organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl­sulfanyl-2-[(2-chloro­phen­yl)diazen­yl]benzene

aDepartment of Chemistry, National Institute of Technology, Silchar 788 010, Assam, India, and bDepartment of Chemistry, Indian Institute of Technology, Guwahati 781 039, Assam, India
*Correspondence e-mail: barmanpranjit@yahoo.co.in

(Received 21 June 2010; accepted 30 June 2010; online 7 July 2010)

The title compound, C19H15ClN2S, a divalent organosulfur compound belonging to the class of ortho-mercaptoazo compounds, is non-ionic in nature. The azo group in the mol­ecule is moved away from the S atom to attain the stable trans-azo configuration. Here the S atom is not electron deficient, so no intra­molecular N⋯S inter­action exists. Due to steric reasons, the mol­ecule is non-planar: the chlorophenyl and benzyl rings are oriented at dihedral angles of 3.21 (8) and 78.18 (5)°, respectively, with respect to the thiophenyl ring. There are no hydrogen bonds and the crystal structure is stabilized by van der Waals inter­actions.

Related literature

For background to our study of the effect of substituents at the 2′- and 4′- positions of azobenzene-2-sulfenyl compounds and related structures, see: Karmakar et al. (2001[Karmakar, S., Talukdar, A. N., Barman, P. & Bhattacharjee, S. K. (2001). Indian J. Pure Appl. Phys. 39, 357-360.]); Sanjib et al. (2004[Sanjib, K., Kabita, P., Barman, P., Hazarika, D. & Bhattacharjee, S. K. (2004). Acta Cryst. E60, o179-o180.]); Kakati & Chaudhuri (1968[Kakati, K. K. & Chaudhuri, B. (1968). Acta Cryst. B24, 1645-1652.]). For the reactivity of sulfenyl compounds towards biomolecules, see: Fontana et al. (1968[Fontana, A., Veronese, F. M. & Scoffone, E. (1968). Biochemistry, 7, 3901-3905.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15ClN2S

  • Mr = 338.85

  • Monoclinic, P 21 /c

  • a = 15.493 (2) Å

  • b = 5.4218 (8) Å

  • c = 20.206 (3) Å

  • β = 96.055 (9)°

  • V = 1687.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.21 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 16728 measured reflections

  • 3139 independent reflections

  • 2140 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 1.01

  • 3139 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

To investigate the effect of substituents on the 2'- and 4'-positions of azobenzene-2-sulfenyl compounds (Karmakar et al., 2001; Sanjib et al. 2004) in the formation of thiadiazolium structures by ortho azo-sulfur interaction and to study the reactivity of sulfenyl compounds towards biomolecules (Fontana et al., 1968), the title compound (Fig. 1) is studied. The sulfenyl sulfur S1 is sp3 hybridized and nucleophilic in nature for which the azo group moves away from it to attain the stable trans-azo-configuration. Such a situation was also found in azobenzene-2-sulfenyl cyanide (Kakati & Chaudhuri, 1968). The Csp3–Ssp3 [1.8064 (19)Å] bond is a normal covalent bond. The Csp2–S [1.7655 (19)Å] bond length is in the expected range and N1N2 [1.247 (2)Å] bond length is in the expected range of an azo NN bond length so there will be no resonance donating electron delocalization from the sulfenyl sulfur S1 into the extended conjugated system of the trans-azobenzene unit [no d-resonance between (vacant d orbital) S1 and the aromatic π-cloud] and no sulfur-ortho-azo interaction. The benzyl unit is moved away from the thiophenyl unit due to steric reason. There are no hydrogen bonds and the crystal structure is stabilized by Van der Waal's interactions (Fig.2).

Related literature top

For background to our study of the effect of substituents at the 2'- and 4'- positions of azobenzene-2-sulfenyl compounds and related structures, see: Karmakar et al. (2001); Sanjib et al. (2004);Kakati & Chaudhuri (1968). For the biochemical interest of sulfenyl compounds, see: Fontana et al. (1968).

Experimental top

To a solution of 2-benzylthioaniline in glacial acetic acid an equimolar amount of 2-chloronitrosobenzene in glacial acetic acid was added and stirred for 45 minutes. During stirring temperature was maintained between 323 to 343 K. Then the solution was kept in a dark place overnight at room temperature. Orange crystals of 2'-chloro-2-thiobenzylazobenzene were obtained, filtered off, washed with dilute acetic acid and dried, which melted at 414 K.

Refinement top

Hydrogen atoms were placed in calculated positions with C–H = 0.93Å and 0.97Å for aromatic and methylene H respectively and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

To investigate the effect of substituents on the 2'- and 4'-positions of azobenzene-2-sulfenyl compounds (Karmakar et al., 2001; Sanjib et al. 2004) in the formation of thiadiazolium structures by ortho azo-sulfur interaction and to study the reactivity of sulfenyl compounds towards biomolecules (Fontana et al., 1968), the title compound (Fig. 1) is studied. The sulfenyl sulfur S1 is sp3 hybridized and nucleophilic in nature for which the azo group moves away from it to attain the stable trans-azo-configuration. Such a situation was also found in azobenzene-2-sulfenyl cyanide (Kakati & Chaudhuri, 1968). The Csp3–Ssp3 [1.8064 (19)Å] bond is a normal covalent bond. The Csp2–S [1.7655 (19)Å] bond length is in the expected range and N1N2 [1.247 (2)Å] bond length is in the expected range of an azo NN bond length so there will be no resonance donating electron delocalization from the sulfenyl sulfur S1 into the extended conjugated system of the trans-azobenzene unit [no d-resonance between (vacant d orbital) S1 and the aromatic π-cloud] and no sulfur-ortho-azo interaction. The benzyl unit is moved away from the thiophenyl unit due to steric reason. There are no hydrogen bonds and the crystal structure is stabilized by Van der Waal's interactions (Fig.2).

For background to our study of the effect of substituents at the 2'- and 4'- positions of azobenzene-2-sulfenyl compounds and related structures, see: Karmakar et al. (2001); Sanjib et al. (2004);Kakati & Chaudhuri (1968). For the biochemical interest of sulfenyl compounds, see: Fontana et al. (1968).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the b axis.
1-Benzylsulfanyl-2-[(2-chlorophenyl)diazenyl]benzene top
Crystal data top
C19H15ClN2SF(000) = 704
Mr = 338.85Dx = 1.334 Mg m3
Monoclinic, P21/cMelting point: 414 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.493 (2) ÅCell parameters from 3629 reflections
b = 5.4218 (8) Åθ = 4.0–25.5°
c = 20.206 (3) ŵ = 0.35 mm1
β = 96.055 (9)°T = 296 K
V = 1687.8 (4) Å3Needle, orange
Z = 40.21 × 0.16 × 0.14 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2140 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.5°, θmin = 2.0°
φ– and ω–scansh = 1818
16728 measured reflectionsk = 56
3139 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.3762P]
where P = (Fo2 + 2Fc2)/3
3139 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H15ClN2SV = 1687.8 (4) Å3
Mr = 338.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.493 (2) ŵ = 0.35 mm1
b = 5.4218 (8) ÅT = 296 K
c = 20.206 (3) Å0.21 × 0.16 × 0.14 mm
β = 96.055 (9)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2140 reflections with I > 2σ(I)
16728 measured reflectionsRint = 0.042
3139 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
3139 reflectionsΔρmin = 0.17 e Å3
208 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14479 (3)0.10089 (10)0.08652 (2)0.06781 (18)
Cl10.50431 (4)0.68379 (13)0.11015 (3)0.0911 (2)
N20.29240 (10)0.2094 (3)0.08968 (7)0.0599 (4)
N10.36050 (10)0.3311 (3)0.10180 (7)0.0619 (4)
C70.35709 (12)0.5064 (4)0.15401 (8)0.0567 (5)
C20.42276 (12)0.6809 (4)0.16243 (9)0.0619 (5)
C30.42403 (16)0.8556 (4)0.21239 (11)0.0794 (6)
H30.46780.97370.21740.095*
C60.29365 (14)0.5079 (4)0.19748 (10)0.0759 (6)
H60.24930.39170.19270.091*
C140.07222 (13)0.3539 (4)0.06272 (10)0.0729 (6)
H14A0.04800.33520.01670.087*
H14B0.10360.50890.06700.087*
C50.29587 (17)0.6806 (5)0.24774 (11)0.0908 (7)
H50.25340.67930.27700.109*
C40.36019 (18)0.8533 (5)0.25459 (11)0.0900 (7)
H40.36080.97070.28820.108*
C90.22512 (12)0.1349 (3)0.03137 (8)0.0555 (5)
C80.29495 (12)0.0306 (3)0.03821 (8)0.0557 (5)
C130.36052 (13)0.0163 (4)0.00329 (9)0.0700 (6)
H130.40610.12860.00150.084*
C100.22486 (13)0.3157 (4)0.01772 (9)0.0657 (5)
H100.17960.42890.02320.079*
C110.29086 (14)0.3283 (4)0.05799 (10)0.0726 (6)
H110.28970.45080.09030.087*
C120.35836 (15)0.1636 (4)0.05150 (10)0.0776 (6)
H120.40230.17340.07940.093*
C160.00046 (14)0.5197 (4)0.15911 (10)0.0756 (6)
H160.04500.63460.16630.091*
C150.00057 (13)0.3535 (4)0.10759 (9)0.0611 (5)
C200.06639 (15)0.1870 (4)0.09826 (11)0.0791 (6)
H200.06730.07380.06360.095*
C190.13194 (15)0.1838 (5)0.13896 (13)0.0887 (7)
H190.17670.06950.13170.106*
C180.13148 (16)0.3489 (5)0.19034 (12)0.0871 (7)
H180.17560.34690.21820.104*
C170.06553 (16)0.5167 (5)0.20023 (11)0.0887 (7)
H170.06500.62980.23490.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0700 (3)0.0685 (4)0.0670 (3)0.0132 (3)0.0166 (2)0.0146 (3)
Cl10.0710 (4)0.1094 (5)0.0936 (4)0.0207 (3)0.0127 (3)0.0060 (4)
N20.0640 (10)0.0614 (10)0.0542 (9)0.0060 (9)0.0061 (7)0.0025 (8)
N10.0625 (10)0.0661 (11)0.0570 (9)0.0087 (9)0.0061 (8)0.0041 (8)
C70.0628 (12)0.0573 (12)0.0491 (10)0.0007 (10)0.0015 (9)0.0007 (9)
C20.0628 (12)0.0643 (13)0.0565 (11)0.0009 (10)0.0035 (9)0.0068 (10)
C30.0925 (17)0.0642 (15)0.0764 (15)0.0095 (12)0.0156 (13)0.0024 (12)
C60.0813 (15)0.0829 (16)0.0654 (13)0.0117 (13)0.0172 (11)0.0086 (12)
C140.0833 (15)0.0647 (14)0.0733 (13)0.0175 (11)0.0208 (11)0.0102 (11)
C50.1033 (19)0.102 (2)0.0701 (15)0.0007 (16)0.0217 (13)0.0170 (14)
C40.117 (2)0.0813 (18)0.0691 (15)0.0060 (16)0.0025 (15)0.0192 (13)
C90.0639 (12)0.0526 (12)0.0497 (10)0.0006 (9)0.0048 (9)0.0017 (9)
C80.0619 (12)0.0567 (12)0.0479 (10)0.0004 (10)0.0038 (9)0.0004 (9)
C130.0678 (13)0.0787 (15)0.0651 (12)0.0100 (11)0.0147 (10)0.0071 (11)
C100.0750 (14)0.0611 (13)0.0613 (12)0.0067 (11)0.0081 (10)0.0063 (10)
C110.0916 (16)0.0682 (15)0.0598 (12)0.0007 (13)0.0162 (11)0.0110 (10)
C120.0816 (16)0.0851 (17)0.0697 (13)0.0026 (13)0.0243 (11)0.0105 (12)
C160.0816 (15)0.0670 (15)0.0794 (14)0.0016 (12)0.0139 (12)0.0072 (12)
C150.0672 (13)0.0541 (13)0.0622 (12)0.0105 (10)0.0078 (10)0.0069 (10)
C200.0867 (16)0.0689 (15)0.0822 (15)0.0033 (13)0.0122 (13)0.0096 (12)
C190.0774 (16)0.0795 (17)0.1111 (19)0.0054 (13)0.0188 (14)0.0010 (16)
C180.0842 (17)0.0862 (19)0.0961 (18)0.0160 (15)0.0348 (14)0.0174 (15)
C170.108 (2)0.0824 (18)0.0803 (15)0.0092 (16)0.0300 (14)0.0124 (13)
Geometric parameters (Å, º) top
S1—C91.7655 (19)C9—C81.401 (2)
S1—C141.8064 (19)C8—C131.386 (2)
Cl1—C21.730 (2)C13—C121.377 (3)
N2—N11.247 (2)C13—H130.9300
N2—C81.425 (2)C10—C111.374 (3)
N1—C71.425 (2)C10—H100.9300
C7—C21.387 (3)C11—C121.371 (3)
C7—C61.385 (2)C11—H110.9300
C2—C31.383 (3)C12—H120.9300
C3—C41.372 (3)C16—C151.377 (3)
C3—H30.9300C16—C171.384 (3)
C6—C51.379 (3)C16—H160.9300
C6—H60.9300C15—C201.373 (3)
C14—C151.506 (2)C20—C191.373 (3)
C14—H14A0.9700C20—H200.9300
C14—H14B0.9700C19—C181.371 (3)
C5—C41.364 (3)C19—H190.9300
C5—H50.9300C18—C171.367 (3)
C4—H40.9300C18—H180.9300
C9—C101.394 (2)C17—H170.9300
C9—S1—C14102.30 (9)C9—C8—N2115.27 (16)
N1—N2—C8114.54 (15)C12—C13—C8120.21 (19)
N2—N1—C7113.69 (15)C12—C13—H13119.9
C2—C7—C6118.60 (18)C8—C13—H13119.9
C2—C7—N1117.50 (17)C11—C10—C9120.64 (19)
C6—C7—N1123.87 (18)C11—C10—H10119.7
C3—C2—C7120.70 (19)C9—C10—H10119.7
C3—C2—Cl1118.97 (17)C12—C11—C10121.27 (19)
C7—C2—Cl1120.33 (16)C12—C11—H11119.4
C4—C3—C2119.4 (2)C10—C11—H11119.4
C4—C3—H3120.3C11—C12—C13119.37 (19)
C2—C3—H3120.3C11—C12—H12120.3
C5—C6—C7120.4 (2)C13—C12—H12120.3
C5—C6—H6119.8C15—C16—C17120.4 (2)
C7—C6—H6119.8C15—C16—H16119.8
C15—C14—S1108.44 (13)C17—C16—H16119.8
C15—C14—H14A110.0C20—C15—C16118.22 (19)
S1—C14—H14A110.0C20—C15—C14120.84 (19)
C15—C14—H14B110.0C16—C15—C14120.9 (2)
S1—C14—H14B110.0C15—C20—C19121.5 (2)
H14A—C14—H14B108.4C15—C20—H20119.3
C4—C5—C6120.1 (2)C19—C20—H20119.3
C4—C5—H5119.9C18—C19—C20120.0 (2)
C6—C5—H5119.9C18—C19—H19120.0
C5—C4—C3120.7 (2)C20—C19—H19120.0
C5—C4—H4119.7C17—C18—C19119.3 (2)
C3—C4—H4119.7C17—C18—H18120.3
C10—C9—C8117.69 (17)C19—C18—H18120.3
C10—C9—S1124.96 (15)C18—C17—C16120.5 (2)
C8—C9—S1117.34 (14)C18—C17—H17119.7
C13—C8—C9120.82 (17)C16—C17—H17119.7
C13—C8—N2123.91 (17)
C8—N2—N1—C7179.16 (14)S1—C9—C8—N20.1 (2)
N2—N1—C7—C2168.03 (16)N1—N2—C8—C1310.4 (3)
N2—N1—C7—C613.7 (3)N1—N2—C8—C9169.87 (16)
C6—C7—C2—C31.2 (3)C9—C8—C13—C120.8 (3)
N1—C7—C2—C3179.52 (16)N2—C8—C13—C12179.50 (18)
C6—C7—C2—Cl1179.09 (15)C8—C9—C10—C110.5 (3)
N1—C7—C2—Cl10.8 (2)S1—C9—C10—C11179.50 (15)
C7—C2—C3—C41.0 (3)C9—C10—C11—C120.4 (3)
Cl1—C2—C3—C4179.29 (17)C10—C11—C12—C130.6 (3)
C2—C7—C6—C50.3 (3)C8—C13—C12—C110.0 (3)
N1—C7—C6—C5178.57 (19)C17—C16—C15—C200.2 (3)
C9—S1—C14—C15178.30 (14)C17—C16—C15—C14179.67 (19)
C7—C6—C5—C40.7 (3)S1—C14—C15—C2076.9 (2)
C6—C5—C4—C30.9 (4)S1—C14—C15—C16103.02 (19)
C2—C3—C4—C50.1 (3)C16—C15—C20—C190.2 (3)
C14—S1—C9—C101.43 (19)C14—C15—C20—C19179.71 (19)
C14—S1—C9—C8177.62 (14)C15—C20—C19—C180.1 (4)
C10—C9—C8—C131.0 (3)C20—C19—C18—C170.4 (4)
S1—C9—C8—C13179.84 (15)C19—C18—C17—C160.3 (4)
C10—C9—C8—N2179.24 (16)C15—C16—C17—C180.0 (3)

Experimental details

Crystal data
Chemical formulaC19H15ClN2S
Mr338.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.493 (2), 5.4218 (8), 20.206 (3)
β (°) 96.055 (9)
V3)1687.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.21 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16728, 3139, 2140
Rint0.042
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.01
No. of reflections3139
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

TB and RS thank the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of fellowships.

References

First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFontana, A., Veronese, F. M. & Scoffone, E. (1968). Biochemistry, 7, 3901–3905.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKakati, K. K. & Chaudhuri, B. (1968). Acta Cryst. B24, 1645–1652.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKarmakar, S., Talukdar, A. N., Barman, P. & Bhattacharjee, S. K. (2001). Indian J. Pure Appl. Phys. 39, 357–360.  CAS Google Scholar
First citationSanjib, K., Kabita, P., Barman, P., Hazarika, D. & Bhattacharjee, S. K. (2004). Acta Cryst. E60, o179–o180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds