0.29 × 0.26 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.664, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14582, 3833, 3452 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.104, 0.87 |
No. of reflections | 3833 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.63 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).
Cg3 is the centroid of the C15–C20 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg3i | 0.93 | 2.85 | 3.644 (3) | 144.5 |
Symmetry code: (i) x, y+1, z. |
References
Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. Web of Science CrossRef PubMed CAS Google Scholar
Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1809. Web of Science CSD CrossRef IUCr Journals Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1958. Web of Science CSD CrossRef IUCr Journals Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009c). Acta Cryst. E65, o2609. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428. Web of Science CrossRef PubMed CAS Google Scholar
Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805. Web of Science CrossRef PubMed CAS Google Scholar
Munshi, P. & Guru Row, T. N. (2004). Acta Cryst. E60, o2168–o2170. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834 Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many compounds containing a benzofuran moiety have attracted considerable interest in view of their pharmacological properties such as antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the substituent effect on the solid state structures of 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2009a,b,c), we report the crystal structure of the title compound (Fig. 1).
The benzofuran unit is essentially planar, with a mean deviation of 0.063 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the phenyl ring is 86.98 (6)°, and the 4-bromophenyl ring with 1.56 (8)° lies toward the benzofuran plane. The crystal packing (Fig. 2) is stabilized by aromatic π–π interactions between the furan and benzene rings of the adjacent molecules, with a Cg1···Cg2ii distance of 3.506 (3) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively). The molecular packing (Fig. 2) is further stabilized by an intermolecular C—H···π interaction between the benzene H atom and the phenyl ring of a neighbouring molecule, with a C5—H5···Cg3i (Table 1; Cg3 is the centroid of the C15–C20 phenyl ring). The crystal structure also exhibits a short intermolecular S···S contact (Munshi & Guru Row, 2004), with a S···Siv distance of 3.2635 (8) Å