metal-organic compounds
Bis(μ-naphthalene-1,8-dicarboxylato-κ2O1:O8)bis[aquabis(N,N′-dimethylformamide-κO)copper(II)]
aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn
In the centrosymmetric dinuclear title complex, [Cu2(C12H6O4)2(C3H7NO)4(H2O)2], the coordination environment of each Cu(II) atom displays a distorted CuO5 square-pyramidal geometry, which is formed by two carboxylate O atoms of two μ-1,8-nap ligands (1,8-nap is naphthalene-1,8-dicarboxylate), two O atoms of two DMF (DMF is N,N′-dimethylformamide) and one coordinated water molecule. The Cu—O distances involving the four O atoms in the square plane are in the range 1.9501 (11)–1.9677 (11) Å, with the Cu atom lying nearly in the plane [deviation = 0.0726 (2) Å]. The axial O atom occupies the peak position with a Cu—O distance of 2.885 (12) Å, which is significantly longer than the rest of the Cu—O distances. Each 1,8-nap ligand acts as bridge, linking two CuII atoms into a dinuclear structure. Intermolecular O—H⋯O and C—H⋯O hydrogen-bonding interactions consolidate the structure.
Related literature
For the coordination modes of the 1,8-nap ligand, see: Wen et al. (2007, 2008). For related complexes, see: Abourahma et al. (2002); Bencini et al. (2003); Fokin et al. (2004); Sun et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810028497/pv2300sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810028497/pv2300Isup2.hkl
A mixture of naphthalene-1,8-dicarboxylate anhydride (0.1981 g, 1 mmol), CuCl2.2H2O (0.085 g, 0.5 mmol) and Na2CO3(0.053 g, 0.5 mmol) was dissolved in a mixed solution of DMF-H2O (1:2 v/v, 25 ml) and stirred at 343 K for 2 h. The filtrate was allowed to stand at ambient temperature. Well formed blue crystals suitable for X-ray analysis were obtained after two months (yield 45%, based on Cu).
H atoms bonded to C atoms were positioned geometrically and included in the
in the riding-model approximation [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)] and methyl groups were allowed to rotate to fit the electron density [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]. Water H atoms were located and refined with distance restraints of O—H = 0.85 (2) Å and H···H = 1.35 (2) Å, with displacement parameters set at 1.5Ueq(O).It is well-known that appropriate metal and ligand are the two keys for design and construction of metal-organic frameworks. Here we choose 1,8-nap ligand (1,8-nap = naphthalene-1,8-dicarboxylate), due to its unique ability to form stable chelates in diverse coordination modes such as bidentate, meridian and bridging; which have been demonstrated in our previous work (Wen et al., 2008; Wen et al., 2007). Moreover, we select the copper to provide a set of well defined coordination geometry. As a result, we have prepared the title complex, Cu2(1,8-nap)2(DMF)4(H2O)2, (I), a new dinuclear CuII compound based on 1,8-nap ligand.
A perspective view of the molecular structure of (I) is presented in Fig. 1. The coordination environment of each Cu atom displays a distorted CuO5 square pyramidal coordination geometry, which is formed from two carboxylate oxygen atoms of two µ2-1,8-nap ligands, two oxygen atoms of two DMF and one coordinated water molecule; similar to some comlexes reported earlier (Abourahma et al., 2002; Bencini et al., 2003; Fokin et al., 2004; Sun et al., 2009). Four oxygen atoms O2-O3i-O1W-O6 form a square plane (Cu—O distances in ranging 1.9501 (11) - 1.9677 (11) Å), and the Cu1 atom lies in the plane (deviation 0.0726 (2) Å). The fifth oxygen atom O1 is on the peak of square pyramid, and Cu—O distance is 2.885 (12) Å, which is significantly longer than the rest of the Cu—O distances. Both carboxylate groups of the 1,8-nap ligand are deprotonated, and adopt a monodentate coordination mode. As a result, the whole 1,8-nap ligand acts as µ2-bridge linking two CuII atoms to form a sixteen-atoms ring. There are intramolecular hydrogen bonds between uncoordinated O atoms of 1,8-nap ligands and water molecules, O1W···O5, O1W···O4i(details are given in Tab. 1). In addition, weak interactions of the type C—H···O are also present. Such hydrogen-bonding interactions consolidate the dinuclear structure, as depicted in Fig. 2.
For the coordination modes of the 1,8-nap ligand, see: Wen et al. (2007, 2008). For related complexes, see: Abourahma et al. (2002); Bencini et al. (2003); Fokin et al. (2004); Sun et al. (2009).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C12H6O4)2(C3H7NO)4(H2O)2] | F(000) = 1832 |
Mr = 883.83 | Dx = 1.487 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9928 reflections |
a = 17.7078 (4) Å | θ = 2.4–27.7° |
b = 9.9025 (1) Å | µ = 1.15 mm−1 |
c = 23.0393 (5) Å | T = 296 K |
β = 102.249 (2)° | Block, blue |
V = 3948.00 (13) Å3 | 0.40 × 0.26 × 0.13 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 4625 independent reflections |
Radiation source: fine-focus sealed tube | 4076 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 27.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −23→23 |
Tmin = 0.71, Tmax = 0.86 | k = −12→12 |
29673 measured reflections | l = −28→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0415P)2 + 2.4079P] where P = (Fo2 + 2Fc2)/3 |
4625 reflections | (Δ/σ)max = 0.002 |
259 parameters | Δρmax = 0.28 e Å−3 |
5 restraints | Δρmin = −0.27 e Å−3 |
[Cu2(C12H6O4)2(C3H7NO)4(H2O)2] | V = 3948.00 (13) Å3 |
Mr = 883.83 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.7078 (4) Å | µ = 1.15 mm−1 |
b = 9.9025 (1) Å | T = 296 K |
c = 23.0393 (5) Å | 0.40 × 0.26 × 0.13 mm |
β = 102.249 (2)° |
Bruker APEXII area-detector diffractometer | 4625 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4076 reflections with I > 2σ(I) |
Tmin = 0.71, Tmax = 0.86 | Rint = 0.025 |
29673 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 5 restraints |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.28 e Å−3 |
4625 reflections | Δρmin = −0.27 e Å−3 |
259 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.124473 (10) | 0.670966 (18) | 0.464441 (8) | 0.03052 (7) | |
C1 | 0.33281 (9) | 0.85492 (16) | 0.40975 (7) | 0.0341 (3) | |
C2 | 0.31963 (10) | 0.94374 (17) | 0.35537 (7) | 0.0395 (4) | |
C3 | 0.38265 (12) | 1.0098 (2) | 0.34354 (9) | 0.0543 (5) | |
H3A | 0.4291 | 1.0076 | 0.3714 | 0.065* | |
C4 | 0.37868 (14) | 1.0808 (2) | 0.29013 (11) | 0.0684 (6) | |
H4A | 0.4219 | 1.1266 | 0.2834 | 0.082* | |
C5 | 0.31253 (14) | 1.0826 (2) | 0.24877 (10) | 0.0627 (6) | |
H5A | 0.3110 | 1.1271 | 0.2130 | 0.075* | |
C6 | 0.24541 (13) | 1.01821 (18) | 0.25878 (8) | 0.0485 (4) | |
C7 | 0.24722 (10) | 0.95047 (16) | 0.31396 (7) | 0.0381 (3) | |
C8 | 0.17617 (14) | 1.0204 (2) | 0.21466 (8) | 0.0568 (5) | |
H8A | 0.1752 | 1.0654 | 0.1791 | 0.068* | |
C9 | 0.11186 (13) | 0.9584 (2) | 0.22331 (8) | 0.0571 (5) | |
H9A | 0.0680 | 0.9554 | 0.1929 | 0.069* | |
C10 | 0.11117 (11) | 0.89818 (19) | 0.27848 (8) | 0.0460 (4) | |
H10A | 0.0660 | 0.8583 | 0.2846 | 0.055* | |
C11 | 0.17582 (10) | 0.89708 (16) | 0.32346 (7) | 0.0367 (3) | |
C12 | 0.16459 (9) | 0.85435 (16) | 0.38382 (7) | 0.0334 (3) | |
C13 | 0.09853 (12) | 0.4309 (2) | 0.38365 (9) | 0.0543 (5) | |
H13A | 0.1348 | 0.4846 | 0.3707 | 0.065* | |
C14 | 0.1278 (3) | 0.2623 (3) | 0.31590 (17) | 0.1263 (15) | |
H14A | 0.1622 | 0.3321 | 0.3085 | 0.189* | |
H14B | 0.0923 | 0.2401 | 0.2796 | 0.189* | |
H14C | 0.1572 | 0.1836 | 0.3310 | 0.189* | |
C15 | 0.02931 (19) | 0.2191 (3) | 0.37687 (13) | 0.0902 (9) | |
H15A | 0.0055 | 0.2632 | 0.4055 | 0.135* | |
H15B | 0.0551 | 0.1388 | 0.3940 | 0.135* | |
H15C | −0.0096 | 0.1955 | 0.3426 | 0.135* | |
C16 | −0.03349 (10) | 0.72571 (17) | 0.46612 (8) | 0.0418 (4) | |
H16A | −0.0370 | 0.6338 | 0.4735 | 0.050* | |
C17 | −0.16911 (14) | 0.7426 (3) | 0.46719 (17) | 0.0956 (10) | |
H17A | −0.1636 | 0.6470 | 0.4735 | 0.143* | |
H17B | −0.2080 | 0.7597 | 0.4320 | 0.143* | |
H17C | −0.1841 | 0.7838 | 0.5007 | 0.143* | |
C18 | −0.09461 (13) | 0.9433 (2) | 0.44989 (12) | 0.0661 (6) | |
H18A | −0.0439 | 0.9698 | 0.4457 | 0.099* | |
H18B | −0.1075 | 0.9902 | 0.4829 | 0.099* | |
H18C | −0.1315 | 0.9656 | 0.4143 | 0.099* | |
O1W | 0.22801 (6) | 0.59540 (12) | 0.46744 (5) | 0.0358 (2) | |
H1WA | 0.2520 (12) | 0.641 (2) | 0.4477 (8) | 0.054* | |
H1WB | 0.2520 (12) | 0.589 (2) | 0.5009 (7) | 0.054* | |
O1 | 0.06739 (7) | 0.47781 (13) | 0.42143 (6) | 0.0511 (3) | |
O2 | 0.02961 (7) | 0.77247 (12) | 0.46251 (6) | 0.0434 (3) | |
O3 | 0.13036 (6) | 0.74302 (12) | 0.38655 (5) | 0.0389 (2) | |
O4 | 0.18619 (7) | 0.93436 (12) | 0.42557 (5) | 0.0407 (3) | |
O5 | 0.30792 (7) | 0.73769 (11) | 0.40428 (5) | 0.0389 (3) | |
O6 | 0.37233 (6) | 0.90670 (12) | 0.45727 (5) | 0.0395 (3) | |
N1 | 0.08503 (14) | 0.30962 (18) | 0.35940 (9) | 0.0687 (5) | |
N2 | −0.09595 (8) | 0.79924 (16) | 0.46006 (7) | 0.0458 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02809 (11) | 0.02933 (11) | 0.03456 (11) | 0.00029 (7) | 0.00758 (7) | −0.00087 (7) |
C1 | 0.0308 (7) | 0.0369 (8) | 0.0381 (8) | 0.0040 (6) | 0.0154 (6) | 0.0037 (6) |
C2 | 0.0456 (9) | 0.0357 (8) | 0.0405 (8) | 0.0005 (7) | 0.0167 (7) | 0.0047 (7) |
C3 | 0.0534 (11) | 0.0562 (12) | 0.0563 (11) | −0.0080 (9) | 0.0181 (9) | 0.0110 (9) |
C4 | 0.0724 (15) | 0.0669 (14) | 0.0723 (15) | −0.0164 (12) | 0.0299 (12) | 0.0220 (12) |
C5 | 0.0888 (16) | 0.0545 (12) | 0.0502 (11) | −0.0057 (11) | 0.0271 (11) | 0.0172 (9) |
C6 | 0.0709 (12) | 0.0388 (9) | 0.0386 (9) | 0.0042 (8) | 0.0179 (8) | 0.0068 (7) |
C7 | 0.0525 (10) | 0.0301 (7) | 0.0338 (8) | 0.0041 (7) | 0.0137 (7) | 0.0039 (6) |
C8 | 0.0837 (15) | 0.0503 (11) | 0.0345 (9) | 0.0080 (10) | 0.0086 (9) | 0.0115 (8) |
C9 | 0.0696 (13) | 0.0567 (11) | 0.0391 (10) | 0.0086 (10) | −0.0020 (9) | 0.0083 (9) |
C10 | 0.0512 (10) | 0.0445 (10) | 0.0388 (9) | 0.0060 (8) | 0.0018 (7) | 0.0035 (7) |
C11 | 0.0460 (9) | 0.0296 (8) | 0.0339 (8) | 0.0074 (6) | 0.0075 (7) | 0.0016 (6) |
C12 | 0.0294 (7) | 0.0356 (7) | 0.0348 (8) | 0.0099 (5) | 0.0057 (6) | 0.0046 (6) |
C13 | 0.0593 (12) | 0.0406 (10) | 0.0641 (12) | −0.0089 (9) | 0.0157 (10) | −0.0125 (9) |
C14 | 0.204 (4) | 0.0723 (19) | 0.129 (3) | −0.004 (2) | 0.093 (3) | −0.0396 (19) |
C15 | 0.120 (2) | 0.0554 (14) | 0.094 (2) | −0.0337 (16) | 0.0198 (17) | −0.0182 (14) |
C16 | 0.0412 (9) | 0.0345 (8) | 0.0528 (10) | 0.0041 (7) | 0.0171 (8) | 0.0013 (7) |
C17 | 0.0436 (12) | 0.0725 (17) | 0.180 (3) | 0.0018 (12) | 0.0436 (16) | 0.0084 (19) |
C18 | 0.0562 (12) | 0.0503 (12) | 0.0948 (17) | 0.0194 (10) | 0.0228 (12) | 0.0182 (11) |
O1W | 0.0315 (5) | 0.0401 (6) | 0.0366 (6) | 0.0036 (4) | 0.0088 (4) | 0.0051 (5) |
O1 | 0.0484 (7) | 0.0433 (7) | 0.0632 (8) | −0.0096 (6) | 0.0151 (6) | −0.0163 (6) |
O2 | 0.0338 (6) | 0.0384 (6) | 0.0601 (8) | 0.0058 (5) | 0.0147 (5) | 0.0016 (6) |
O3 | 0.0368 (6) | 0.0414 (6) | 0.0378 (6) | 0.0003 (5) | 0.0067 (5) | 0.0057 (5) |
O4 | 0.0430 (6) | 0.0438 (6) | 0.0348 (6) | 0.0076 (5) | 0.0069 (5) | −0.0017 (5) |
O5 | 0.0431 (6) | 0.0337 (6) | 0.0427 (6) | 0.0024 (5) | 0.0156 (5) | 0.0040 (5) |
O6 | 0.0365 (6) | 0.0442 (6) | 0.0388 (6) | −0.0036 (5) | 0.0103 (5) | 0.0041 (5) |
N1 | 0.0966 (15) | 0.0409 (9) | 0.0714 (12) | −0.0079 (9) | 0.0241 (11) | −0.0189 (8) |
N2 | 0.0344 (7) | 0.0431 (8) | 0.0626 (10) | 0.0063 (6) | 0.0166 (7) | 0.0011 (7) |
Cu1—O2 | 1.9500 (11) | C12—O3 | 1.266 (2) |
Cu1—O6i | 1.9505 (11) | C13—O1 | 1.217 (2) |
Cu1—O3 | 1.9544 (11) | C13—N1 | 1.324 (2) |
Cu1—O1W | 1.9678 (11) | C13—H13A | 0.9300 |
Cu1—O1 | 2.2885 (12) | C14—N1 | 1.456 (3) |
C1—O5 | 1.2386 (19) | C14—H14A | 0.9600 |
C1—O6 | 1.275 (2) | C14—H14B | 0.9600 |
C1—C2 | 1.508 (2) | C14—H14C | 0.9600 |
C2—C3 | 1.370 (2) | C15—N1 | 1.452 (3) |
C2—C7 | 1.428 (2) | C15—H15A | 0.9600 |
C3—C4 | 1.406 (3) | C15—H15B | 0.9600 |
C3—H3A | 0.9300 | C15—H15C | 0.9600 |
C4—C5 | 1.344 (3) | C16—O2 | 1.228 (2) |
C4—H4A | 0.9300 | C16—N2 | 1.307 (2) |
C5—C6 | 1.410 (3) | C16—H16A | 0.9300 |
C5—H5A | 0.9300 | C17—N2 | 1.453 (3) |
C6—C8 | 1.417 (3) | C17—H17A | 0.9600 |
C6—C7 | 1.432 (2) | C17—H17B | 0.9600 |
C7—C11 | 1.430 (2) | C17—H17C | 0.9600 |
C8—C9 | 1.345 (3) | C18—N2 | 1.447 (3) |
C8—H8A | 0.9300 | C18—H18A | 0.9600 |
C9—C10 | 1.406 (3) | C18—H18B | 0.9600 |
C9—H9A | 0.9300 | C18—H18C | 0.9600 |
C10—C11 | 1.371 (2) | O1W—H1WA | 0.82 (2) |
C10—H10A | 0.9300 | O1W—H1WB | 0.80 (1) |
C11—C12 | 1.507 (2) | O6—Cu1i | 1.9505 (11) |
C12—O4 | 1.242 (2) | ||
O2—Cu1—O6i | 94.60 (5) | O3—C12—C11 | 116.67 (14) |
O2—Cu1—O3 | 90.25 (5) | O1—C13—N1 | 125.4 (2) |
O6i—Cu1—O3 | 175.05 (5) | O1—C13—H13A | 117.3 |
O2—Cu1—O1W | 171.31 (5) | N1—C13—H13A | 117.3 |
O6i—Cu1—O1W | 88.48 (5) | N1—C14—H14A | 109.5 |
O3—Cu1—O1W | 86.58 (5) | N1—C14—H14B | 109.5 |
O2—Cu1—O1 | 96.99 (5) | H14A—C14—H14B | 109.5 |
O6i—Cu1—O1 | 89.67 (5) | N1—C14—H14C | 109.5 |
O3—Cu1—O1 | 90.71 (5) | H14A—C14—H14C | 109.5 |
O1W—Cu1—O1 | 91.15 (5) | H14B—C14—H14C | 109.5 |
O5—C1—O6 | 125.65 (15) | N1—C15—H15A | 109.5 |
O5—C1—C2 | 118.24 (15) | N1—C15—H15B | 109.5 |
O6—C1—C2 | 116.03 (14) | H15A—C15—H15B | 109.5 |
C3—C2—C7 | 119.91 (16) | N1—C15—H15C | 109.5 |
C3—C2—C1 | 117.06 (16) | H15A—C15—H15C | 109.5 |
C7—C2—C1 | 122.75 (14) | H15B—C15—H15C | 109.5 |
C2—C3—C4 | 121.4 (2) | O2—C16—N2 | 122.97 (16) |
C2—C3—H3A | 119.3 | O2—C16—H16A | 118.5 |
C4—C3—H3A | 119.3 | N2—C16—H16A | 118.5 |
C5—C4—C3 | 120.1 (2) | N2—C17—H17A | 109.5 |
C5—C4—H4A | 120.0 | N2—C17—H17B | 109.5 |
C3—C4—H4A | 120.0 | H17A—C17—H17B | 109.5 |
C4—C5—C6 | 121.06 (18) | N2—C17—H17C | 109.5 |
C4—C5—H5A | 119.5 | H17A—C17—H17C | 109.5 |
C6—C5—H5A | 119.5 | H17B—C17—H17C | 109.5 |
C5—C6—C8 | 120.45 (17) | N2—C18—H18A | 109.5 |
C5—C6—C7 | 119.75 (19) | N2—C18—H18B | 109.5 |
C8—C6—C7 | 119.79 (18) | H18A—C18—H18B | 109.5 |
C2—C7—C11 | 125.34 (14) | N2—C18—H18C | 109.5 |
C2—C7—C6 | 117.57 (16) | H18A—C18—H18C | 109.5 |
C11—C7—C6 | 117.08 (16) | H18B—C18—H18C | 109.5 |
C9—C8—C6 | 121.18 (17) | Cu1—O1W—H1WA | 110.9 (15) |
C9—C8—H8A | 119.4 | Cu1—O1W—H1WB | 111.5 (16) |
C6—C8—H8A | 119.4 | H1WA—O1W—H1WB | 110.4 (19) |
C8—C9—C10 | 119.82 (18) | C13—O1—Cu1 | 113.79 (12) |
C8—C9—H9A | 120.1 | C16—O2—Cu1 | 126.56 (11) |
C10—C9—H9A | 120.1 | C12—O3—Cu1 | 118.88 (10) |
C11—C10—C9 | 121.36 (19) | C1—O6—Cu1i | 122.57 (10) |
C11—C10—H10A | 119.3 | C13—N1—C15 | 121.0 (2) |
C9—C10—H10A | 119.3 | C13—N1—C14 | 120.5 (2) |
C10—C11—C7 | 120.33 (15) | C15—N1—C14 | 118.4 (2) |
C10—C11—C12 | 116.57 (15) | C16—N2—C18 | 121.61 (16) |
C7—C11—C12 | 122.64 (14) | C16—N2—C17 | 121.86 (18) |
O4—C12—O3 | 126.08 (15) | C18—N2—C17 | 116.40 (17) |
O4—C12—C11 | 117.15 (14) | ||
O5—C1—C2—C3 | −129.54 (18) | C2—C7—C11—C12 | 14.1 (2) |
O6—C1—C2—C3 | 47.3 (2) | C6—C7—C11—C12 | −164.70 (15) |
O5—C1—C2—C7 | 44.3 (2) | C10—C11—C12—O4 | −124.12 (16) |
O6—C1—C2—C7 | −138.81 (16) | C7—C11—C12—O4 | 48.1 (2) |
C7—C2—C3—C4 | −2.4 (3) | C10—C11—C12—O3 | 52.4 (2) |
C1—C2—C3—C4 | 171.7 (2) | C7—C11—C12—O3 | −135.41 (15) |
C2—C3—C4—C5 | −1.4 (4) | N1—C13—O1—Cu1 | 168.26 (19) |
C3—C4—C5—C6 | 2.4 (4) | O2—Cu1—O1—C13 | 135.72 (15) |
C4—C5—C6—C8 | −179.7 (2) | O6i—Cu1—O1—C13 | −129.68 (15) |
C4—C5—C6—C7 | 0.5 (3) | O3—Cu1—O1—C13 | 45.38 (15) |
C3—C2—C7—C11 | −173.81 (17) | O1W—Cu1—O1—C13 | −41.21 (15) |
C1—C2—C7—C11 | 12.5 (3) | N2—C16—O2—Cu1 | −174.76 (13) |
C3—C2—C7—C6 | 5.0 (2) | O6i—Cu1—O2—C16 | −59.16 (15) |
C1—C2—C7—C6 | −168.68 (15) | O3—Cu1—O2—C16 | 121.82 (15) |
C5—C6—C7—C2 | −4.1 (3) | O1—Cu1—O2—C16 | 31.08 (15) |
C8—C6—C7—C2 | 176.05 (17) | O4—C12—O3—Cu1 | −10.9 (2) |
C5—C6—C7—C11 | 174.82 (17) | C11—C12—O3—Cu1 | 172.91 (10) |
C8—C6—C7—C11 | −5.0 (2) | O2—Cu1—O3—C12 | 87.85 (11) |
C5—C6—C8—C9 | 179.4 (2) | O1W—Cu1—O3—C12 | −84.05 (11) |
C7—C6—C8—C9 | −0.8 (3) | O1—Cu1—O3—C12 | −175.16 (11) |
C6—C8—C9—C10 | 4.5 (3) | O5—C1—O6—Cu1i | −18.5 (2) |
C8—C9—C10—C11 | −2.2 (3) | C2—C1—O6—Cu1i | 164.90 (10) |
C9—C10—C11—C7 | −3.8 (3) | O1—C13—N1—C15 | 0.0 (4) |
C9—C10—C11—C12 | 168.60 (17) | O1—C13—N1—C14 | −177.9 (3) |
C2—C7—C11—C10 | −173.94 (16) | O2—C16—N2—C18 | −1.4 (3) |
C6—C7—C11—C10 | 7.2 (2) | O2—C16—N2—C17 | −177.2 (2) |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O5 | 0.82 (2) | 1.82 (2) | 2.642 (2) | 178 (2) |
O1W—H1WB···O4i | 0.80 (1) | 1.82 (2) | 2.623 (2) | 175 (2) |
C3—H3A···O1ii | 0.93 | 2.49 | 3.396 (3) | 164 |
C13—H13A···O3 | 0.93 | 2.59 | 3.140 (2) | 119 |
C17—H17A···O6iii | 0.96 | 2.51 | 3.424 (3) | 159 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) x+1/2, y+1/2, z; (iii) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C12H6O4)2(C3H7NO)4(H2O)2] |
Mr | 883.83 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 17.7078 (4), 9.9025 (1), 23.0393 (5) |
β (°) | 102.249 (2) |
V (Å3) | 3948.00 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.15 |
Crystal size (mm) | 0.40 × 0.26 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.71, 0.86 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29673, 4625, 4076 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.654 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.076, 1.04 |
No. of reflections | 4625 |
No. of parameters | 259 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.27 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O5 | 0.82 (2) | 1.82 (2) | 2.642 (2) | 178 (2) |
O1W—H1WB···O4i | 0.80 (1) | 1.82 (2) | 2.623 (2) | 175 (2) |
C3—H3A···O1ii | 0.93 | 2.49 | 3.396 (3) | 164 |
C13—H13A···O3 | 0.93 | 2.59 | 3.140 (2) | 119 |
C17—H17A···O6iii | 0.96 | 2.51 | 3.424 (3) | 159 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) x+1/2, y+1/2, z; (iii) x−1/2, y−1/2, z. |
References
Abourahma, H., Moulton, B., Kravtsov, V. & Zaworotko, J. M. (2002). J. Am. Chem. Soc. 124, 9990–9991. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bencini, A., Dei, A., Sangregorio, C., Totti, F. & Vaz, M. G. F. (2003). Inorg. Chem. 42, 8065–8071. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fokin, S., Ovcharenko, V., Romanenko, G. & Ikorskii, V. (2004). Inorg. Chem. 43, 969–977. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, C. Y., Liu, S. X., Liang, D. D., Shao, K. Z., Ren, Y. H. & Su, Z. M. (2009). J. Am. Chem. Soc. 131, 1883–1888. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wen, Y. H., Feng, X., Feng, Y. L. & Tang, Z. W. (2008). Inorg. Chem. Commun. 11, 659–661. Web of Science CSD CrossRef CAS Google Scholar
Wen, Y.-H., Feng, X., He, Y.-H., Lan, Y.-Z. & Sun, H. (2007). Acta Cryst. C63, m504–m506. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is well-known that appropriate metal and ligand are the two keys for design and construction of metal-organic frameworks. Here we choose 1,8-nap ligand (1,8-nap = naphthalene-1,8-dicarboxylate), due to its unique ability to form stable chelates in diverse coordination modes such as bidentate, meridian and bridging; which have been demonstrated in our previous work (Wen et al., 2008; Wen et al., 2007). Moreover, we select the copper to provide a set of well defined coordination geometry. As a result, we have prepared the title complex, Cu2(1,8-nap)2(DMF)4(H2O)2, (I), a new dinuclear CuII compound based on 1,8-nap ligand.
A perspective view of the molecular structure of (I) is presented in Fig. 1. The coordination environment of each Cu atom displays a distorted CuO5 square pyramidal coordination geometry, which is formed from two carboxylate oxygen atoms of two µ2-1,8-nap ligands, two oxygen atoms of two DMF and one coordinated water molecule; similar to some comlexes reported earlier (Abourahma et al., 2002; Bencini et al., 2003; Fokin et al., 2004; Sun et al., 2009). Four oxygen atoms O2-O3i-O1W-O6 form a square plane (Cu—O distances in ranging 1.9501 (11) - 1.9677 (11) Å), and the Cu1 atom lies in the plane (deviation 0.0726 (2) Å). The fifth oxygen atom O1 is on the peak of square pyramid, and Cu—O distance is 2.885 (12) Å, which is significantly longer than the rest of the Cu—O distances. Both carboxylate groups of the 1,8-nap ligand are deprotonated, and adopt a monodentate coordination mode. As a result, the whole 1,8-nap ligand acts as µ2-bridge linking two CuII atoms to form a sixteen-atoms ring. There are intramolecular hydrogen bonds between uncoordinated O atoms of 1,8-nap ligands and water molecules, O1W···O5, O1W···O4i(details are given in Tab. 1). In addition, weak interactions of the type C—H···O are also present. Such hydrogen-bonding interactions consolidate the dinuclear structure, as depicted in Fig. 2.