organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(9-Ethyl-9H-carbazol-3-yl)methyl­­idene]-3,4-di­methyl­isoxazol-5-amine

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 June 2010; accepted 12 July 2010; online 17 July 2010)

The azomethine double bond in the title Schiff base, C20H19N3O, has an E configuration. The 13-membered carbazolyl fused ring system [r.m.s. deviation = 0.023 (9) Å] is nearly coplanar with the five-membered pyrazole ring [r.m.s. deviation = 0.003 (4) Å]; the dihedral angle between the two systems is 10.8 (2)°. The crystal studied was a non-merohedral twin having a 35% minor component.

Related literature

For the synthesis and spectroscopic characterization of the title compound, see: Asiri et al. (2010[Asiri, A. M., Khan, S. A. & Rasul, M. G. (2010). Molbank, M684, 3.]). For the treatment of non-merohedral twins, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O

  • Mr = 317.38

  • Monoclinic, P 21 /c

  • a = 8.0575 (9) Å

  • b = 13.4483 (15) Å

  • c = 14.8488 (16) Å

  • β = 94.049 (2)°

  • V = 1605.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 11993 measured reflections

  • 2811 independent reflections

  • 2286 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.262

  • S = 1.11

  • 2811 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have recently reported the synthesis and characterization of this Schiff base (Asiri et al., 2010). The azomethine double-bond of the Schiff base (Scheme, Fig. 1) has an E-configuration. The 13-membered carbazolyl fused-ring (r.m.s. deviation 0.023 (9)Å) is nearly coplanar with 5-membered pyrazolyl ring (r.m.s. deviation 0.003 (4)Å) (dihedral angle between the two systems 10.8 (2)°).

Related literature top

For the synthesis and spectroscopic characterization of this Schiff base, see: Asiri et al. (2010). For the treatment of non-merohedral twins, see: Spek (2009).

Experimental top

Crystals of the compound were synthesized as reported (Asiri et al., 2010).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98Å with Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The crystal studied is a non-merohedral twin; PLATON (Spek, 2009) gave the twin law as (-1 0 0, 0 -1 0, 0.260 0 -1). The de-twinning option lowered the R index from 17% to a more acceptable level. However, the twinning affected the refinement so that the thermal ellipsoids, particularly those of the heterocyclic ring, were somewhat large.

Structure description top

We have recently reported the synthesis and characterization of this Schiff base (Asiri et al., 2010). The azomethine double-bond of the Schiff base (Scheme, Fig. 1) has an E-configuration. The 13-membered carbazolyl fused-ring (r.m.s. deviation 0.023 (9)Å) is nearly coplanar with 5-membered pyrazolyl ring (r.m.s. deviation 0.003 (4)Å) (dihedral angle between the two systems 10.8 (2)°).

For the synthesis and spectroscopic characterization of this Schiff base, see: Asiri et al. (2010). For the treatment of non-merohedral twins, see: Spek (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 70% probability level. Hydrogen atoms are drawn as a small spheres of arbitrary radius.
N-[(9-Ethyl-9H-carbazol-3-yl)methylidene]-3,4- dimethylisoxazol-5-amine top
Crystal data top
C20H19N3OF(000) = 672
Mr = 317.38Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3958 reflections
a = 8.0575 (9) Åθ = 2.5–27.4°
b = 13.4483 (15) ŵ = 0.08 mm1
c = 14.8488 (16) ÅT = 100 K
β = 94.049 (2)°Prism, yellow
V = 1605.0 (3) Å30.20 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2286 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scansh = 98
11993 measured reflectionsk = 1515
2811 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.262H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1086P)2 + 4.6936P]
where P = (Fo2 + 2Fc2)/3
2811 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C20H19N3OV = 1605.0 (3) Å3
Mr = 317.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0575 (9) ŵ = 0.08 mm1
b = 13.4483 (15) ÅT = 100 K
c = 14.8488 (16) Å0.20 × 0.15 × 0.05 mm
β = 94.049 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2286 reflections with I > 2σ(I)
11993 measured reflectionsRint = 0.057
2811 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0890 restraints
wR(F2) = 0.262H-atom parameters constrained
S = 1.11Δρmax = 0.55 e Å3
2811 reflectionsΔρmin = 0.54 e Å3
221 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2910 (4)0.3151 (2)0.1571 (2)0.0238 (8)
N11.1980 (5)0.1389 (3)0.4076 (3)0.0219 (9)
N20.4716 (5)0.1815 (3)0.2053 (3)0.0216 (9)
N30.1279 (5)0.3252 (3)0.1158 (3)0.0253 (9)
C11.1728 (6)0.3018 (3)0.3684 (3)0.0187 (10)
C21.2291 (6)0.3999 (3)0.3616 (3)0.0215 (10)
H21.16020.44890.33200.026*
C31.3860 (6)0.4244 (3)0.3984 (3)0.0257 (11)
H31.42470.49090.39470.031*
C41.4879 (6)0.3522 (4)0.4411 (3)0.0257 (11)
H41.59470.37080.46670.031*
C51.4375 (6)0.2540 (4)0.4472 (3)0.0248 (11)
H51.50840.20490.47530.030*
C61.2794 (6)0.2302 (3)0.4105 (3)0.0185 (10)
C71.2634 (6)0.0460 (3)0.4467 (3)0.0239 (11)
H7A1.17120.00810.47100.029*
H7B1.34530.06140.49760.029*
C81.3456 (7)0.0178 (4)0.3792 (4)0.0336 (13)
H8A1.38180.08050.40780.050*
H8B1.44230.01740.35830.050*
H8C1.26620.03150.32770.050*
C91.0436 (6)0.1505 (3)0.3641 (3)0.0175 (10)
C101.0204 (6)0.2514 (3)0.3393 (3)0.0180 (10)
C110.8678 (6)0.2813 (3)0.2978 (3)0.0193 (10)
H110.84950.34910.28210.023*
C120.7420 (6)0.2112 (3)0.2796 (3)0.0212 (10)
C130.7718 (6)0.1102 (3)0.3024 (3)0.0212 (10)
H130.68690.06270.28750.025*
C140.9185 (6)0.0784 (3)0.3453 (3)0.0228 (11)
H140.93540.01070.36160.027*
C150.5842 (6)0.2432 (3)0.2365 (3)0.0205 (10)
H150.56250.31240.23110.025*
C160.3229 (6)0.2162 (3)0.1664 (3)0.0186 (10)
C170.1911 (6)0.1619 (3)0.1324 (3)0.0207 (10)
C180.0728 (6)0.2352 (3)0.1022 (3)0.0197 (10)
C190.1746 (6)0.0520 (3)0.1276 (3)0.0253 (11)
H19A0.28020.02110.14930.038*
H19B0.14630.03200.06500.038*
H19C0.08660.03040.16550.038*
C200.0982 (6)0.2179 (4)0.0589 (3)0.0280 (11)
H20A0.16650.18470.10200.042*
H20B0.09110.17580.00540.042*
H20C0.14880.28180.04100.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (18)0.0164 (16)0.0296 (18)0.0002 (14)0.0004 (14)0.0000 (13)
N10.026 (2)0.0186 (19)0.021 (2)0.0010 (17)0.0022 (17)0.0028 (15)
N20.023 (2)0.0176 (19)0.024 (2)0.0013 (17)0.0046 (17)0.0003 (15)
N30.024 (2)0.024 (2)0.028 (2)0.0035 (18)0.0010 (18)0.0026 (17)
C10.022 (2)0.019 (2)0.015 (2)0.0006 (19)0.0041 (18)0.0030 (17)
C20.021 (2)0.016 (2)0.027 (2)0.0013 (19)0.002 (2)0.0006 (18)
C30.024 (3)0.019 (2)0.034 (3)0.003 (2)0.004 (2)0.003 (2)
C40.021 (2)0.031 (3)0.024 (2)0.001 (2)0.001 (2)0.004 (2)
C50.029 (3)0.027 (2)0.019 (2)0.009 (2)0.001 (2)0.0007 (19)
C60.021 (2)0.018 (2)0.017 (2)0.0017 (19)0.0020 (18)0.0010 (17)
C70.031 (3)0.016 (2)0.025 (2)0.003 (2)0.002 (2)0.0036 (18)
C80.037 (3)0.027 (3)0.037 (3)0.009 (2)0.000 (2)0.002 (2)
C90.021 (2)0.016 (2)0.015 (2)0.0030 (18)0.0046 (19)0.0001 (17)
C100.024 (3)0.014 (2)0.016 (2)0.0009 (18)0.0040 (19)0.0010 (16)
C110.023 (3)0.017 (2)0.018 (2)0.0014 (19)0.0032 (19)0.0007 (17)
C120.024 (3)0.021 (2)0.019 (2)0.003 (2)0.0043 (19)0.0026 (18)
C130.025 (3)0.017 (2)0.022 (2)0.0061 (19)0.005 (2)0.0020 (18)
C140.030 (3)0.013 (2)0.025 (2)0.001 (2)0.005 (2)0.0007 (18)
C150.021 (2)0.017 (2)0.024 (2)0.0023 (19)0.005 (2)0.0019 (18)
C160.023 (2)0.014 (2)0.019 (2)0.0001 (18)0.0054 (19)0.0019 (17)
C170.021 (2)0.019 (2)0.022 (2)0.0016 (19)0.0039 (19)0.0006 (18)
C180.021 (2)0.020 (2)0.018 (2)0.0012 (19)0.0040 (19)0.0003 (18)
C190.024 (3)0.016 (2)0.036 (3)0.002 (2)0.003 (2)0.0011 (19)
C200.025 (3)0.033 (3)0.026 (3)0.000 (2)0.000 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—C161.360 (5)C8—H8B0.9800
O1—N31.417 (5)C8—H8C0.9800
N1—C91.369 (6)C9—C141.412 (6)
N1—C61.391 (6)C9—C101.416 (6)
N1—C71.461 (6)C10—C111.395 (6)
N2—C151.291 (6)C11—C121.397 (6)
N2—C161.375 (6)C11—H110.9500
N3—C181.300 (6)C12—C131.416 (6)
C1—C21.400 (6)C12—C151.448 (7)
C1—C61.407 (6)C13—C141.371 (7)
C1—C101.443 (6)C13—H130.9500
C2—C31.381 (7)C14—H140.9500
C2—H20.9500C15—H150.9500
C3—C41.395 (7)C16—C171.357 (6)
C3—H30.9500C17—C181.422 (6)
C4—C51.386 (7)C17—C191.485 (6)
C4—H40.9500C18—C201.496 (7)
C5—C61.387 (7)C19—H19A0.9800
C5—H50.9500C19—H19B0.9800
C7—C81.507 (7)C19—H19C0.9800
C7—H7A0.9900C20—H20A0.9800
C7—H7B0.9900C20—H20B0.9800
C8—H8A0.9800C20—H20C0.9800
C16—O1—N3107.5 (3)C11—C10—C9119.2 (4)
C9—N1—C6109.0 (4)C11—C10—C1134.6 (4)
C9—N1—C7125.1 (4)C9—C10—C1106.2 (4)
C6—N1—C7125.9 (4)C10—C11—C12119.7 (4)
C15—N2—C16120.1 (4)C10—C11—H11120.1
C18—N3—O1105.9 (4)C12—C11—H11120.1
C2—C1—C6119.1 (4)C11—C12—C13119.5 (4)
C2—C1—C10134.0 (4)C11—C12—C15119.2 (4)
C6—C1—C10107.0 (4)C13—C12—C15121.3 (4)
C3—C2—C1119.2 (4)C14—C13—C12122.4 (4)
C3—C2—H2120.4C14—C13—H13118.8
C1—C2—H2120.4C12—C13—H13118.8
C2—C3—C4120.4 (4)C13—C14—C9117.3 (4)
C2—C3—H3119.8C13—C14—H14121.4
C4—C3—H3119.8C9—C14—H14121.4
C5—C4—C3121.8 (5)N2—C15—C12122.7 (4)
C5—C4—H4119.1N2—C15—H15118.6
C3—C4—H4119.1C12—C15—H15118.6
C4—C5—C6117.3 (4)C17—C16—O1110.6 (4)
C4—C5—H5121.3C17—C16—N2127.6 (4)
C6—C5—H5121.3O1—C16—N2121.9 (4)
C5—C6—N1129.3 (4)C16—C17—C18103.5 (4)
C5—C6—C1122.1 (4)C16—C17—C19128.2 (4)
N1—C6—C1108.6 (4)C18—C17—C19128.3 (4)
N1—C7—C8112.7 (4)N3—C18—C17112.5 (4)
N1—C7—H7A109.1N3—C18—C20120.4 (4)
C8—C7—H7A109.1C17—C18—C20127.2 (4)
N1—C7—H7B109.1C17—C19—H19A109.5
C8—C7—H7B109.1C17—C19—H19B109.5
H7A—C7—H7B107.8H19A—C19—H19B109.5
C7—C8—H8A109.5C17—C19—H19C109.5
C7—C8—H8B109.5H19A—C19—H19C109.5
H8A—C8—H8B109.5H19B—C19—H19C109.5
C7—C8—H8C109.5C18—C20—H20A109.5
H8A—C8—H8C109.5C18—C20—H20B109.5
H8B—C8—H8C109.5H20A—C20—H20B109.5
N1—C9—C14128.9 (4)C18—C20—H20C109.5
N1—C9—C10109.3 (4)H20A—C20—H20C109.5
C14—C9—C10121.8 (4)H20B—C20—H20C109.5
C16—O1—N3—C180.6 (5)C2—C1—C10—C9178.0 (5)
C6—C1—C2—C31.7 (6)C6—C1—C10—C91.0 (5)
C10—C1—C2—C3179.5 (5)C9—C10—C11—C121.5 (6)
C1—C2—C3—C40.6 (7)C1—C10—C11—C12179.1 (5)
C2—C3—C4—C50.9 (7)C10—C11—C12—C130.8 (6)
C3—C4—C5—C61.2 (7)C10—C11—C12—C15180.0 (4)
C4—C5—C6—N1179.6 (4)C11—C12—C13—C142.5 (7)
C4—C5—C6—C10.1 (7)C15—C12—C13—C14178.3 (4)
C9—N1—C6—C5179.6 (4)C12—C13—C14—C91.8 (7)
C7—N1—C6—C52.0 (7)N1—C9—C14—C13178.3 (4)
C9—N1—C6—C10.6 (5)C10—C9—C14—C130.6 (6)
C7—N1—C6—C1177.8 (4)C16—N2—C15—C12178.9 (4)
C2—C1—C6—C51.3 (6)C11—C12—C15—N2169.3 (4)
C10—C1—C6—C5179.6 (4)C13—C12—C15—N29.9 (7)
C2—C1—C6—N1178.9 (4)N3—O1—C16—C170.9 (5)
C10—C1—C6—N10.2 (5)N3—O1—C16—N2179.4 (4)
C9—N1—C7—C886.7 (6)C15—N2—C16—C17178.4 (4)
C6—N1—C7—C895.2 (5)C15—N2—C16—O12.0 (6)
C6—N1—C9—C14179.8 (4)O1—C16—C17—C180.9 (5)
C7—N1—C9—C141.9 (7)N2—C16—C17—C18179.5 (4)
C6—N1—C9—C101.2 (5)O1—C16—C17—C19178.9 (4)
C7—N1—C9—C10177.1 (4)N2—C16—C17—C190.7 (8)
N1—C9—C10—C11176.9 (4)O1—N3—C18—C170.1 (5)
C14—C9—C10—C112.2 (6)O1—N3—C18—C20179.9 (4)
N1—C9—C10—C11.4 (5)C16—C17—C18—N30.5 (5)
C14—C9—C10—C1179.6 (4)C19—C17—C18—N3179.3 (5)
C2—C1—C10—C114.2 (9)C16—C17—C18—C20179.5 (4)
C6—C1—C10—C11176.8 (5)C19—C17—C18—C200.7 (8)

Experimental details

Crystal data
Chemical formulaC20H19N3O
Mr317.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.0575 (9), 13.4483 (15), 14.8488 (16)
β (°) 94.049 (2)
V3)1605.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11993, 2811, 2286
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.262, 1.11
No. of reflections2811
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationAsiri, A. M., Khan, S. A. & Rasul, M. G. (2010). Molbank, M684, 3.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds