organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro­benzohydrazide

aDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: uzzmma@yahoo.com

(Received 19 July 2010; accepted 23 July 2010; online 31 July 2010)

In the title compound, C7H7ClN2O, the hydrazide group is inclined at a dihedral angle of 32.30 (11)° with respect to the benzene ring. The amino H atoms form inter­molecular N—H⋯O hydrogen bonds with the O atoms of two adjacent mol­ecules, resulting in 10-membered rings of graph-set motif R22(10). The imino H atom is also involved in an inter­molecular hydrogen bond with an amino N atom of a symmetry-related mol­ecule, resulting in a zigzag chain along the b axis. The structure is further consolidated by an intra­molecular N—H⋯O inter­action, which results in a five-membered ring.

Related literature

For the biological activity of hydrazides, see: Ashiq, Ara et al. (2008[Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82-92.]); Ara et al. (2007[Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.]); Maqsood et al. (2006[Maqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem. 21, 37-42.]); For related structures, see: Ashiq, Jamal et al. (2008[Ashiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci. X, 24, 103-104.]); Jamal et al. (2008[Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.], 2009[Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009). Acta Cryst. E65, o2473.]); Kallel et al. (1992[Kallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137-140.]); Ratajczak et al. (2001[Ratajczak, H., Baran, J., Barnes, A. J., Barycki, J., Debrus, S., Latajka, Z., May, M. & Pietraszko, A. (2001). J. Mol. Struct. 596, 17-23.]); Saraogi et al. (2002[Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.]). For graph-set notation of hydrogen-bond motifs, see: (Bernstein et al. 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7ClN2O

  • Mr = 170.60

  • Monoclinic, P 21 /c

  • a = 16.2005 (15) Å

  • b = 3.8165 (4) Å

  • c = 12.7646 (13) Å

  • β = 108.030 (5)°

  • V = 750.47 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.43 × 0.21 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.832, Tmax = 0.928

  • 8144 measured reflections

  • 1881 independent reflections

  • 1101 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.121

  • S = 1.01

  • 1880 reflections

  • 109 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.90 (3) 2.45 (3) 2.766 (3) 101 (2)
N1—H1N⋯N2i 0.87 (3) 2.11 (3) 2.955 (3) 162 (2)
N2—H3N⋯O1ii 0.86 (3) 2.24 (3) 3.091 (3) 171 (2)
N2—H2N⋯O1iii 0.90 (3) 2.25 (3) 2.935 (3) 133 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+1; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazides are known to have different biological activities (Ashiq, Ara et al., 2008; Ara et al., 2007). In order to study the biological activity of 3-chlorobenzohydrazide, we undertook the synthesis of the title compound and report its crystal structure in this paper. The title compound was found to be antifungal (Maqsood et al., 2006). The structures of benzhydrazide (Kallel et al., 1992), and its p-chloro (Saraogi et al., 2002), m-methoxy (Jamal et al., 2009), m-nitro (Ratajczak et al. 2001), p-bromo (Ashiq, Jamal et al., 2008) and p-iodo (Jamal et al., 2008) analogues have been reported.

The bond lengths and bond angles in the title compound (Fig. 1) are comparable with the corresponding distances and angles reported in its analogues quoted above. The hydrazide moiety, C7/O1/N1/N2, is oriented at a dihedral angle of 32.30 (11)° with respect to the plane of benzene ring C1–C6. The H atoms bonded to N2 form intermolecular hydrogen bonds of the type N–H···O with O atoms of two adjacent molecules, resulting in 10-membered rings which may be assigned to R22(10) motif in graph set notation (Bernstein et al., 1995). The H-atom bonded to N1 is also involved in an intermolecular hydrogen bond with N2, linking the molecules into a zigzag chain along the b axis (Tab. 1 and Fig. 2). The structure is further stabilized by an intramolecular interaction, N2–H2···O1, resulting in a five membered ring in S(5) motif (Bernstein et al., 1995).

Related literature top

For the biological activity of hydrazides, see: Ashiq, Ara et al. (2008); Ara et al. (2007); Maqsood et al. (2006); For related structures, see: Ashiq, Jamal et al. (2008); Jamal et al. (2008, 2009); Kallel et al. (1992); Ratajczak et al. (2001); Saraogi et al. (2002). For graph-set notation of hydrogen-bond motifs, see: (Bernstein et al. 1995).

Experimental top

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-3-chlorobenzoate (3.69 g, 20 mmol) in 75 ml ethanol, hydrazine hydrate (5.0 ml, 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford the title compound (yield 75%). The crystals of the title compound suitable for crystallographic study were grown from a solution of methanol by slow evaporation at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic and constrained to ride on their parent atoms. The H-atoms attached to N1 and N2 were taken from Fourier maps and their coordinates were refined. The thermal parameters, Uiso, of H-atoms were allowed at 1.2 times of the Ueq of their parent atoms.

Structure description top

Hydrazides are known to have different biological activities (Ashiq, Ara et al., 2008; Ara et al., 2007). In order to study the biological activity of 3-chlorobenzohydrazide, we undertook the synthesis of the title compound and report its crystal structure in this paper. The title compound was found to be antifungal (Maqsood et al., 2006). The structures of benzhydrazide (Kallel et al., 1992), and its p-chloro (Saraogi et al., 2002), m-methoxy (Jamal et al., 2009), m-nitro (Ratajczak et al. 2001), p-bromo (Ashiq, Jamal et al., 2008) and p-iodo (Jamal et al., 2008) analogues have been reported.

The bond lengths and bond angles in the title compound (Fig. 1) are comparable with the corresponding distances and angles reported in its analogues quoted above. The hydrazide moiety, C7/O1/N1/N2, is oriented at a dihedral angle of 32.30 (11)° with respect to the plane of benzene ring C1–C6. The H atoms bonded to N2 form intermolecular hydrogen bonds of the type N–H···O with O atoms of two adjacent molecules, resulting in 10-membered rings which may be assigned to R22(10) motif in graph set notation (Bernstein et al., 1995). The H-atom bonded to N1 is also involved in an intermolecular hydrogen bond with N2, linking the molecules into a zigzag chain along the b axis (Tab. 1 and Fig. 2). The structure is further stabilized by an intramolecular interaction, N2–H2···O1, resulting in a five membered ring in S(5) motif (Bernstein et al., 1995).

For the biological activity of hydrazides, see: Ashiq, Ara et al. (2008); Ara et al. (2007); Maqsood et al. (2006); For related structures, see: Ashiq, Jamal et al. (2008); Jamal et al. (2008, 2009); Kallel et al. (1992); Ratajczak et al. (2001); Saraogi et al. (2002). For graph-set notation of hydrogen-bond motifs, see: (Bernstein et al. 1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound; hydrogen bonds are shown by dashed lines.
3-Chlorobenzohydrazide top
Crystal data top
C7H7ClN2OF(000) = 352
Mr = 170.60Dx = 1.510 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1323 reflections
a = 16.2005 (15) Åθ = 3.2–23.3°
b = 3.8165 (4) ŵ = 0.45 mm1
c = 12.7646 (13) ÅT = 296 K
β = 108.030 (5)°Needle, colorless
V = 750.47 (13) Å30.43 × 0.21 × 0.17 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1881 independent reflections
Radiation source: fine-focus sealed tube1101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 28.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2121
Tmin = 0.832, Tmax = 0.928k = 55
8144 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.4337P]
where P = (Fo2 + 2Fc2)/3
1880 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C7H7ClN2OV = 750.47 (13) Å3
Mr = 170.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2005 (15) ŵ = 0.45 mm1
b = 3.8165 (4) ÅT = 296 K
c = 12.7646 (13) Å0.43 × 0.21 × 0.17 mm
β = 108.030 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1881 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1101 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.928Rint = 0.053
8144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
1880 reflectionsΔρmin = 0.30 e Å3
109 parameters
Special details top

Experimental. the reflection 1 0 0 has been obscured by the beam stop so it was omitted in the final refinement

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43417 (4)1.3067 (2)0.63671 (7)0.0544 (3)
O10.11735 (11)0.7193 (5)0.53677 (14)0.0392 (5)
N10.05596 (12)0.8834 (6)0.36054 (17)0.0336 (5)
H1N0.0600 (15)0.987 (8)0.301 (2)0.040*
N20.02733 (13)0.7486 (7)0.35190 (18)0.0352 (6)
H3N0.0560 (16)0.902 (8)0.376 (2)0.042*
H2N0.0219 (16)0.571 (8)0.399 (2)0.042*
C10.20977 (14)0.9403 (7)0.43785 (19)0.0295 (6)
C20.27380 (15)1.0618 (7)0.5299 (2)0.0331 (6)
H20.26291.08220.59710.040*
C30.35388 (15)1.1523 (7)0.5212 (2)0.0365 (6)
C40.37114 (17)1.1191 (8)0.4231 (2)0.0445 (7)
H40.42521.18270.41800.053*
C50.30846 (17)0.9917 (9)0.3325 (2)0.0472 (8)
H50.32050.96450.26630.057*
C60.22744 (16)0.9033 (8)0.3388 (2)0.0380 (7)
H60.18490.81940.27680.046*
C70.12403 (15)0.8398 (7)0.45054 (19)0.0286 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0334 (3)0.0599 (5)0.0633 (5)0.0054 (3)0.0055 (3)0.0109 (4)
O10.0392 (9)0.0492 (13)0.0309 (9)0.0036 (9)0.0133 (7)0.0086 (9)
N10.0321 (11)0.0414 (15)0.0281 (11)0.0062 (10)0.0106 (9)0.0069 (10)
N20.0312 (11)0.0440 (17)0.0331 (12)0.0057 (10)0.0138 (9)0.0015 (11)
C10.0310 (12)0.0254 (14)0.0336 (13)0.0014 (10)0.0120 (10)0.0031 (11)
C20.0338 (12)0.0323 (16)0.0351 (14)0.0003 (11)0.0131 (11)0.0021 (12)
C30.0305 (12)0.0293 (16)0.0469 (16)0.0012 (11)0.0081 (11)0.0013 (13)
C40.0319 (13)0.0456 (19)0.0609 (19)0.0030 (13)0.0216 (13)0.0055 (15)
C50.0458 (16)0.058 (2)0.0472 (17)0.0028 (15)0.0282 (13)0.0043 (16)
C60.0369 (13)0.0451 (19)0.0340 (14)0.0006 (13)0.0138 (11)0.0019 (13)
C70.0342 (12)0.0253 (14)0.0288 (12)0.0008 (11)0.0132 (10)0.0018 (11)
Geometric parameters (Å, º) top
Cl1—C31.740 (3)C1—C71.497 (3)
O1—C71.228 (3)C2—C31.380 (3)
N1—C71.334 (3)C2—H20.9300
N1—N21.416 (3)C3—C41.371 (4)
N1—H1N0.87 (3)C4—C51.370 (4)
N2—H3N0.86 (3)C4—H40.9300
N2—H2N0.90 (3)C5—C61.381 (3)
C1—C21.385 (3)C5—H50.9300
C1—C61.387 (3)C6—H60.9300
C7—N1—N2122.4 (2)C2—C3—Cl1119.4 (2)
C7—N1—H1N122.6 (16)C3—C4—C5119.7 (2)
N2—N1—H1N114.9 (16)C3—C4—H4120.1
N1—N2—H3N109.4 (19)C5—C4—H4120.1
N1—N2—H2N109.3 (16)C4—C5—C6120.5 (3)
H3N—N2—H2N103 (3)C4—C5—H5119.8
C2—C1—C6119.7 (2)C6—C5—H5119.8
C2—C1—C7118.0 (2)C5—C6—C1119.7 (2)
C6—C1—C7122.2 (2)C5—C6—H6120.1
C3—C2—C1119.4 (2)C1—C6—H6120.1
C3—C2—H2120.3O1—C7—N1122.7 (2)
C1—C2—H2120.3O1—C7—C1122.3 (2)
C4—C3—C2120.9 (2)N1—C7—C1115.0 (2)
C4—C3—Cl1119.7 (2)
C6—C1—C2—C31.5 (4)C2—C1—C6—C50.7 (4)
C7—C1—C2—C3179.2 (2)C7—C1—C6—C5178.3 (3)
C1—C2—C3—C40.9 (4)N2—N1—C7—O19.3 (4)
C1—C2—C3—Cl1179.7 (2)N2—N1—C7—C1169.2 (2)
C2—C3—C4—C50.5 (4)C2—C1—C7—O131.5 (4)
Cl1—C3—C4—C5178.9 (2)C6—C1—C7—O1146.2 (3)
C3—C4—C5—C61.3 (5)C2—C1—C7—N1150.0 (2)
C4—C5—C6—C10.7 (5)C6—C1—C7—N132.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.90 (3)2.45 (3)2.766 (3)101 (2)
N1—H1N···N2i0.87 (3)2.11 (3)2.955 (3)162 (2)
N2—H3N···O1ii0.86 (3)2.24 (3)3.091 (3)171 (2)
N2—H2N···O1iii0.90 (3)2.25 (3)2.935 (3)133 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+2, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H7ClN2O
Mr170.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.2005 (15), 3.8165 (4), 12.7646 (13)
β (°) 108.030 (5)
V3)750.47 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.43 × 0.21 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.832, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
8144, 1881, 1101
Rint0.053
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.01
No. of reflections1880
No. of parameters109
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.90 (3)2.45 (3)2.766 (3)101 (2)
N1—H1N···N2i0.87 (3)2.11 (3)2.955 (3)162 (2)
N2—H3N···O1ii0.86 (3)2.24 (3)3.091 (3)171 (2)
N2—H2N···O1iii0.90 (3)2.25 (3)2.935 (3)133 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+2, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Higher Education Commission Pakistan for providing the diffractometer at GCU, Lahore, and BANA Inter­national for the data collection.

References

First citationAra, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58–71.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci. X, 24, 103–104.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009). Acta Cryst. E65, o2473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137–140.  CrossRef CAS Web of Science Google Scholar
First citationMaqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem. 21, 37–42.  Web of Science CrossRef CAS Google Scholar
First citationRatajczak, H., Baran, J., Barnes, A. J., Barycki, J., Debrus, S., Latajka, Z., May, M. & Pietraszko, A. (2001). J. Mol. Struct. 596, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341–o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds