organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{4-[(4-Methyl­phen­yl)sulfamo­yl]phen­yl}acetamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 July 2010; accepted 10 July 2010; online 17 July 2010)

The title mol­ecule, C15H16N2O3S, has a twisted U-shaped conformation. The twist occurs in the central C—S(=O)2N(H)—C unit with the C—S—N—C torsion angle being −58.38 (14)°. The benzene rings lie to the same side of the mol­ecule and form a dihedral angle of 67.03 (10)°. The crystal packing features N—H⋯O hydrogen bonding, which leads to supra­molecular chains with a tubular topology along the b axis. Intra­molecular C—H⋯O inter­actions are also observed.

Related literature

For background to the pharmacological uses of sulfonamides, see: Beate et al. (1998[Beate, G., Nadenik, P. & Wagner, H. (1998). WO Patent No. 9855481.]); Kazmierski et al. (2004[Kazmierski, W. M., Aquino, C. J., Bifulco, N., Boros, E. E., Chauder, B. A., Chong, P. Y., Duan, M., Deanda, F. Jr, Koble, C. S., Mclean, E. W., Peckham, J. P., Perkins, A. C., Thompson, J. B. & Vanderwall, D. (2004). WO Patent No. 2004054974.]). For related structures, see: Khan et al. (2010[Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O3S

  • Mr = 304.37

  • Triclinic, [P \overline 1]

  • a = 8.2224 (3) Å

  • b = 8.3878 (3) Å

  • c = 13.0796 (5) Å

  • α = 71.482 (2)°

  • β = 75.749 (2)°

  • γ = 61.265 (1)°

  • V = 745.27 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.23 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.887, Tmax = 0.951

  • 12704 measured reflections

  • 3374 independent reflections

  • 2918 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.04

  • 3374 reflections

  • 198 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.60 3.125 (3) 116
C10—H10⋯O3 0.93 2.22 2.818 (3) 121
C13—H13⋯O1 0.93 2.56 2.914 (3) 103
N1—H1n⋯O3i 0.88 (2) 1.99 (2) 2.853 (3) 169 (2)
N2—H2n⋯O2ii 0.87 (2) 2.18 (2) 3.029 (2) 165 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamide drugs are used, for example, as inhibitors of HIV infection (Kazmierski et al., 2004) and as anti-hypertensive drugs (Beate et al., 1998). In connection with on-going structural studies of sulfonamides (Khan et al., 2010; Sharif et al., 2010), the crystal and molecular structure of the title compound, (I), was investigated.

To a first approximation, the molecule of (I), Fig. 1, has a twisted U-shaped conformation with the two benzene residues projecting to the same side of the molecule with reference to the central S(O)2N moiety but, being splayed with respect to each other. The dihedral angle formed between the two benzene rings is 67.03 (10) ° and the C1–N1–S1–C8 torsion angle of -58.38 (14) ° indicates a twist in the molecule. Both S-bound O atoms lie to one side of the S-bound benzene ring [the O1–S1–C8–C9 torsion angle = 169.12 (13) ° and O2–S1–C8–C9 = 39.25 (15) °], and the N1 atom to the other [N1–S1–C8–C9 = -73.19 (15) °]. The amide group is co-planar with the benzene ring to which it is attached as seen in the C10–C11—N2–C14 torsion angle of 7.2 (3) °.

The formation of N–H···O hydrogen bonds dominate the crystal packing, Table 1. Thus, the sulfamoyl-N1–H hydrogen bonds to the amide-O, and the amide-N2–H hydrogen bonds to a sulfamoyl-O2 atom; the sulfamoyl-O1 atom forms intramolecular C–H···O interactions as does the amide-O3 atom, Table 1. The N–H···O hydrogen bonds result in the formation of a supramolecular chain along the b axis with a tubular topology, Fig. 2. These assemble into layers in the ab plane. Interactions between layers are of the type π···π [ring centroid(C1–C6)···ring centroid(C1–C6)i = 3.8185 (13) for i: 1 - x, -y, 2 - z], Fig. 3.

Related literature top

For background to the pharmacological uses of sulfonamides, see: Beate et al. (1998); Kazmierski et al. (2004). For related structures, see: Khan et al. (2010); Sharif et al. (2010).

Experimental top

A mixture of 4-methylaniline (250 mg, 2.33 mmol) and 4-(acetylamino)benzenesulfonyl chloride (545 mg, 2.33 mmol) in distilled water (25 ml) was stirred, while maintaining pH of the reaction mixture at 8–10 by adding 3% sodium carbonate solution. The reaction was monitored by TLC. After completion of the reaction, precipitates were filtered, washed and dried. The crude product obtained was crystallized by dissolving in methanol followed by slow evaporation of the solvent. M. pt. 493 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atoms were refined with the distance restraint N–H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). In the final refinement three low angle reflections evidently effected by the beam stop were omitted, i.e. 0 0 1, 0 1 0, and 0 1 1.

Structure description top

Sulfonamide drugs are used, for example, as inhibitors of HIV infection (Kazmierski et al., 2004) and as anti-hypertensive drugs (Beate et al., 1998). In connection with on-going structural studies of sulfonamides (Khan et al., 2010; Sharif et al., 2010), the crystal and molecular structure of the title compound, (I), was investigated.

To a first approximation, the molecule of (I), Fig. 1, has a twisted U-shaped conformation with the two benzene residues projecting to the same side of the molecule with reference to the central S(O)2N moiety but, being splayed with respect to each other. The dihedral angle formed between the two benzene rings is 67.03 (10) ° and the C1–N1–S1–C8 torsion angle of -58.38 (14) ° indicates a twist in the molecule. Both S-bound O atoms lie to one side of the S-bound benzene ring [the O1–S1–C8–C9 torsion angle = 169.12 (13) ° and O2–S1–C8–C9 = 39.25 (15) °], and the N1 atom to the other [N1–S1–C8–C9 = -73.19 (15) °]. The amide group is co-planar with the benzene ring to which it is attached as seen in the C10–C11—N2–C14 torsion angle of 7.2 (3) °.

The formation of N–H···O hydrogen bonds dominate the crystal packing, Table 1. Thus, the sulfamoyl-N1–H hydrogen bonds to the amide-O, and the amide-N2–H hydrogen bonds to a sulfamoyl-O2 atom; the sulfamoyl-O1 atom forms intramolecular C–H···O interactions as does the amide-O3 atom, Table 1. The N–H···O hydrogen bonds result in the formation of a supramolecular chain along the b axis with a tubular topology, Fig. 2. These assemble into layers in the ab plane. Interactions between layers are of the type π···π [ring centroid(C1–C6)···ring centroid(C1–C6)i = 3.8185 (13) for i: 1 - x, -y, 2 - z], Fig. 3.

For background to the pharmacological uses of sulfonamides, see: Beate et al. (1998); Kazmierski et al. (2004). For related structures, see: Khan et al. (2010); Sharif et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular double chain along the b axis in (I) mediated by N–H···O hydrogen bonding (orange dashed lines) in (I). Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal packing in (I), highlighting the tubular topology of the double chains (shown in Fig. 2) and the π···π interactions (purple dashed lines).
N-{4-[(4-Methylphenyl)sulfamoyl]phenyl}acetamide top
Crystal data top
C15H16N2O3SZ = 2
Mr = 304.37F(000) = 320
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2224 (3) ÅCell parameters from 7070 reflections
b = 8.3878 (3) Åθ = 2.9–28.3°
c = 13.0796 (5) ŵ = 0.23 mm1
α = 71.482 (2)°T = 293 K
β = 75.749 (2)°Block, colourless
γ = 61.265 (1)°0.23 × 0.14 × 0.08 mm
V = 745.27 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3374 independent reflections
Radiation source: fine-focus sealed tube2918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.887, Tmax = 0.951k = 1010
12704 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.1946P]
where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H16N2O3Sγ = 61.265 (1)°
Mr = 304.37V = 745.27 (5) Å3
Triclinic, P1Z = 2
a = 8.2224 (3) ÅMo Kα radiation
b = 8.3878 (3) ŵ = 0.23 mm1
c = 13.0796 (5) ÅT = 293 K
α = 71.482 (2)°0.23 × 0.14 × 0.08 mm
β = 75.749 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3374 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2918 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.951Rint = 0.024
12704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
3374 reflectionsΔρmin = 0.34 e Å3
198 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12002 (5)0.25013 (5)0.75637 (3)0.04453 (15)
O10.01522 (16)0.24530 (17)0.84756 (11)0.0578 (3)
O20.09188 (18)0.42467 (16)0.67943 (11)0.0581 (3)
O30.4166 (2)0.2526 (2)0.37348 (12)0.0728 (4)
N10.31999 (19)0.17594 (19)0.79741 (11)0.0459 (3)
H1N0.391 (2)0.214 (3)0.7440 (11)0.055*
N20.21546 (19)0.29178 (19)0.51939 (11)0.0437 (3)
H2N0.164 (2)0.365 (2)0.5573 (13)0.052*
C10.4103 (2)0.0054 (2)0.86613 (12)0.0429 (3)
C20.5858 (3)0.1276 (3)0.83046 (15)0.0614 (5)
H20.63880.09630.76010.074*
C30.6828 (3)0.2962 (3)0.89901 (17)0.0693 (5)
H30.80200.37650.87460.083*
C40.6068 (3)0.3481 (3)1.00264 (16)0.0596 (5)
C50.4290 (3)0.2261 (3)1.03546 (15)0.0633 (5)
H50.37380.26011.10470.076*
C60.3305 (3)0.0558 (3)0.96922 (14)0.0553 (4)
H60.21130.02440.99380.066*
C70.7165 (4)0.5295 (3)1.0789 (2)0.0835 (7)
H7A0.78370.50811.11960.125*
H7B0.80300.61971.03770.125*
H7C0.63240.57591.12780.125*
C80.1436 (2)0.0924 (2)0.68549 (13)0.0405 (3)
C90.2424 (3)0.0930 (2)0.58393 (15)0.0541 (4)
H90.29310.17800.55370.065*
C100.2674 (3)0.0305 (2)0.52644 (14)0.0532 (4)
H100.33300.02760.45750.064*
C110.1941 (2)0.1593 (2)0.57195 (12)0.0387 (3)
C120.0926 (2)0.1576 (2)0.67372 (13)0.0468 (4)
H120.04100.24190.70400.056*
C130.0671 (2)0.0332 (2)0.73066 (13)0.0472 (4)
H130.00100.03350.79890.057*
C140.3207 (2)0.3310 (2)0.42545 (13)0.0451 (4)
C150.3142 (3)0.4801 (2)0.38969 (15)0.0561 (4)
H15A0.31410.44570.31230.084*
H15B0.20280.49410.42400.084*
H15C0.42150.59620.40980.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0380 (2)0.0362 (2)0.0593 (3)0.01654 (16)0.00415 (16)0.01162 (17)
O10.0426 (6)0.0572 (7)0.0737 (8)0.0215 (5)0.0084 (6)0.0273 (6)
O20.0592 (7)0.0366 (6)0.0783 (8)0.0216 (5)0.0167 (6)0.0052 (6)
O30.0807 (10)0.0762 (9)0.0703 (8)0.0511 (8)0.0268 (7)0.0277 (7)
N10.0425 (7)0.0476 (7)0.0521 (7)0.0252 (6)0.0035 (6)0.0098 (6)
N20.0436 (7)0.0411 (7)0.0487 (7)0.0239 (6)0.0029 (5)0.0061 (5)
C10.0433 (8)0.0455 (8)0.0463 (8)0.0229 (7)0.0056 (6)0.0127 (6)
C20.0550 (10)0.0598 (11)0.0530 (9)0.0163 (9)0.0022 (8)0.0132 (8)
C30.0625 (12)0.0567 (11)0.0703 (12)0.0092 (9)0.0084 (10)0.0185 (9)
C40.0733 (12)0.0496 (10)0.0644 (11)0.0289 (9)0.0261 (9)0.0068 (8)
C50.0692 (12)0.0741 (13)0.0490 (9)0.0402 (11)0.0099 (8)0.0003 (9)
C60.0471 (9)0.0671 (11)0.0497 (9)0.0262 (8)0.0002 (7)0.0130 (8)
C70.1059 (19)0.0585 (13)0.0869 (15)0.0302 (13)0.0458 (14)0.0009 (11)
C80.0349 (7)0.0340 (7)0.0512 (8)0.0156 (6)0.0072 (6)0.0056 (6)
C90.0579 (10)0.0488 (9)0.0631 (10)0.0371 (8)0.0089 (8)0.0120 (8)
C100.0578 (10)0.0520 (9)0.0530 (9)0.0345 (8)0.0110 (7)0.0124 (7)
C110.0333 (7)0.0342 (7)0.0455 (7)0.0151 (6)0.0079 (6)0.0022 (6)
C120.0528 (9)0.0448 (8)0.0483 (8)0.0322 (7)0.0000 (7)0.0043 (7)
C130.0525 (9)0.0460 (8)0.0458 (8)0.0300 (7)0.0017 (7)0.0060 (6)
C140.0395 (8)0.0408 (8)0.0474 (8)0.0137 (6)0.0080 (6)0.0048 (6)
C150.0551 (10)0.0522 (10)0.0601 (10)0.0186 (8)0.0121 (8)0.0155 (8)
Geometric parameters (Å, º) top
S1—O11.4214 (13)C5—H50.9300
S1—O21.4362 (12)C6—H60.9300
S1—N11.6178 (14)C7—H7A0.9600
S1—C81.7581 (16)C7—H7B0.9600
O3—C141.211 (2)C7—H7C0.9600
N1—C11.431 (2)C8—C91.376 (2)
N1—H1N0.877 (9)C8—C131.383 (2)
N2—C141.351 (2)C9—C101.376 (2)
N2—C111.406 (2)C9—H90.9300
N2—H2N0.867 (9)C10—C111.388 (2)
C1—C21.378 (2)C10—H100.9300
C1—C61.377 (2)C11—C121.386 (2)
C2—C31.379 (3)C12—C131.376 (2)
C2—H20.9300C12—H120.9300
C3—C41.374 (3)C13—H130.9300
C3—H30.9300C14—C151.495 (2)
C4—C51.378 (3)C15—H15A0.9600
C4—C71.511 (3)C15—H15B0.9600
C5—C61.376 (3)C15—H15C0.9600
O1—S1—O2119.51 (8)H7A—C7—H7B109.5
O1—S1—N1109.54 (8)C4—C7—H7C109.5
O2—S1—N1104.83 (7)H7A—C7—H7C109.5
O1—S1—C8107.30 (7)H7B—C7—H7C109.5
O2—S1—C8107.71 (8)C9—C8—C13119.74 (15)
N1—S1—C8107.41 (7)C9—C8—S1119.07 (12)
C1—N1—S1122.71 (10)C13—C8—S1121.19 (12)
C1—N1—H1N116.6 (13)C8—C9—C10121.02 (14)
S1—N1—H1N108.7 (13)C8—C9—H9119.5
C14—N2—C11128.32 (13)C10—C9—H9119.5
C14—N2—H2N117.5 (13)C9—C10—C11119.64 (15)
C11—N2—H2N113.7 (12)C9—C10—H10120.2
C2—C1—C6119.49 (17)C11—C10—H10120.2
C2—C1—N1119.02 (15)C12—C11—C10119.07 (15)
C6—C1—N1121.37 (15)C12—C11—N2117.67 (13)
C1—C2—C3120.06 (18)C10—C11—N2123.25 (14)
C1—C2—H2120.0C13—C12—C11121.06 (14)
C3—C2—H2120.0C13—C12—H12119.5
C4—C3—C2121.35 (19)C11—C12—H12119.5
C4—C3—H3119.3C12—C13—C8119.45 (15)
C2—C3—H3119.3C12—C13—H13120.3
C3—C4—C5117.56 (18)C8—C13—H13120.3
C3—C4—C7121.1 (2)O3—C14—N2122.59 (16)
C5—C4—C7121.3 (2)O3—C14—C15121.55 (16)
C6—C5—C4122.19 (18)N2—C14—C15115.85 (15)
C6—C5—H5118.9C14—C15—H15A109.5
C4—C5—H5118.9C14—C15—H15B109.5
C5—C6—C1119.30 (17)H15A—C15—H15B109.5
C5—C6—H6120.3C14—C15—H15C109.5
C1—C6—H6120.3H15A—C15—H15C109.5
C4—C7—H7A109.5H15B—C15—H15C109.5
C4—C7—H7B109.5
O1—S1—N1—C157.85 (14)O1—S1—C8—C1311.81 (16)
O2—S1—N1—C1172.76 (12)O2—S1—C8—C13141.68 (14)
C8—S1—N1—C158.38 (14)N1—S1—C8—C13105.88 (14)
S1—N1—C1—C2121.29 (16)C13—C8—C9—C100.3 (3)
S1—N1—C1—C662.61 (19)S1—C8—C9—C10178.75 (15)
C6—C1—C2—C32.2 (3)C8—C9—C10—C110.9 (3)
N1—C1—C2—C3173.98 (18)C9—C10—C11—C121.7 (3)
C1—C2—C3—C41.3 (3)C9—C10—C11—N2179.09 (16)
C2—C3—C4—C50.6 (3)C14—N2—C11—C12173.58 (15)
C2—C3—C4—C7177.6 (2)C14—N2—C11—C107.2 (3)
C3—C4—C5—C61.7 (3)C10—C11—C12—C131.3 (2)
C7—C4—C5—C6176.52 (19)N2—C11—C12—C13179.41 (15)
C4—C5—C6—C10.8 (3)C11—C12—C13—C80.1 (3)
C2—C1—C6—C51.2 (3)C9—C8—C13—C120.7 (3)
N1—C1—C6—C5174.91 (16)S1—C8—C13—C12178.36 (13)
O1—S1—C8—C9169.12 (13)C11—N2—C14—O31.1 (3)
O2—S1—C8—C939.25 (15)C11—N2—C14—C15179.77 (14)
N1—S1—C8—C973.19 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.603.125 (3)116
C10—H10···O30.932.222.818 (3)121
C13—H13···O10.932.562.914 (3)103
N1—H1n···O3i0.88 (2)1.99 (2)2.853 (3)169 (2)
N2—H2n···O2ii0.87 (2)2.18 (2)3.029 (2)165 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H16N2O3S
Mr304.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2224 (3), 8.3878 (3), 13.0796 (5)
α, β, γ (°)71.482 (2), 75.749 (2), 61.265 (1)
V3)745.27 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.23 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.887, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
12704, 3374, 2918
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.04
No. of reflections3374
No. of parameters198
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.603.125 (3)116
C10—H10···O30.932.222.818 (3)121
C13—H13···O10.932.562.914 (3)103
N1—H1n···O3i0.88 (2)1.99 (2)2.853 (3)169 (2)
N2—H2n···O2ii0.87 (2)2.18 (2)3.029 (2)165 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

References

First citationBeate, G., Nadenik, P. & Wagner, H. (1998). WO Patent No. 9855481.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKazmierski, W. M., Aquino, C. J., Bifulco, N., Boros, E. E., Chauder, B. A., Chong, P. Y., Duan, M., Deanda, F. Jr, Koble, C. S., Mclean, E. W., Peckham, J. P., Perkins, A. C., Thompson, J. B. & Vanderwall, D. (2004). WO Patent No. 2004054974.  Google Scholar
First citationKhan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds