metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methanol-κO)bis­­{2-meth­­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolato-κ2O,O′}tris­­(nitrato-κ2O,O′)cerium(III)

aCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China, and, Zhejiang Normal University Xingzhi College, Jinhua 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 2 June 2010; accepted 2 July 2010; online 14 July 2010)

The asymmetric unit of title compound, [Ce(NO3)3(C15H15NO2)2(CH3OH)], consists of two Schiff base 2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolate (HL) ligands, three nitrate anions and a methanol ligand. The CeIII ion is 11-coordinated: three nitrate radical anions coordinate to the CeIII ion through O atoms, two HL ligands chelate the CeIII ion through the O atoms of the phenolate and meth­oxy groups, and one methanol mol­ecule coordinates to CeIII ion through its O atom. The O atom of one nitrate anion is disordered over two sites of equal occupancy. The protonated imine N atoms are involved in intra­molecular hydrogen bonds with the phenoxide groups. C—H⋯O inter­actions are also observed.

Related literature

For related structures, see: Li et al. (2008[Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593-m1594.]); Liu et al. (2009[Liu, J.-F., Xian, H.-D. & Zhao, G.-L. (2009). Acta Cryst. E65, m650.]); Xian et al. (2008[Xian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.]); Zhao et al. (2007[Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267-m268.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce(NO3)3(C15H15NO2)2(CH4O)]

  • Mr = 840.75

  • Triclinic, [P \overline 1]

  • a = 7.8540 (2) Å

  • b = 14.6241 (4) Å

  • c = 16.6170 (4) Å

  • α = 73.0650 (1)°

  • β = 85.4910 (1)°

  • γ = 79.3750 (1)°

  • V = 1793.89 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 296 K

  • 0.46 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.745, Tmax = 0.799

  • 22987 measured reflections

  • 6333 independent reflections

  • 5623 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.07

  • 6285 reflections

  • 473 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O12i 0.93 2.51 3.233 (6) 135
C7—H7A⋯O14i 0.93 2.57 3.488 (5) 169
C30—H30B⋯O11ii 0.96 2.60 3.405 (6) 142
C13—H13A⋯O8iii 0.93 2.42 3.304 (5) 160
C22—H22A⋯O10iv 0.93 2.39 3.243 (5) 153
C29—H29A⋯O11iv 0.93 2.42 3.285 (7) 154
C10—H10A⋯O9 0.93 2.57 3.410 (5) 150
C25—H25A⋯O8 0.93 2.52 3.411 (7) 160
N1—H1A⋯O1 0.86 2.02 2.671 (4) 132
N1—H1A⋯O9 0.86 2.50 3.290 (4) 154
N2—H2A⋯O3 0.86 1.96 2.638 (4) 135
N2—H2A⋯O7 0.86 2.65 3.444 (6) 154
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y+1, z; (iii) x+1, y-1, z; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base complexes have been received much attention for many years. By introducing diverse groups of different shapes and functions, Schiff bases also have potential applications in material science, biological, encapsulation, hydrometallurgy, et al. O-vanillin derived Schiff base complexes have been absorbed considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis. Interested in this field, we have been synthesized several analogous Schiff bases derived from o-vanillin and prepared their transitional and rare metal complexes further. In a few of articles we have reported our partial research results (Zhao et al., 2007; Xian et al., 2008; Li et al., 2008). Herein, we describe a new CeIII complex.

The structure of complex (1) was shown in Fig.1 and the coordination environment of CeIII was shown in Fig. 2. In this complex the CeIII is twelve-coordinated by eleven oxygen atoms, six 0 from three nitrate radical ions and four O atoms from the Schiff bases (HL), another one oxygen atom from methanol, which can be described as a distorted sphere. HL ligands coordinate to the CeIIIion with bidentate-chelate mode using oxygen atoms from deprotonated phenolic hydroxyl groups and methoxyl groups. The Ce—O bond distances were listed in Table 1, The distances between CeIII and methoxy O atoms are obvious longer than Ce—O(phenolic) bond distances, which are similar to the analogous complexes(Zhao et al., 2007; Li et al., 2008, Liu et al., 2009). The nitrate radical anions coordinate to the CeIII with O atoms with the distances from 2.540–2.733 Å, which are between the Ce—O(phenolic) and the Ce—O(methoxy). The Ce–O (methyl alcohol)is only slightly longer than the Ce—O(phenolic).

The hydrogen bonds and π···π weak non-covalent interactions lend stability to the structure. In the structure, In HL ligand, two protons of phenolic hydroxyl groups considered to have transferred to imine N atoms involve in forming intramolecular hydrogen bonds. There are no classic hydrogen bonds between the adjacent molecules, The π···π interactions exist both intra and extra molecules between the approximate paralleled participating benzene rings, which may be the primary forces keep the complex molecules packing together.

Related literature top

For related structures, see: Li et al. (2008); Liu et al. (2009); Xian et al. (2008); Zhao et al. (2007).

Experimental top

Reagents and solvents used were of commercially available quality and without purified before using. The Schiff base ligand 2-[(4- methylphenyl)iminomethyl]-6-methoxy-phenol was synthesized from condensation of o-vanillin and p-methylaniline. The title compound was synthesized by traditional method. 480 milligram (2 mmol) HL ligand was dissolved in 20 ml me thanol, then 326 milligram (1 mmol) Ce(NO3)3 (in methanol) was added to the upper solution. The mixture solution was stirred for 2 h at room temperature. At last, deposit was filtered out and the red solution was kept in the open air. The red crystal was obtained after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C)) and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C)].

Structure description top

Schiff base complexes have been received much attention for many years. By introducing diverse groups of different shapes and functions, Schiff bases also have potential applications in material science, biological, encapsulation, hydrometallurgy, et al. O-vanillin derived Schiff base complexes have been absorbed considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis. Interested in this field, we have been synthesized several analogous Schiff bases derived from o-vanillin and prepared their transitional and rare metal complexes further. In a few of articles we have reported our partial research results (Zhao et al., 2007; Xian et al., 2008; Li et al., 2008). Herein, we describe a new CeIII complex.

The structure of complex (1) was shown in Fig.1 and the coordination environment of CeIII was shown in Fig. 2. In this complex the CeIII is twelve-coordinated by eleven oxygen atoms, six 0 from three nitrate radical ions and four O atoms from the Schiff bases (HL), another one oxygen atom from methanol, which can be described as a distorted sphere. HL ligands coordinate to the CeIIIion with bidentate-chelate mode using oxygen atoms from deprotonated phenolic hydroxyl groups and methoxyl groups. The Ce—O bond distances were listed in Table 1, The distances between CeIII and methoxy O atoms are obvious longer than Ce—O(phenolic) bond distances, which are similar to the analogous complexes(Zhao et al., 2007; Li et al., 2008, Liu et al., 2009). The nitrate radical anions coordinate to the CeIII with O atoms with the distances from 2.540–2.733 Å, which are between the Ce—O(phenolic) and the Ce—O(methoxy). The Ce–O (methyl alcohol)is only slightly longer than the Ce—O(phenolic).

The hydrogen bonds and π···π weak non-covalent interactions lend stability to the structure. In the structure, In HL ligand, two protons of phenolic hydroxyl groups considered to have transferred to imine N atoms involve in forming intramolecular hydrogen bonds. There are no classic hydrogen bonds between the adjacent molecules, The π···π interactions exist both intra and extra molecules between the approximate paralleled participating benzene rings, which may be the primary forces keep the complex molecules packing together.

For related structures, see: Li et al. (2008); Liu et al. (2009); Xian et al. (2008); Zhao et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
(Methanol-κO)bis{2-methoxy-6-[(4-methylphenyl)iminiomethyl]phenolato- κ2O,O'}tris(nitrato-κ2O,O')cerium(III) top
Crystal data top
[Ce(NO3)3(C15H15NO2)2(CH4O)]Z = 2
Mr = 840.75F(000) = 850
Triclinic, P1Dx = 1.556 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8540 (2) ÅCell parameters from 9995 reflections
b = 14.6241 (4) Åθ = 1.5–25.0°
c = 16.6170 (4) ŵ = 1.34 mm1
α = 73.0650 (1)°T = 296 K
β = 85.4910 (1)°Block, red
γ = 79.3750 (1)°0.46 × 0.18 × 0.17 mm
V = 1793.89 (8) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
6333 independent reflections
Radiation source: fine-focus sealed tube5623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.745, Tmax = 0.799k = 1617
22987 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3185P]
where P = (Fo2 + 2Fc2)/3
6285 reflections(Δ/σ)max = 0.001
473 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Ce(NO3)3(C15H15NO2)2(CH4O)]γ = 79.3750 (1)°
Mr = 840.75V = 1793.89 (8) Å3
Triclinic, P1Z = 2
a = 7.8540 (2) ÅMo Kα radiation
b = 14.6241 (4) ŵ = 1.34 mm1
c = 16.6170 (4) ÅT = 296 K
α = 73.0650 (1)°0.46 × 0.18 × 0.17 mm
β = 85.4910 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
6333 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5623 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.799Rint = 0.051
22987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.06 e Å3
6285 reflectionsΔρmin = 0.73 e Å3
473 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce0.00955 (2)0.326368 (13)0.305560 (12)0.04189 (10)
C10.2417 (5)0.0393 (3)0.5041 (2)0.0518 (9)
C20.1777 (4)0.1399 (3)0.4680 (2)0.0430 (8)
C30.1519 (5)0.2001 (3)0.5227 (3)0.0496 (9)
C40.1912 (7)0.1635 (4)0.6053 (3)0.0677 (13)
H4A0.17300.20450.63990.081*
C50.2583 (8)0.0656 (4)0.6393 (3)0.0790 (15)
H5A0.28500.04220.69600.095*
C60.2848 (8)0.0045 (4)0.5904 (3)0.0767 (15)
H6A0.33140.06050.61340.092*
C70.2606 (6)0.0264 (3)0.4566 (3)0.0584 (11)
H7A0.31390.08960.48200.070*
C80.0566 (13)0.3582 (4)0.5352 (5)0.157 (4)
H8A0.10190.32510.59000.235*
H8B0.06570.38010.54020.235*
H8C0.11330.41300.51000.235*
C90.2341 (5)0.0742 (3)0.3300 (2)0.0490 (9)
C100.1478 (6)0.0465 (3)0.2556 (3)0.0660 (12)
H10A0.07420.01290.23960.079*
C110.1715 (7)0.1076 (4)0.2050 (3)0.0713 (13)
H11A0.11350.08870.15450.086*
C120.2790 (6)0.1961 (3)0.2273 (3)0.0658 (12)
C130.3599 (6)0.2229 (3)0.3029 (3)0.0736 (14)
H13A0.42980.28340.31980.088*
C140.3409 (6)0.1629 (3)0.3545 (3)0.0656 (12)
H14A0.39910.18200.40490.079*
C150.3088 (8)0.2618 (4)0.1697 (4)0.0961 (19)
H15A0.38780.31980.19520.144*
H15B0.35690.22860.11660.144*
H15C0.20050.27840.16080.144*
C160.1935 (5)0.5007 (3)0.0389 (2)0.0442 (8)
C170.1748 (5)0.4272 (3)0.1145 (2)0.0444 (8)
C180.2789 (5)0.3341 (3)0.1226 (3)0.0515 (9)
C190.3874 (5)0.3167 (3)0.0591 (3)0.0584 (11)
H19A0.45460.25570.06580.070*
C200.3990 (6)0.3895 (4)0.0160 (3)0.0622 (12)
H20A0.47230.37610.05940.075*
C210.3052 (6)0.4793 (4)0.0266 (3)0.0573 (10)
H21A0.31410.52710.07710.069*
C220.1060 (5)0.5958 (3)0.0278 (2)0.0486 (9)
H22A0.12600.64170.02250.058*
C230.3870 (7)0.1844 (4)0.2236 (4)0.102 (2)
H23A0.46220.18070.17580.152*
H23B0.33390.12740.24230.152*
H23C0.45310.18850.26820.152*
C240.0870 (5)0.7203 (3)0.0786 (2)0.0497 (9)
C250.1857 (7)0.7372 (3)0.1446 (3)0.0755 (14)
H25A0.19970.68570.19170.091*
C260.2661 (7)0.8298 (4)0.1431 (4)0.0835 (16)
H26A0.33410.83940.18930.100*
C270.2489 (7)0.9068 (4)0.0766 (4)0.0710 (14)
C280.1476 (10)0.8887 (4)0.0102 (4)0.101 (2)
H28A0.13290.94050.03650.122*
C290.0668 (8)0.7971 (4)0.0099 (3)0.0880 (17)
H29A0.00090.78740.03630.106*
C300.3378 (9)1.0081 (4)0.0774 (4)0.102 (2)
H30A0.31241.05390.02530.154*
H30B0.29621.02450.12330.154*
H30C0.46071.00980.08410.154*
C310.3062 (10)0.4819 (5)0.2976 (6)0.135 (3)
H31A0.41490.48030.32110.202*
H31B0.22040.53080.31210.202*
H31C0.31940.49670.23740.202*
N10.2109 (4)0.0076 (2)0.38071 (19)0.0497 (8)
H1A0.15870.05040.35800.060*
N20.0023 (4)0.6249 (2)0.08322 (19)0.0477 (7)
H2A0.02440.58050.12770.057*
N30.2286 (6)0.5186 (3)0.3175 (3)0.0749 (11)
N40.1340 (4)0.2119 (3)0.2005 (2)0.0527 (8)
N50.3505 (4)0.2705 (3)0.3938 (2)0.0584 (9)
O10.1453 (3)0.17537 (18)0.38872 (16)0.0500 (6)
O20.0872 (4)0.2928 (2)0.4830 (2)0.0655 (8)
O30.0685 (3)0.44247 (19)0.17475 (16)0.0530 (7)
O40.2566 (4)0.2677 (2)0.2006 (2)0.0649 (8)
O50.2525 (5)0.3889 (3)0.3306 (3)0.0876 (12)
O60.106 (2)0.4788 (12)0.3527 (12)0.106 (5)0.50
O6'0.167 (2)0.4474 (11)0.3858 (10)0.089 (4)0.50
O70.2290 (6)0.4991 (3)0.2523 (3)0.1052 (14)
O80.3191 (6)0.5908 (3)0.3299 (3)0.1177 (16)
O90.0716 (4)0.1719 (2)0.27132 (18)0.0626 (8)
O100.1404 (4)0.3005 (2)0.17246 (17)0.0638 (8)
O110.1851 (5)0.1639 (3)0.1598 (2)0.0792 (10)
O120.2125 (4)0.2409 (3)0.4287 (2)0.0825 (11)
O130.3464 (4)0.3214 (3)0.3193 (2)0.0868 (11)
O140.4881 (4)0.2489 (3)0.4293 (2)0.0920 (12)
H50.250 (13)0.368 (8)0.384 (6)0.22 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.03685 (14)0.03142 (14)0.05200 (15)0.00101 (9)0.00009 (9)0.00664 (9)
C10.061 (2)0.042 (2)0.047 (2)0.0044 (18)0.0017 (18)0.0072 (17)
C20.0358 (19)0.044 (2)0.047 (2)0.0052 (16)0.0008 (15)0.0107 (16)
C30.045 (2)0.046 (2)0.059 (2)0.0093 (17)0.0015 (17)0.0175 (18)
C40.081 (3)0.069 (3)0.059 (3)0.011 (3)0.000 (2)0.029 (2)
C50.117 (4)0.067 (3)0.047 (2)0.009 (3)0.011 (3)0.009 (2)
C60.111 (4)0.051 (3)0.057 (3)0.001 (3)0.015 (3)0.002 (2)
C70.071 (3)0.037 (2)0.057 (2)0.003 (2)0.003 (2)0.0060 (18)
C80.261 (11)0.061 (4)0.158 (7)0.041 (5)0.108 (7)0.063 (4)
C90.051 (2)0.037 (2)0.057 (2)0.0017 (17)0.0024 (17)0.0148 (17)
C100.075 (3)0.039 (2)0.077 (3)0.009 (2)0.018 (2)0.014 (2)
C110.082 (3)0.061 (3)0.074 (3)0.000 (2)0.021 (2)0.027 (2)
C120.058 (3)0.061 (3)0.088 (3)0.002 (2)0.004 (2)0.040 (3)
C130.076 (3)0.050 (3)0.092 (3)0.017 (2)0.013 (3)0.029 (2)
C140.070 (3)0.053 (3)0.068 (3)0.015 (2)0.010 (2)0.022 (2)
C150.100 (4)0.084 (4)0.122 (5)0.008 (3)0.013 (4)0.068 (4)
C160.0365 (19)0.050 (2)0.051 (2)0.0142 (16)0.0010 (15)0.0184 (18)
C170.0341 (19)0.050 (2)0.053 (2)0.0097 (16)0.0038 (15)0.0198 (18)
C180.043 (2)0.045 (2)0.066 (2)0.0093 (17)0.0076 (18)0.0157 (19)
C190.051 (2)0.053 (3)0.077 (3)0.0066 (19)0.010 (2)0.031 (2)
C200.057 (3)0.075 (3)0.066 (3)0.018 (2)0.018 (2)0.039 (2)
C210.057 (3)0.067 (3)0.052 (2)0.018 (2)0.0058 (19)0.020 (2)
C220.050 (2)0.051 (2)0.046 (2)0.0148 (18)0.0031 (17)0.0100 (17)
C230.079 (4)0.067 (4)0.118 (5)0.019 (3)0.026 (3)0.011 (3)
C240.053 (2)0.044 (2)0.055 (2)0.0113 (18)0.0052 (18)0.0151 (18)
C250.087 (4)0.049 (3)0.083 (3)0.013 (2)0.026 (3)0.014 (2)
C260.086 (4)0.066 (3)0.102 (4)0.012 (3)0.025 (3)0.037 (3)
C270.073 (3)0.047 (3)0.097 (4)0.004 (2)0.020 (3)0.027 (3)
C280.168 (7)0.049 (3)0.077 (4)0.004 (4)0.005 (4)0.011 (3)
C290.134 (5)0.053 (3)0.064 (3)0.002 (3)0.019 (3)0.010 (2)
C300.120 (5)0.059 (3)0.143 (6)0.001 (3)0.021 (4)0.055 (4)
C310.115 (6)0.082 (5)0.206 (9)0.045 (4)0.055 (6)0.007 (5)
N10.055 (2)0.0361 (17)0.0513 (18)0.0040 (14)0.0015 (15)0.0102 (14)
N20.0536 (19)0.0395 (18)0.0484 (17)0.0127 (14)0.0001 (14)0.0073 (14)
N30.065 (3)0.049 (2)0.105 (3)0.012 (2)0.002 (2)0.026 (2)
N40.0447 (18)0.060 (2)0.0535 (19)0.0053 (16)0.0023 (15)0.0188 (17)
N50.045 (2)0.055 (2)0.059 (2)0.0079 (16)0.0030 (16)0.0081 (16)
O10.0543 (16)0.0389 (14)0.0517 (15)0.0014 (12)0.0093 (12)0.0086 (12)
O20.079 (2)0.0424 (16)0.077 (2)0.0012 (15)0.0212 (16)0.0218 (14)
O30.0495 (15)0.0424 (15)0.0577 (15)0.0011 (12)0.0107 (12)0.0084 (12)
O40.0538 (17)0.0390 (16)0.085 (2)0.0047 (13)0.0194 (15)0.0052 (14)
O50.065 (2)0.076 (3)0.109 (3)0.0266 (19)0.028 (2)0.010 (2)
O60.088 (11)0.089 (12)0.150 (15)0.039 (8)0.042 (9)0.071 (10)
O6'0.099 (11)0.064 (8)0.109 (10)0.023 (6)0.039 (7)0.046 (7)
O70.122 (3)0.083 (3)0.090 (3)0.021 (2)0.018 (2)0.022 (2)
O80.119 (3)0.078 (3)0.145 (4)0.050 (3)0.010 (3)0.053 (3)
O90.075 (2)0.0462 (17)0.0642 (18)0.0021 (15)0.0192 (15)0.0129 (14)
O100.080 (2)0.0519 (19)0.0511 (16)0.0078 (16)0.0051 (14)0.0029 (13)
O110.079 (2)0.097 (3)0.081 (2)0.024 (2)0.0089 (18)0.047 (2)
O120.054 (2)0.101 (3)0.078 (2)0.0162 (19)0.0027 (17)0.0003 (19)
O130.063 (2)0.106 (3)0.073 (2)0.0082 (19)0.0020 (17)0.000 (2)
O140.0410 (18)0.111 (3)0.097 (3)0.0190 (18)0.0048 (17)0.015 (2)
Geometric parameters (Å, º) top
Ce—O12.400 (2)C17—O31.295 (4)
Ce—O32.451 (3)C17—C181.429 (5)
Ce—O52.509 (4)C18—C191.356 (6)
Ce—O62.542 (18)C18—O41.394 (5)
Ce—O6'2.599 (17)C19—C201.395 (7)
Ce—O92.620 (3)C19—H19A0.9300
Ce—O122.650 (4)C20—C211.352 (6)
Ce—O132.650 (3)C20—H20A0.9300
Ce—O102.661 (3)C21—H21A0.9300
Ce—O72.733 (4)C22—N21.313 (5)
Ce—O42.790 (3)C22—H22A0.9300
Ce—O22.981 (3)C23—O41.418 (5)
C1—C71.394 (6)C23—H23A0.9600
C1—C61.421 (6)C23—H23B0.9600
C1—C21.427 (5)C23—H23C0.9600
C2—O11.294 (4)C24—C251.349 (6)
C2—C31.418 (5)C24—C291.372 (6)
C3—O21.345 (5)C24—N21.413 (5)
C3—C41.359 (6)C25—C261.379 (7)
C4—C51.394 (7)C25—H25A0.9300
C4—H4A0.9300C26—C271.348 (8)
C5—C61.352 (7)C26—H26A0.9300
C5—H5A0.9300C27—C281.369 (8)
C6—H6A0.9300C27—C301.520 (7)
C7—N11.286 (5)C28—C291.373 (7)
C7—H7A0.9300C28—H28A0.9300
C8—O21.446 (6)C29—H29A0.9300
C8—H8A0.9600C30—H30A0.9600
C8—H8B0.9600C30—H30B0.9600
C8—H8C0.9600C30—H30C0.9600
C9—C101.376 (6)C31—O51.439 (7)
C9—C141.378 (5)C31—H31A0.9600
C9—N11.442 (5)C31—H31B0.9600
C10—C111.375 (6)C31—H31C0.9600
C10—H10A0.9300N1—H1A0.8600
C11—C121.375 (6)N2—H2A0.8600
C11—H11A0.9300N3—O61.135 (19)
C12—C131.373 (7)N3—O71.198 (6)
C12—C151.520 (6)N3—O81.221 (5)
C13—C141.377 (6)N3—O6'1.348 (17)
C13—H13A0.9300N4—O101.236 (4)
C14—H14A0.9300N4—O111.238 (4)
C15—H15A0.9600N4—O91.246 (4)
C15—H15B0.9600N5—O121.215 (4)
C15—H15C0.9600N5—O141.238 (4)
C16—C221.399 (5)N5—O131.247 (5)
C16—C171.413 (5)O5—H50.85 (10)
C16—C211.414 (6)
O1—Ce—O3131.99 (9)C12—C13—C14122.2 (4)
O1—Ce—O582.46 (11)C12—C13—H13A118.9
O3—Ce—O571.49 (12)C14—C13—H13A118.9
O1—Ce—O6125.8 (4)C13—C14—C9118.7 (4)
O3—Ce—O682.9 (4)C13—C14—H14A120.7
O5—Ce—O670.8 (4)C9—C14—H14A120.7
O1—Ce—O6'116.9 (4)C12—C15—H15A109.5
O3—Ce—O6'99.3 (3)C12—C15—H15B109.5
O5—Ce—O6'82.7 (4)H15A—C15—H15B109.5
O6—Ce—O6'17.8 (4)C12—C15—H15C109.5
O1—Ce—O965.07 (9)H15A—C15—H15C109.5
O3—Ce—O9109.10 (9)H15B—C15—H15C109.5
O5—Ce—O9136.63 (13)C22—C16—C17121.2 (3)
O6—Ce—O9151.9 (4)C22—C16—C21118.7 (4)
O6'—Ce—O9136.8 (4)C17—C16—C21120.0 (4)
O1—Ce—O1269.58 (10)O3—C17—C16122.1 (3)
O3—Ce—O12157.78 (10)O3—C17—C18120.5 (4)
O5—Ce—O12123.22 (14)C16—C17—C18117.3 (3)
O6—Ce—O1286.8 (4)C19—C18—O4125.9 (4)
O6'—Ce—O1269.1 (3)C19—C18—C17121.0 (4)
O9—Ce—O1272.70 (12)O4—C18—C17113.1 (3)
O1—Ce—O13109.50 (11)C18—C19—C20120.6 (4)
O3—Ce—O13112.21 (10)C18—C19—H19A119.7
O5—Ce—O13152.32 (16)C20—C19—H19A119.7
O6—Ce—O1382.3 (4)C21—C20—C19120.9 (4)
O6'—Ce—O1369.6 (4)C21—C20—H20A119.6
O9—Ce—O1369.74 (12)C19—C20—H20A119.6
O12—Ce—O1346.60 (10)C20—C21—C16120.1 (4)
O1—Ce—O10110.07 (9)C20—C21—H21A119.9
O3—Ce—O1068.54 (10)C16—C21—H21A119.9
O5—Ce—O10135.05 (13)N2—C22—C16124.7 (4)
O6—Ce—O10122.3 (4)N2—C22—H22A117.6
O6'—Ce—O10123.1 (4)C16—C22—H22A117.6
O9—Ce—O1047.34 (9)O4—C23—H23A109.5
O12—Ce—O10101.26 (11)O4—C23—H23B109.5
O13—Ce—O1065.67 (11)H23A—C23—H23B109.5
O1—Ce—O7164.33 (12)O4—C23—H23C109.5
O3—Ce—O762.27 (11)H23A—C23—H23C109.5
O5—Ce—O798.96 (15)H23B—C23—H23C109.5
O6—Ce—O742.4 (5)C25—C24—C29118.8 (4)
O6'—Ce—O748.4 (4)C25—C24—N2119.3 (4)
O9—Ce—O7120.16 (13)C29—C24—N2121.9 (4)
O12—Ce—O797.17 (13)C24—C25—C26120.8 (5)
O13—Ce—O762.84 (14)C24—C25—H25A119.6
O10—Ce—O780.03 (13)C26—C25—H25A119.6
O1—Ce—O474.23 (9)C27—C26—C25121.9 (5)
O3—Ce—O460.05 (8)C27—C26—H26A119.1
O5—Ce—O473.09 (14)C25—C26—H26A119.1
O6—Ce—O4134.6 (4)C26—C27—C28116.7 (5)
O6'—Ce—O4152.0 (3)C26—C27—C30120.5 (5)
O9—Ce—O470.99 (10)C28—C27—C30122.8 (5)
O12—Ce—O4136.71 (11)C27—C28—C29122.6 (5)
O13—Ce—O4133.55 (11)C27—C28—H28A118.7
O10—Ce—O469.73 (10)C29—C28—H28A118.7
O7—Ce—O4121.21 (11)C24—C29—C28119.3 (5)
O1—Ce—O256.65 (8)C24—C29—H29A120.4
O3—Ce—O2131.21 (9)C28—C29—H29A120.4
O5—Ce—O261.99 (13)C27—C30—H30A109.5
O6—Ce—O269.2 (4)C27—C30—H30B109.5
O6'—Ce—O262.3 (4)H30A—C30—H30B109.5
O9—Ce—O2114.34 (8)C27—C30—H30C109.5
O12—Ce—O261.31 (10)H30A—C30—H30C109.5
O13—Ce—O2102.94 (10)H30B—C30—H30C109.5
O10—Ce—O2160.09 (10)O5—C31—H31A109.5
O7—Ce—O2110.16 (11)O5—C31—H31B109.5
O4—Ce—O2115.27 (9)H31A—C31—H31B109.5
C7—C1—C6118.8 (4)O5—C31—H31C109.5
C7—C1—C2121.3 (4)H31A—C31—H31C109.5
C6—C1—C2119.9 (4)H31B—C31—H31C109.5
O1—C2—C3121.1 (3)C7—N1—C9126.4 (3)
O1—C2—C1121.8 (3)C7—N1—H1A116.8
C3—C2—C1117.2 (3)C9—N1—H1A116.8
O2—C3—C4126.5 (4)C22—N2—C24127.9 (3)
O2—C3—C2112.5 (3)C22—N2—H2A116.1
C4—C3—C2121.1 (4)C24—N2—H2A116.1
C3—C4—C5121.1 (4)O6—N3—O7110.2 (10)
C3—C4—H4A119.4O6—N3—O8124.5 (10)
C5—C4—H4A119.4O7—N3—O8122.0 (5)
C6—C5—C4120.5 (4)O6—N3—O6'36.2 (10)
C6—C5—H5A119.7O7—N3—O6'118.3 (8)
C4—C5—H5A119.7O8—N3—O6'117.0 (8)
C5—C6—C1120.1 (4)O10—N4—O11121.8 (4)
C5—C6—H6A119.9O10—N4—O9117.4 (3)
C1—C6—H6A119.9O11—N4—O9120.8 (4)
N1—C7—C1125.8 (4)O12—N5—O14122.0 (4)
N1—C7—H7A117.1O12—N5—O13116.7 (4)
C1—C7—H7A117.1O14—N5—O13121.3 (3)
O2—C8—H8A109.5C2—O1—Ce133.8 (2)
O2—C8—H8B109.5C3—O2—C8115.4 (4)
H8A—C8—H8B109.5C3—O2—Ce114.4 (2)
O2—C8—H8C109.5C8—O2—Ce129.7 (3)
H8A—C8—H8C109.5C17—O3—Ce129.0 (2)
H8B—C8—H8C109.5C18—O4—C23116.6 (3)
C10—C9—C14120.4 (4)C18—O4—Ce116.5 (2)
C10—C9—N1118.3 (3)C23—O4—Ce126.2 (3)
C14—C9—N1121.3 (4)C31—O5—Ce132.0 (4)
C11—C10—C9119.4 (4)C31—O5—H5115 (7)
C11—C10—H10A120.3Ce—O5—H597 (7)
C9—C10—H10A120.3N3—O6—Ce106.5 (12)
C10—C11—C12121.5 (4)N3—O6'—Ce96.7 (8)
C10—C11—H11A119.2N3—O7—Ce94.3 (3)
C12—C11—H11A119.2N4—O9—Ce98.5 (2)
C13—C12—C11117.8 (4)N4—O10—Ce96.8 (2)
C13—C12—C15121.0 (4)N5—O12—Ce98.8 (3)
C11—C12—C15121.1 (5)N5—O13—Ce97.8 (2)
C7—C1—C2—O14.6 (6)O13—Ce—O4—C1885.3 (3)
C6—C1—C2—O1176.5 (4)O10—Ce—O4—C1868.5 (3)
C7—C1—C2—C3175.8 (4)O7—Ce—O4—C184.6 (3)
C6—C1—C2—C33.2 (6)O2—Ce—O4—C18132.4 (3)
O1—C2—C3—O22.0 (5)O1—Ce—O4—C233.0 (4)
C1—C2—C3—O2178.4 (3)O3—Ce—O4—C23161.8 (5)
O1—C2—C3—C4177.8 (4)O5—Ce—O4—C2383.7 (4)
C1—C2—C3—C41.8 (6)O6—Ce—O4—C23122.1 (7)
O2—C3—C4—C5179.8 (5)O6'—Ce—O4—C23115.1 (9)
C2—C3—C4—C50.0 (7)O9—Ce—O4—C2371.5 (4)
C3—C4—C5—C60.4 (9)O12—Ce—O4—C2337.1 (5)
C4—C5—C6—C11.0 (9)O13—Ce—O4—C23105.1 (4)
C7—C1—C6—C5176.1 (5)O10—Ce—O4—C23122.0 (4)
C2—C1—C6—C52.9 (8)O7—Ce—O4—C23174.1 (4)
C6—C1—C7—N1172.6 (5)O2—Ce—O4—C2337.1 (4)
C2—C1—C7—N16.4 (7)O1—Ce—O5—C31172.8 (7)
C14—C9—C10—C111.1 (8)O3—Ce—O5—C3133.7 (7)
N1—C9—C10—C11178.2 (4)O6—Ce—O5—C3155.0 (8)
C9—C10—C11—C120.3 (8)O6'—Ce—O5—C3168.6 (8)
C10—C11—C12—C131.3 (8)O9—Ce—O5—C31132.2 (6)
C10—C11—C12—C15178.0 (6)O12—Ce—O5—C31127.7 (7)
C11—C12—C13—C142.2 (9)O13—Ce—O5—C3169.0 (8)
C15—C12—C13—C14177.1 (6)O10—Ce—O5—C3161.9 (7)
C12—C13—C14—C91.4 (8)O7—Ce—O5—C3122.9 (7)
C10—C9—C14—C130.3 (8)O4—Ce—O5—C3197.1 (7)
N1—C9—C14—C13179.1 (5)O2—Ce—O5—C31131.1 (7)
C22—C16—C17—O34.4 (6)O7—N3—O6—Ce26.8 (10)
C21—C16—C17—O3177.0 (4)O8—N3—O6—Ce173.5 (5)
C22—C16—C17—C18175.5 (4)O6'—N3—O6—Ce84 (2)
C21—C16—C17—C183.2 (5)O1—Ce—O6—N3150.2 (8)
O3—C17—C18—C19178.4 (4)O3—Ce—O6—N372.0 (10)
C16—C17—C18—C191.8 (6)O5—Ce—O6—N3144.8 (11)
O3—C17—C18—O42.4 (5)O6'—Ce—O6—N385 (3)
C16—C17—C18—O4177.5 (3)O9—Ce—O6—N345.8 (16)
O4—C18—C19—C20179.6 (4)O12—Ce—O6—N388.3 (10)
C17—C18—C19—C200.4 (6)O13—Ce—O6—N341.6 (9)
C18—C19—C20—C211.3 (7)O10—Ce—O6—N313.0 (12)
C19—C20—C21—C160.1 (7)O7—Ce—O6—N316.0 (7)
C22—C16—C21—C20176.3 (4)O4—Ce—O6—N3105.9 (10)
C17—C16—C21—C202.4 (6)O2—Ce—O6—N3148.7 (11)
C17—C16—C22—N22.1 (6)O6—N3—O6'—Ce70 (2)
C21—C16—C22—N2179.3 (4)O7—N3—O6'—Ce15.9 (9)
C29—C24—C25—C260.5 (8)O8—N3—O6'—Ce177.8 (4)
N2—C24—C25—C26178.2 (5)O1—Ce—O6'—N3178.4 (6)
C24—C25—C26—C270.4 (9)O3—Ce—O6'—N331.0 (8)
C25—C26—C27—C280.1 (9)O5—Ce—O6'—N3100.8 (8)
C25—C26—C27—C30179.3 (5)O6—Ce—O6'—N354 (2)
C26—C27—C28—C290.3 (10)O9—Ce—O6'—N3100.2 (7)
C30—C27—C28—C29179.6 (6)O12—Ce—O6'—N3129.4 (9)
C25—C24—C29—C280.2 (9)O13—Ce—O6'—N379.4 (8)
N2—C24—C29—C28177.8 (5)O10—Ce—O6'—N339.4 (9)
C27—C28—C29—C240.2 (10)O7—Ce—O6'—N38.1 (5)
C1—C7—N1—C9178.1 (4)O4—Ce—O6'—N370.7 (13)
C10—C9—N1—C7169.4 (4)O2—Ce—O6'—N3162.9 (9)
C14—C9—N1—C711.3 (7)O6—N3—O7—Ce23.8 (10)
C16—C22—N2—C24175.9 (4)O8—N3—O7—Ce175.9 (5)
C25—C24—N2—C22175.7 (4)O6'—N3—O7—Ce15.0 (9)
C29—C24—N2—C221.9 (7)O1—Ce—O7—N331.4 (7)
C3—C2—O1—Ce14.3 (5)O3—Ce—O7—N3126.2 (4)
C1—C2—O1—Ce166.1 (3)O5—Ce—O7—N362.7 (4)
O3—Ce—O1—C2130.1 (3)O6—Ce—O7—N314.5 (6)
O5—Ce—O1—C273.5 (4)O6'—Ce—O7—N39.1 (5)
O6—Ce—O1—C213.8 (6)O9—Ce—O7—N3136.8 (3)
O6'—Ce—O1—C24.3 (5)O12—Ce—O7—N362.7 (4)
O9—Ce—O1—C2136.0 (4)O13—Ce—O7—N395.3 (4)
O12—Ce—O1—C256.2 (3)O10—Ce—O7—N3162.9 (4)
O13—Ce—O1—C280.7 (3)O4—Ce—O7—N3138.3 (3)
O10—Ce—O1—C2151.1 (3)O2—Ce—O7—N30.7 (4)
O7—Ce—O1—C222.8 (6)O10—N4—O9—Ce1.8 (4)
O4—Ce—O1—C2148.0 (3)O11—N4—O9—Ce179.2 (3)
O2—Ce—O1—C212.2 (3)O1—Ce—O9—N4161.6 (3)
C4—C3—O2—C80.5 (8)O3—Ce—O9—N433.3 (2)
C2—C3—O2—C8179.7 (6)O5—Ce—O9—N4116.2 (3)
C4—C3—O2—Ce173.6 (4)O6—Ce—O9—N478.5 (9)
C2—C3—O2—Ce6.5 (4)O6'—Ce—O9—N494.9 (6)
O1—Ce—O2—C38.8 (3)O12—Ce—O9—N4123.4 (2)
O3—Ce—O2—C3128.0 (3)O13—Ce—O9—N474.1 (2)
O5—Ce—O2—C3108.7 (3)O10—Ce—O9—N41.0 (2)
O6—Ce—O2—C3172.6 (5)O7—Ce—O9—N435.1 (3)
O6'—Ce—O2—C3154.6 (5)O4—Ce—O9—N480.6 (2)
O9—Ce—O2—C322.8 (3)O2—Ce—O9—N4169.6 (2)
O12—Ce—O2—C374.6 (3)O11—N4—O10—Ce179.3 (3)
O13—Ce—O2—C396.2 (3)O9—N4—O10—Ce1.8 (4)
O10—Ce—O2—C343.6 (4)O1—Ce—O10—N419.7 (2)
O7—Ce—O2—C3161.7 (3)O3—Ce—O10—N4148.2 (2)
O4—Ce—O2—C356.7 (3)O5—Ce—O10—N4119.4 (2)
O1—Ce—O2—C8179.3 (6)O6—Ce—O10—N4145.8 (5)
O3—Ce—O2—C860.1 (6)O6'—Ce—O10—N4124.7 (4)
O5—Ce—O2—C879.4 (6)O9—Ce—O10—N41.0 (2)
O6—Ce—O2—C80.7 (7)O12—Ce—O10—N452.4 (2)
O6'—Ce—O2—C817.3 (7)O13—Ce—O10—N483.2 (2)
O9—Ce—O2—C8149.1 (6)O7—Ce—O10—N4147.8 (2)
O12—Ce—O2—C897.4 (6)O4—Ce—O10—N483.4 (2)
O13—Ce—O2—C875.7 (6)O2—Ce—O10—N425.0 (4)
O10—Ce—O2—C8128.4 (6)O14—N5—O12—Ce179.4 (4)
O7—Ce—O2—C810.2 (6)O13—N5—O12—Ce2.9 (5)
O4—Ce—O2—C8131.4 (6)O1—Ce—O12—N5149.0 (3)
C16—C17—O3—Ce173.8 (2)O3—Ce—O12—N518.4 (5)
C18—C17—O3—Ce6.4 (5)O5—Ce—O12—N5145.2 (3)
O1—Ce—O3—C1727.4 (4)O6—Ce—O12—N580.7 (5)
O5—Ce—O3—C1788.2 (3)O6'—Ce—O12—N579.7 (5)
O6—Ce—O3—C17160.3 (5)O9—Ce—O12—N579.8 (3)
O6'—Ce—O3—C17167.2 (5)O13—Ce—O12—N51.7 (3)
O9—Ce—O3—C1745.8 (3)O10—Ce—O12—N541.6 (3)
O12—Ce—O3—C17136.7 (4)O7—Ce—O12—N539.6 (3)
O13—Ce—O3—C17121.1 (3)O4—Ce—O12—N5113.9 (3)
O10—Ce—O3—C1770.8 (3)O2—Ce—O12—N5148.7 (3)
O7—Ce—O3—C17160.6 (4)O12—N5—O13—Ce2.9 (5)
O4—Ce—O3—C177.5 (3)O14—N5—O13—Ce179.4 (4)
O2—Ce—O3—C17106.1 (3)O1—Ce—O13—N534.0 (3)
C19—C18—O4—C2316.8 (7)O3—Ce—O13—N5170.3 (3)
C17—C18—O4—C23162.4 (4)O5—Ce—O13—N578.0 (4)
C19—C18—O4—Ce172.6 (3)O6—Ce—O13—N591.3 (5)
C17—C18—O4—Ce8.1 (4)O6'—Ce—O13—N578.4 (5)
O1—Ce—O4—C18172.5 (3)O9—Ce—O13—N586.6 (3)
O3—Ce—O4—C187.8 (3)O12—Ce—O13—N51.6 (3)
O5—Ce—O4—C1885.8 (3)O10—Ce—O13—N5137.9 (3)
O6—Ce—O4—C1847.4 (7)O7—Ce—O13—N5131.1 (3)
O6'—Ce—O4—C1854.4 (9)O4—Ce—O13—N5120.5 (3)
O9—Ce—O4—C18118.9 (3)O2—Ce—O13—N524.9 (3)
O12—Ce—O4—C18153.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O12i0.932.513.233 (6)135
C7—H7A···O14i0.932.573.488 (5)169
C30—H30B···O11ii0.962.603.405 (6)142
C13—H13A···O8iii0.932.423.304 (5)160
C22—H22A···O10iv0.932.393.243 (5)153
C29—H29A···O11iv0.932.423.285 (7)154
C8—H8B···O60.963.043.26 (2)94
C10—H10A···O90.932.573.410 (5)150
C25—H25A···O80.932.523.411 (7)160
N1—H1A···O10.862.022.671 (4)132
N1—H1A···O90.862.503.290 (4)154
N2—H2A···O30.861.962.638 (4)135
N2—H2A···O70.862.653.444 (6)154
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ce(NO3)3(C15H15NO2)2(CH4O)]
Mr840.75
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.8540 (2), 14.6241 (4), 16.6170 (4)
α, β, γ (°)73.0650 (1), 85.4910 (1), 79.3750 (1)
V3)1793.89 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.46 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.745, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
22987, 6333, 5623
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.07
No. of reflections6285
No. of parameters473
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.06, 0.73

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O12i0.932.513.233 (6)135.2
C7—H7A···O14i0.932.573.488 (5)168.7
C30—H30B···O11ii0.962.603.405 (6)141.9
C13—H13A···O8iii0.932.423.304 (5)159.8
C22—H22A···O10iv0.932.393.243 (5)152.8
C29—H29A···O11iv0.932.423.285 (7)154.1
C8—H8B···O60.963.043.26 (2)94.2
C10—H10A···O90.932.573.410 (5)149.6
C25—H25A···O80.932.523.411 (7)160.1
N1—H1A···O10.862.022.671 (4)131.8
N1—H1A···O90.862.503.290 (4)153.6
N2—H2A···O30.861.962.638 (4)134.7
N2—H2A···O70.862.653.444 (6)153.6
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1, y1, z; (iv) x, y+1, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationLi, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593–m1594.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, J.-F., Xian, H.-D. & Zhao, G.-L. (2009). Acta Cryst. E65, m650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds