metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-naphthalene-1,8-di­carboxyl­ato-κ2O1:O8)bis­­[aqua­bis­­(N,N′-di­methyl­formamide-κO)copper(II)]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

(Received 17 June 2010; accepted 16 July 2010; online 24 July 2010)

In the centrosymmetric dinuclear title complex, [Cu2(C12H6O4)2(C3H7NO)4(H2O)2], the coordination environment of each Cu(II) atom displays a distorted CuO5 square-pyramidal geometry, which is formed by two carboxyl­ate O atoms of two μ-1,8-nap ligands (1,8-nap is naphthalene-1,8-dicarboxyl­ate), two O atoms of two DMF (DMF is N,N′-dimethyl­formamide) and one coordinated water mol­ecule. The Cu—O distances involving the four O atoms in the square plane are in the range 1.9501 (11)–1.9677 (11) Å, with the Cu atom lying nearly in the plane [deviation = 0.0726 (2) Å]. The axial O atom occupies the peak position with a Cu—O distance of 2.885 (12) Å, which is significantly longer than the rest of the Cu—O distances. Each 1,8-nap ligand acts as bridge, linking two CuII atoms into a dinuclear structure. Inter­molecular O—H⋯O and C—H⋯O hydrogen-bonding inter­actions consolidate the structure.

Related literature

For the coordination modes of the 1,8-nap ligand, see: Wen et al. (2007[Wen, Y.-H., Feng, X., He, Y.-H., Lan, Y.-Z. & Sun, H. (2007). Acta Cryst. C63, m504-m506.], 2008[Wen, Y. H., Feng, X., Feng, Y. L. & Tang, Z. W. (2008). Inorg. Chem. Commun. 11, 659-661.]). For related complexes, see: Abourahma et al. (2002[Abourahma, H., Moulton, B., Kravtsov, V. & Zaworotko, J. M. (2002). J. Am. Chem. Soc. 124, 9990-9991.]); Bencini et al. (2003[Bencini, A., Dei, A., Sangregorio, C., Totti, F. & Vaz, M. G. F. (2003). Inorg. Chem. 42, 8065-8071.]); Fokin et al. (2004[Fokin, S., Ovcharenko, V., Romanenko, G. & Ikorskii, V. (2004). Inorg. Chem. 43, 969-977.]); Sun et al. (2009[Sun, C. Y., Liu, S. X., Liang, D. D., Shao, K. Z., Ren, Y. H. & Su, Z. M. (2009). J. Am. Chem. Soc. 131, 1883-1888.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C12H6O4)2(C3H7NO)4(H2O)2]

  • Mr = 883.83

  • Monoclinic, C 2/c

  • a = 17.7078 (4) Å

  • b = 9.9025 (1) Å

  • c = 23.0393 (5) Å

  • β = 102.249 (2)°

  • V = 3948.00 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 296 K

  • 0.40 × 0.26 × 0.13 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.71, Tmax = 0.86

  • 29673 measured reflections

  • 4625 independent reflections

  • 4076 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.04

  • 4625 reflections

  • 259 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O5 0.82 (2) 1.82 (2) 2.642 (2) 178 (2)
O1W—H1WB⋯O4i 0.80 (1) 1.82 (2) 2.623 (2) 175 (2)
C3—H3A⋯O1ii 0.93 2.49 3.396 (3) 164
C13—H13A⋯O3 0.93 2.59 3.140 (2) 119
C17—H17A⋯O6iii 0.96 2.51 3.424 (3) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well-known that appropriate metal and ligand are the two keys for design and construction of metal-organic frameworks. Here we choose 1,8-nap ligand (1,8-nap = naphthalene-1,8-dicarboxylate), due to its unique ability to form stable chelates in diverse coordination modes such as bidentate, meridian and bridging; which have been demonstrated in our previous work (Wen et al., 2008; Wen et al., 2007). Moreover, we select the copper to provide a set of well defined coordination geometry. As a result, we have prepared the title complex, Cu2(1,8-nap)2(DMF)4(H2O)2, (I), a new dinuclear CuII compound based on 1,8-nap ligand.

A perspective view of the molecular structure of (I) is presented in Fig. 1. The coordination environment of each Cu atom displays a distorted CuO5 square pyramidal coordination geometry, which is formed from two carboxylate oxygen atoms of two µ2-1,8-nap ligands, two oxygen atoms of two DMF and one coordinated water molecule; similar to some comlexes reported earlier (Abourahma et al., 2002; Bencini et al., 2003; Fokin et al., 2004; Sun et al., 2009). Four oxygen atoms O2-O3i-O1W-O6 form a square plane (Cu—O distances in ranging 1.9501 (11) - 1.9677 (11) Å), and the Cu1 atom lies in the plane (deviation 0.0726 (2) Å). The fifth oxygen atom O1 is on the peak of square pyramid, and Cu—O distance is 2.885 (12) Å, which is significantly longer than the rest of the Cu—O distances. Both carboxylate groups of the 1,8-nap ligand are deprotonated, and adopt a monodentate coordination mode. As a result, the whole 1,8-nap ligand acts as µ2-bridge linking two CuII atoms to form a sixteen-atoms ring. There are intramolecular hydrogen bonds between uncoordinated O atoms of 1,8-nap ligands and water molecules, O1W···O5, O1W···O4i(details are given in Tab. 1). In addition, weak interactions of the type C—H···O are also present. Such hydrogen-bonding interactions consolidate the dinuclear structure, as depicted in Fig. 2.

Related literature top

For the coordination modes of the 1,8-nap ligand, see: Wen et al. (2007, 2008). For related complexes, see: Abourahma et al. (2002); Bencini et al. (2003); Fokin et al. (2004); Sun et al. (2009).

Experimental top

A mixture of naphthalene-1,8-dicarboxylate anhydride (0.1981 g, 1 mmol), CuCl2.2H2O (0.085 g, 0.5 mmol) and Na2CO3(0.053 g, 0.5 mmol) was dissolved in a mixed solution of DMF-H2O (1:2 v/v, 25 ml) and stirred at 343 K for 2 h. The filtrate was allowed to stand at ambient temperature. Well formed blue crystals suitable for X-ray analysis were obtained after two months (yield 45%, based on Cu).

Refinement top

H atoms bonded to C atoms were positioned geometrically and included in the refinement in the riding-model approximation [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)] and methyl groups were allowed to rotate to fit the electron density [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]. Water H atoms were located and refined with distance restraints of O—H = 0.85 (2) Å and H···H = 1.35 (2) Å, with displacement parameters set at 1.5Ueq(O).

Structure description top

It is well-known that appropriate metal and ligand are the two keys for design and construction of metal-organic frameworks. Here we choose 1,8-nap ligand (1,8-nap = naphthalene-1,8-dicarboxylate), due to its unique ability to form stable chelates in diverse coordination modes such as bidentate, meridian and bridging; which have been demonstrated in our previous work (Wen et al., 2008; Wen et al., 2007). Moreover, we select the copper to provide a set of well defined coordination geometry. As a result, we have prepared the title complex, Cu2(1,8-nap)2(DMF)4(H2O)2, (I), a new dinuclear CuII compound based on 1,8-nap ligand.

A perspective view of the molecular structure of (I) is presented in Fig. 1. The coordination environment of each Cu atom displays a distorted CuO5 square pyramidal coordination geometry, which is formed from two carboxylate oxygen atoms of two µ2-1,8-nap ligands, two oxygen atoms of two DMF and one coordinated water molecule; similar to some comlexes reported earlier (Abourahma et al., 2002; Bencini et al., 2003; Fokin et al., 2004; Sun et al., 2009). Four oxygen atoms O2-O3i-O1W-O6 form a square plane (Cu—O distances in ranging 1.9501 (11) - 1.9677 (11) Å), and the Cu1 atom lies in the plane (deviation 0.0726 (2) Å). The fifth oxygen atom O1 is on the peak of square pyramid, and Cu—O distance is 2.885 (12) Å, which is significantly longer than the rest of the Cu—O distances. Both carboxylate groups of the 1,8-nap ligand are deprotonated, and adopt a monodentate coordination mode. As a result, the whole 1,8-nap ligand acts as µ2-bridge linking two CuII atoms to form a sixteen-atoms ring. There are intramolecular hydrogen bonds between uncoordinated O atoms of 1,8-nap ligands and water molecules, O1W···O5, O1W···O4i(details are given in Tab. 1). In addition, weak interactions of the type C—H···O are also present. Such hydrogen-bonding interactions consolidate the dinuclear structure, as depicted in Fig. 2.

For the coordination modes of the 1,8-nap ligand, see: Wen et al. (2007, 2008). For related complexes, see: Abourahma et al. (2002); Bencini et al. (2003); Fokin et al. (2004); Sun et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i)-x + 1/2,-y + 3/2,-z + 1]
[Figure 2] Fig. 2. A packing diagram of (I) with the hydrogen-bonding interaction depicted by dash lines.
Bis(µ-naphthalene-1,8-dicarboxylato- κ2O1:O8)bis[aquabis(N,N'- dimethylformamide-κO)copper(II)] top
Crystal data top
[Cu2(C12H6O4)2(C3H7NO)4(H2O)2]F(000) = 1832
Mr = 883.83Dx = 1.487 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9928 reflections
a = 17.7078 (4) Åθ = 2.4–27.7°
b = 9.9025 (1) ŵ = 1.15 mm1
c = 23.0393 (5) ÅT = 296 K
β = 102.249 (2)°Block, blue
V = 3948.00 (13) Å30.40 × 0.26 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4625 independent reflections
Radiation source: fine-focus sealed tube4076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.71, Tmax = 0.86k = 1212
29673 measured reflectionsl = 2830
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0415P)2 + 2.4079P]
where P = (Fo2 + 2Fc2)/3
4625 reflections(Δ/σ)max = 0.002
259 parametersΔρmax = 0.28 e Å3
5 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cu2(C12H6O4)2(C3H7NO)4(H2O)2]V = 3948.00 (13) Å3
Mr = 883.83Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.7078 (4) ŵ = 1.15 mm1
b = 9.9025 (1) ÅT = 296 K
c = 23.0393 (5) Å0.40 × 0.26 × 0.13 mm
β = 102.249 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
4625 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4076 reflections with I > 2σ(I)
Tmin = 0.71, Tmax = 0.86Rint = 0.025
29673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0275 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
4625 reflectionsΔρmin = 0.27 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.124473 (10)0.670966 (18)0.464441 (8)0.03052 (7)
C10.33281 (9)0.85492 (16)0.40975 (7)0.0341 (3)
C20.31963 (10)0.94374 (17)0.35537 (7)0.0395 (4)
C30.38265 (12)1.0098 (2)0.34354 (9)0.0543 (5)
H3A0.42911.00760.37140.065*
C40.37868 (14)1.0808 (2)0.29013 (11)0.0684 (6)
H4A0.42191.12660.28340.082*
C50.31253 (14)1.0826 (2)0.24877 (10)0.0627 (6)
H5A0.31101.12710.21300.075*
C60.24541 (13)1.01821 (18)0.25878 (8)0.0485 (4)
C70.24722 (10)0.95047 (16)0.31396 (7)0.0381 (3)
C80.17617 (14)1.0204 (2)0.21466 (8)0.0568 (5)
H8A0.17521.06540.17910.068*
C90.11186 (13)0.9584 (2)0.22331 (8)0.0571 (5)
H9A0.06800.95540.19290.069*
C100.11117 (11)0.89818 (19)0.27848 (8)0.0460 (4)
H10A0.06600.85830.28460.055*
C110.17582 (10)0.89708 (16)0.32346 (7)0.0367 (3)
C120.16459 (9)0.85435 (16)0.38382 (7)0.0334 (3)
C130.09853 (12)0.4309 (2)0.38365 (9)0.0543 (5)
H13A0.13480.48460.37070.065*
C140.1278 (3)0.2623 (3)0.31590 (17)0.1263 (15)
H14A0.16220.33210.30850.189*
H14B0.09230.24010.27960.189*
H14C0.15720.18360.33100.189*
C150.02931 (19)0.2191 (3)0.37687 (13)0.0902 (9)
H15A0.00550.26320.40550.135*
H15B0.05510.13880.39400.135*
H15C0.00960.19550.34260.135*
C160.03349 (10)0.72571 (17)0.46612 (8)0.0418 (4)
H16A0.03700.63380.47350.050*
C170.16911 (14)0.7426 (3)0.46719 (17)0.0956 (10)
H17A0.16360.64700.47350.143*
H17B0.20800.75970.43200.143*
H17C0.18410.78380.50070.143*
C180.09461 (13)0.9433 (2)0.44989 (12)0.0661 (6)
H18A0.04390.96980.44570.099*
H18B0.10750.99020.48290.099*
H18C0.13150.96560.41430.099*
O1W0.22801 (6)0.59540 (12)0.46744 (5)0.0358 (2)
H1WA0.2520 (12)0.641 (2)0.4477 (8)0.054*
H1WB0.2520 (12)0.589 (2)0.5009 (7)0.054*
O10.06739 (7)0.47781 (13)0.42143 (6)0.0511 (3)
O20.02961 (7)0.77247 (12)0.46251 (6)0.0434 (3)
O30.13036 (6)0.74302 (12)0.38655 (5)0.0389 (2)
O40.18619 (7)0.93436 (12)0.42557 (5)0.0407 (3)
O50.30792 (7)0.73769 (11)0.40428 (5)0.0389 (3)
O60.37233 (6)0.90670 (12)0.45727 (5)0.0395 (3)
N10.08503 (14)0.30962 (18)0.35940 (9)0.0687 (5)
N20.09595 (8)0.79924 (16)0.46006 (7)0.0458 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02809 (11)0.02933 (11)0.03456 (11)0.00029 (7)0.00758 (7)0.00087 (7)
C10.0308 (7)0.0369 (8)0.0381 (8)0.0040 (6)0.0154 (6)0.0037 (6)
C20.0456 (9)0.0357 (8)0.0405 (8)0.0005 (7)0.0167 (7)0.0047 (7)
C30.0534 (11)0.0562 (12)0.0563 (11)0.0080 (9)0.0181 (9)0.0110 (9)
C40.0724 (15)0.0669 (14)0.0723 (15)0.0164 (12)0.0299 (12)0.0220 (12)
C50.0888 (16)0.0545 (12)0.0502 (11)0.0057 (11)0.0271 (11)0.0172 (9)
C60.0709 (12)0.0388 (9)0.0386 (9)0.0042 (8)0.0179 (8)0.0068 (7)
C70.0525 (10)0.0301 (7)0.0338 (8)0.0041 (7)0.0137 (7)0.0039 (6)
C80.0837 (15)0.0503 (11)0.0345 (9)0.0080 (10)0.0086 (9)0.0115 (8)
C90.0696 (13)0.0567 (11)0.0391 (10)0.0086 (10)0.0020 (9)0.0083 (9)
C100.0512 (10)0.0445 (10)0.0388 (9)0.0060 (8)0.0018 (7)0.0035 (7)
C110.0460 (9)0.0296 (8)0.0339 (8)0.0074 (6)0.0075 (7)0.0016 (6)
C120.0294 (7)0.0356 (7)0.0348 (8)0.0099 (5)0.0057 (6)0.0046 (6)
C130.0593 (12)0.0406 (10)0.0641 (12)0.0089 (9)0.0157 (10)0.0125 (9)
C140.204 (4)0.0723 (19)0.129 (3)0.004 (2)0.093 (3)0.0396 (19)
C150.120 (2)0.0554 (14)0.094 (2)0.0337 (16)0.0198 (17)0.0182 (14)
C160.0412 (9)0.0345 (8)0.0528 (10)0.0041 (7)0.0171 (8)0.0013 (7)
C170.0436 (12)0.0725 (17)0.180 (3)0.0018 (12)0.0436 (16)0.0084 (19)
C180.0562 (12)0.0503 (12)0.0948 (17)0.0194 (10)0.0228 (12)0.0182 (11)
O1W0.0315 (5)0.0401 (6)0.0366 (6)0.0036 (4)0.0088 (4)0.0051 (5)
O10.0484 (7)0.0433 (7)0.0632 (8)0.0096 (6)0.0151 (6)0.0163 (6)
O20.0338 (6)0.0384 (6)0.0601 (8)0.0058 (5)0.0147 (5)0.0016 (6)
O30.0368 (6)0.0414 (6)0.0378 (6)0.0003 (5)0.0067 (5)0.0057 (5)
O40.0430 (6)0.0438 (6)0.0348 (6)0.0076 (5)0.0069 (5)0.0017 (5)
O50.0431 (6)0.0337 (6)0.0427 (6)0.0024 (5)0.0156 (5)0.0040 (5)
O60.0365 (6)0.0442 (6)0.0388 (6)0.0036 (5)0.0103 (5)0.0041 (5)
N10.0966 (15)0.0409 (9)0.0714 (12)0.0079 (9)0.0241 (11)0.0189 (8)
N20.0344 (7)0.0431 (8)0.0626 (10)0.0063 (6)0.0166 (7)0.0011 (7)
Geometric parameters (Å, º) top
Cu1—O21.9500 (11)C12—O31.266 (2)
Cu1—O6i1.9505 (11)C13—O11.217 (2)
Cu1—O31.9544 (11)C13—N11.324 (2)
Cu1—O1W1.9678 (11)C13—H13A0.9300
Cu1—O12.2885 (12)C14—N11.456 (3)
C1—O51.2386 (19)C14—H14A0.9600
C1—O61.275 (2)C14—H14B0.9600
C1—C21.508 (2)C14—H14C0.9600
C2—C31.370 (2)C15—N11.452 (3)
C2—C71.428 (2)C15—H15A0.9600
C3—C41.406 (3)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.344 (3)C16—O21.228 (2)
C4—H4A0.9300C16—N21.307 (2)
C5—C61.410 (3)C16—H16A0.9300
C5—H5A0.9300C17—N21.453 (3)
C6—C81.417 (3)C17—H17A0.9600
C6—C71.432 (2)C17—H17B0.9600
C7—C111.430 (2)C17—H17C0.9600
C8—C91.345 (3)C18—N21.447 (3)
C8—H8A0.9300C18—H18A0.9600
C9—C101.406 (3)C18—H18B0.9600
C9—H9A0.9300C18—H18C0.9600
C10—C111.371 (2)O1W—H1WA0.82 (2)
C10—H10A0.9300O1W—H1WB0.80 (1)
C11—C121.507 (2)O6—Cu1i1.9505 (11)
C12—O41.242 (2)
O2—Cu1—O6i94.60 (5)O3—C12—C11116.67 (14)
O2—Cu1—O390.25 (5)O1—C13—N1125.4 (2)
O6i—Cu1—O3175.05 (5)O1—C13—H13A117.3
O2—Cu1—O1W171.31 (5)N1—C13—H13A117.3
O6i—Cu1—O1W88.48 (5)N1—C14—H14A109.5
O3—Cu1—O1W86.58 (5)N1—C14—H14B109.5
O2—Cu1—O196.99 (5)H14A—C14—H14B109.5
O6i—Cu1—O189.67 (5)N1—C14—H14C109.5
O3—Cu1—O190.71 (5)H14A—C14—H14C109.5
O1W—Cu1—O191.15 (5)H14B—C14—H14C109.5
O5—C1—O6125.65 (15)N1—C15—H15A109.5
O5—C1—C2118.24 (15)N1—C15—H15B109.5
O6—C1—C2116.03 (14)H15A—C15—H15B109.5
C3—C2—C7119.91 (16)N1—C15—H15C109.5
C3—C2—C1117.06 (16)H15A—C15—H15C109.5
C7—C2—C1122.75 (14)H15B—C15—H15C109.5
C2—C3—C4121.4 (2)O2—C16—N2122.97 (16)
C2—C3—H3A119.3O2—C16—H16A118.5
C4—C3—H3A119.3N2—C16—H16A118.5
C5—C4—C3120.1 (2)N2—C17—H17A109.5
C5—C4—H4A120.0N2—C17—H17B109.5
C3—C4—H4A120.0H17A—C17—H17B109.5
C4—C5—C6121.06 (18)N2—C17—H17C109.5
C4—C5—H5A119.5H17A—C17—H17C109.5
C6—C5—H5A119.5H17B—C17—H17C109.5
C5—C6—C8120.45 (17)N2—C18—H18A109.5
C5—C6—C7119.75 (19)N2—C18—H18B109.5
C8—C6—C7119.79 (18)H18A—C18—H18B109.5
C2—C7—C11125.34 (14)N2—C18—H18C109.5
C2—C7—C6117.57 (16)H18A—C18—H18C109.5
C11—C7—C6117.08 (16)H18B—C18—H18C109.5
C9—C8—C6121.18 (17)Cu1—O1W—H1WA110.9 (15)
C9—C8—H8A119.4Cu1—O1W—H1WB111.5 (16)
C6—C8—H8A119.4H1WA—O1W—H1WB110.4 (19)
C8—C9—C10119.82 (18)C13—O1—Cu1113.79 (12)
C8—C9—H9A120.1C16—O2—Cu1126.56 (11)
C10—C9—H9A120.1C12—O3—Cu1118.88 (10)
C11—C10—C9121.36 (19)C1—O6—Cu1i122.57 (10)
C11—C10—H10A119.3C13—N1—C15121.0 (2)
C9—C10—H10A119.3C13—N1—C14120.5 (2)
C10—C11—C7120.33 (15)C15—N1—C14118.4 (2)
C10—C11—C12116.57 (15)C16—N2—C18121.61 (16)
C7—C11—C12122.64 (14)C16—N2—C17121.86 (18)
O4—C12—O3126.08 (15)C18—N2—C17116.40 (17)
O4—C12—C11117.15 (14)
O5—C1—C2—C3129.54 (18)C2—C7—C11—C1214.1 (2)
O6—C1—C2—C347.3 (2)C6—C7—C11—C12164.70 (15)
O5—C1—C2—C744.3 (2)C10—C11—C12—O4124.12 (16)
O6—C1—C2—C7138.81 (16)C7—C11—C12—O448.1 (2)
C7—C2—C3—C42.4 (3)C10—C11—C12—O352.4 (2)
C1—C2—C3—C4171.7 (2)C7—C11—C12—O3135.41 (15)
C2—C3—C4—C51.4 (4)N1—C13—O1—Cu1168.26 (19)
C3—C4—C5—C62.4 (4)O2—Cu1—O1—C13135.72 (15)
C4—C5—C6—C8179.7 (2)O6i—Cu1—O1—C13129.68 (15)
C4—C5—C6—C70.5 (3)O3—Cu1—O1—C1345.38 (15)
C3—C2—C7—C11173.81 (17)O1W—Cu1—O1—C1341.21 (15)
C1—C2—C7—C1112.5 (3)N2—C16—O2—Cu1174.76 (13)
C3—C2—C7—C65.0 (2)O6i—Cu1—O2—C1659.16 (15)
C1—C2—C7—C6168.68 (15)O3—Cu1—O2—C16121.82 (15)
C5—C6—C7—C24.1 (3)O1—Cu1—O2—C1631.08 (15)
C8—C6—C7—C2176.05 (17)O4—C12—O3—Cu110.9 (2)
C5—C6—C7—C11174.82 (17)C11—C12—O3—Cu1172.91 (10)
C8—C6—C7—C115.0 (2)O2—Cu1—O3—C1287.85 (11)
C5—C6—C8—C9179.4 (2)O1W—Cu1—O3—C1284.05 (11)
C7—C6—C8—C90.8 (3)O1—Cu1—O3—C12175.16 (11)
C6—C8—C9—C104.5 (3)O5—C1—O6—Cu1i18.5 (2)
C8—C9—C10—C112.2 (3)C2—C1—O6—Cu1i164.90 (10)
C9—C10—C11—C73.8 (3)O1—C13—N1—C150.0 (4)
C9—C10—C11—C12168.60 (17)O1—C13—N1—C14177.9 (3)
C2—C7—C11—C10173.94 (16)O2—C16—N2—C181.4 (3)
C6—C7—C11—C107.2 (2)O2—C16—N2—C17177.2 (2)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O50.82 (2)1.82 (2)2.642 (2)178 (2)
O1W—H1WB···O4i0.80 (1)1.82 (2)2.623 (2)175 (2)
C3—H3A···O1ii0.932.493.396 (3)164
C13—H13A···O30.932.593.140 (2)119
C17—H17A···O6iii0.962.513.424 (3)159
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cu2(C12H6O4)2(C3H7NO)4(H2O)2]
Mr883.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.7078 (4), 9.9025 (1), 23.0393 (5)
β (°) 102.249 (2)
V3)3948.00 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.40 × 0.26 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.71, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
29673, 4625, 4076
Rint0.025
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.04
No. of reflections4625
No. of parameters259
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O50.82 (2)1.82 (2)2.642 (2)178 (2)
O1W—H1WB···O4i0.80 (1)1.82 (2)2.623 (2)175 (2)
C3—H3A···O1ii0.932.493.396 (3)164
C13—H13A···O30.932.593.140 (2)119
C17—H17A···O6iii0.962.513.424 (3)159
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x1/2, y1/2, z.
 

References

First citationAbourahma, H., Moulton, B., Kravtsov, V. & Zaworotko, J. M. (2002). J. Am. Chem. Soc. 124, 9990–9991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBencini, A., Dei, A., Sangregorio, C., Totti, F. & Vaz, M. G. F. (2003). Inorg. Chem. 42, 8065–8071.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFokin, S., Ovcharenko, V., Romanenko, G. & Ikorskii, V. (2004). Inorg. Chem. 43, 969–977.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C. Y., Liu, S. X., Liang, D. D., Shao, K. Z., Ren, Y. H. & Su, Z. M. (2009). J. Am. Chem. Soc. 131, 1883–1888.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, Y. H., Feng, X., Feng, Y. L. & Tang, Z. W. (2008). Inorg. Chem. Commun. 11, 659–661.  Web of Science CSD CrossRef CAS Google Scholar
First citationWen, Y.-H., Feng, X., He, Y.-H., Lan, Y.-Z. & Sun, H. (2007). Acta Cryst. C63, m504–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds