metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium quercetin-8-sulfonate trihydrate

aSchool of Pharmaceutical Science and Technology, Dalian Unversity of Technology, PO Box 90, Zhongshan Road 158, Dalian 116012, People's Republic of China
*Correspondence e-mail: yueqingli@dlut.edu.cn

(Received 30 June 2010; accepted 25 July 2010; online 31 July 2010)

The organic anion of the title compound, {[Na(C15H9O10S)(H2O)2]·H2O}n {systematic name: poly[[diaqua­[μ-2-(3,4-dihy­droxy­phen­yl)-3,5,7-trihy­droxy-4-oxo-4H-chromene-8-sulfon­ato]­sodium] monohydrate]}, has a nearly planar structure. The Na atom is six-coordinated by O atoms, two from water mol­ecules and four from the anion. The dihedral angle between the ring systems in the anion is 10.1 (1)°. Intra­molecular O—H⋯S and O—H⋯O inter­actions occur. In the crystal structure, an extensive network of classical inter­molecular O—H⋯S and O—H⋯O hydrogen bonds forms layers along the c axis.

Related literature

The title compound is of inter­est for its potential anti-inflammatory and anti­viral properties. For the synthesis and structures of analogues of the title compound, see: Kopacz et al. (1978[Kopacz, M. & Nitka, B. (1978). Inst. Chem. Anal. (Wars.), 23, 343-349.], 1983[Kopacz, M., Nitka, B., Pusz, J. & Kopacz, S. (1983). Zh. Org. Khim. 19, 1681-1684.]); Cheng (2006[Cheng, X.-L. (2006). Masters Thesis, Shanxi Normal University, Xian, China.]); Wang (2007[Wang, Y.-C. (2007). Masters Thesis, Shanxi Normal University, Xian, China.]); Liu et al. (2009[Liu, B. & Yang, B.-L. (2009). Chin. J. Struct. Chem. 28, 1112-1120.]). For the anti-HIV properties of flavonoids and their derivatives, see: Kashiwada et al. (2005[Kashiwada Y., Aoshima A., Ikeshiro Y. & Chen, Y.-Pan. (2005). Bioorg. Med. Chem. 13, 443-448.]); Lameira et al. (2006[Lameira, J., Medeiros, I. G., Reis, M. & Santos, A. S. (2006). Bioorg. Med. Chem. 14, 7105-7112.]); Reutrakul et al. (2007[Reutrakul, V., Ningnuek, N., Pohmakotr, M. & Yoosook, C. (2007). Planta Med. 73, 683-688.]); Li et al. (2010[Li, Z.-L., Zhao, W.-J., Yang, Y.-S. & Li, Y.-Q. (2010). CN Patent CN101653437.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C15H9O10S)(H2O)2]·H2O

  • Mr = 458.33

  • Triclinic, [P \overline 1]

  • a = 7.595 (3) Å

  • b = 10.157 (3) Å

  • c = 12.183 (4) Å

  • α = 76.576 (4)°

  • β = 81.031 (4)°

  • γ = 77.385 (3)°

  • V = 886.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.60 × 0.31 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 4109 measured reflections

  • 2994 independent reflections

  • 2691 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.01

  • 2994 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Na1—O2i 2.3517 (16)
Na1—O6ii 2.3784 (16)
Na1—O1ii 2.3919 (17)
Na1—O13 2.4070 (18)
Na1—O12 2.555 (2)
Na1—O9 2.4074 (15)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O13iii 0.82 1.88 2.677 (2) 164
O4—H4A⋯O2i 0.82 1.97 2.786 (2) 170
O4—H4A⋯S1i 0.82 2.97 3.7139 (18) 152
O5—H5B⋯O9 0.82 1.89 2.619 (2) 148
O6—H6A⋯O12i 0.82 1.87 2.688 (2) 177
O8—H8B⋯O3 0.82 1.85 2.596 (2) 152
O8—H8B⋯S1 0.82 2.65 3.1344 (16) 120
O13—H13A⋯O11iv 0.85 (3) 1.95 (3) 2.799 (3) 174 (3)
O13—H13B⋯O7v 0.79 (3) 2.22 (3) 2.983 (2) 161 (3)
O13—H13B⋯O9 0.79 (3) 2.64 (3) 3.017 (2) 111 (2)
O13—H13B⋯S1v 0.79 (3) 3.02 (3) 3.7333 (18) 152 (3)
O12—H12A⋯O11vi 0.83 (3) 2.07 (3) 2.850 (3) 155 (3)
O12—H12B⋯O7i 0.90 (3) 1.87 (3) 2.767 (2) 172 (3)
O12—H12B⋯S1i 0.90 (3) 2.74 (3) 3.494 (2) 142 (2)
O11—H11A⋯O5vii 0.86 (4) 2.10 (4) 2.914 (3) 158 (3)
O11—H11B⋯O3 0.87 (4) 1.99 (4) 2.832 (2) 163 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z-1; (v) -x+2, -y, -z+1; (vi) x-1, y+1, z-1; (vii) -x+2, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The flavonoids and their derivants have been investigated for a long time for their notable antiviral activity especially against HIV-1 (Kashiwada et al., 2005; Lameira et al., 2006; Reutrakul et al., 2007). A great many of substituents have been applied to modify the structures to develop their solubility in water such as sulfonic group (Cheng, 2006; Kopacz, et al., 1978; Kopacz et al., 1983; Liu et al., 2009; Wang, 2007). The title compound is an excellent antagonist of Vif which has been found to be a novel hit of HIV–1 (Li et al., 2010). The crystal structure of the title compound may be helpful to the understanding of quantitative structure–activity relationship.

Quercetin–8–sulfonate sodium is synthesized from quercetin via sulfonation (Fig.1). The asymmetric unit of the title compound contains a quercetin–8–sulfonic anion, a sodium cation and three molecules of water (Fig.2). The anion structure is nearly coplanar.

In the crystal structure, sodium cation form six contacts 2.392 (2)–2.555 (2)Å (Fig.3) with oxygen atoms: two water atoms and four with other atoms of anion.

The hydrogen bonds assist crystal packing in layers along the c axis, (Table 1, Fig. 4).

Related literature top

The title compound is of interest for its potential anti-inflammatory and antiviral properties. For the synthesis and structures of analogues of the title compound, see: Kopacz et al. (1978, 1983); Cheng (2006); Wang (2007); Liu et al. (2009). For the anti-HIV properties of flavonoids and their derivatives, see: Kashiwada et al. (2005); Lameira et al. (2006); Reutrakul et al. (2007); Li et al. (2010).

Refinement top

The hydrogen atoms based on C were refined as riding on their parent atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H; H atoms of hydroxy groups with O—H = 0.82Å and Uiso(H) = 1.5Ueq(O). For H atoms of water molecules, positions were refined freely and Uiso(H) = 1.5Ueq(O).

Structure description top

The flavonoids and their derivants have been investigated for a long time for their notable antiviral activity especially against HIV-1 (Kashiwada et al., 2005; Lameira et al., 2006; Reutrakul et al., 2007). A great many of substituents have been applied to modify the structures to develop their solubility in water such as sulfonic group (Cheng, 2006; Kopacz, et al., 1978; Kopacz et al., 1983; Liu et al., 2009; Wang, 2007). The title compound is an excellent antagonist of Vif which has been found to be a novel hit of HIV–1 (Li et al., 2010). The crystal structure of the title compound may be helpful to the understanding of quantitative structure–activity relationship.

Quercetin–8–sulfonate sodium is synthesized from quercetin via sulfonation (Fig.1). The asymmetric unit of the title compound contains a quercetin–8–sulfonic anion, a sodium cation and three molecules of water (Fig.2). The anion structure is nearly coplanar.

In the crystal structure, sodium cation form six contacts 2.392 (2)–2.555 (2)Å (Fig.3) with oxygen atoms: two water atoms and four with other atoms of anion.

The hydrogen bonds assist crystal packing in layers along the c axis, (Table 1, Fig. 4).

The title compound is of interest for its potential anti-inflammatory and antiviral properties. For the synthesis and structures of analogues of the title compound, see: Kopacz et al. (1978, 1983); Cheng (2006); Wang (2007); Liu et al. (2009). For the anti-HIV properties of flavonoids and their derivatives, see: Kashiwada et al. (2005); Lameira et al. (2006); Reutrakul et al. (2007); Li et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthetic route for title compound.
[Figure 2] Fig. 2. The part of molecular structure of title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 3] Fig. 3. The oxygen environment of sodium cation. H atoms are omitted for clarity. Symmetry codes see in table of geometric parameters.
[Figure 4] Fig. 4. A view of the packing of title compound. Dashed lines indicate O—H···O hydrogen bonds.
poly[[diaqua[µ-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4-oxo-4H- chromene-8-sulfonato]sodium] monoydrate]3,3',4',5,7-pentahydroxyflavone-8-sulfonate sodium trihydrate top
Crystal data top
[Na(C15H9O10S)(H2O)2]·H2OZ = 2
Mr = 458.33F(000) = 472
Triclinic, P1Dx = 1.717 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.595 (3) ÅCell parameters from 3467 reflections
b = 10.157 (3) Åθ = 2.3–26.2°
c = 12.183 (4) ŵ = 0.28 mm1
α = 76.576 (4)°T = 295 K
β = 81.031 (4)°Needle, pale yellow
γ = 77.385 (3)°0.60 × 0.31 × 0.24 mm
V = 886.6 (5) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2691 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
φ– and ω–scansh = 98
4109 measured reflectionsk = 1210
2994 independent reflectionsl = 149
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.3015P]
where P = (Fo2 + 2Fc2)/3
2994 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Na(C15H9O10S)(H2O)2]·H2Oγ = 77.385 (3)°
Mr = 458.33V = 886.6 (5) Å3
Triclinic, P1Z = 2
a = 7.595 (3) ÅMo Kα radiation
b = 10.157 (3) ŵ = 0.28 mm1
c = 12.183 (4) ÅT = 295 K
α = 76.576 (4)°0.60 × 0.31 × 0.24 mm
β = 81.031 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2691 reflections with I > 2σ(I)
4109 measured reflectionsRint = 0.013
2994 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.24 e Å3
2994 reflectionsΔρmin = 0.41 e Å3
289 parameters
Special details top

Experimental. The synthesis of title compound is shown in Fig. 1. The crude product was recrystallized by CH3OH/H2O = 3/1 in the yield of 60%. However, the single crystals were obtained in 0.9% NaCl aqueous solution at a concentration of 0.3 mg ml-1.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.91509 (6)0.29304 (4)0.71144 (4)0.02554 (15)
O10.4645 (2)0.37543 (14)0.91755 (12)0.0410 (4)
H1A0.40850.45450.89950.062*
O20.72475 (18)0.29014 (14)0.75277 (11)0.0316 (3)
O31.0212 (2)0.43287 (15)0.73041 (12)0.0423 (4)
O40.5196 (2)0.27317 (13)0.40069 (11)0.0347 (3)
H4A0.45170.26820.35630.052*
O50.9040 (2)0.11772 (16)0.21432 (11)0.0427 (4)
H5B0.82990.04580.20010.064*
O60.6438 (2)0.11901 (14)0.94873 (11)0.0409 (4)
H6A0.68380.03650.95260.061*
O70.99190 (19)0.20151 (15)0.75754 (12)0.0373 (3)
O81.14625 (18)0.43644 (14)0.52006 (12)0.0357 (3)
H8B1.13300.45990.58950.054*
O90.66041 (18)0.09603 (13)0.25617 (11)0.0308 (3)
O100.74224 (17)0.02632 (12)0.58747 (10)0.0260 (3)
C10.6350 (3)0.11097 (19)0.75271 (16)0.0276 (4)
H1B0.69680.02000.76450.033*
C20.9124 (3)0.1552 (2)0.32742 (16)0.0293 (4)
C30.4925 (3)0.31432 (19)0.62889 (16)0.0297 (4)
H3B0.45760.36060.55800.036*
C40.5007 (3)0.31472 (19)0.82552 (16)0.0296 (4)
C50.4522 (3)0.38082 (19)0.71898 (17)0.0317 (4)
H5A0.39120.47200.70770.038*
C60.5936 (3)0.17823 (19)0.84191 (16)0.0280 (4)
C71.0321 (2)0.31769 (18)0.48751 (16)0.0267 (4)
C81.0238 (3)0.2759 (2)0.37051 (17)0.0314 (4)
H8A1.09390.33010.32170.038*
C90.8119 (2)0.06762 (18)0.39941 (15)0.0244 (4)
C100.8272 (2)0.10881 (18)0.51493 (15)0.0239 (4)
C110.5857 (2)0.17729 (18)0.64382 (15)0.0238 (4)
C120.6164 (2)0.14599 (18)0.43889 (15)0.0250 (4)
C130.6439 (2)0.10360 (18)0.55063 (15)0.0239 (4)
C140.6942 (2)0.05993 (18)0.35794 (15)0.0241 (4)
C150.9291 (2)0.23665 (18)0.56233 (15)0.0245 (4)
Na10.49543 (10)0.22781 (8)0.10033 (6)0.0340 (2)
O130.7175 (2)0.36463 (15)0.09986 (14)0.0366 (3)
H13A0.790 (4)0.362 (3)0.039 (2)0.055*
H13B0.776 (4)0.325 (3)0.150 (2)0.055*
O120.2274 (2)0.15022 (17)0.04739 (15)0.0459 (4)
H12A0.182 (4)0.209 (3)0.006 (3)0.069*
H12B0.151 (4)0.161 (3)0.110 (3)0.069*
O110.9733 (3)0.6600 (2)0.91012 (15)0.0564 (5)
H11A0.982 (5)0.731 (4)0.882 (3)0.085*
H11B0.986 (5)0.582 (4)0.866 (3)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0235 (3)0.0283 (3)0.0212 (3)0.00011 (18)0.00574 (18)0.00029 (18)
O10.0618 (10)0.0307 (7)0.0262 (8)0.0075 (7)0.0099 (7)0.0089 (6)
O20.0257 (7)0.0430 (8)0.0247 (7)0.0058 (6)0.0031 (5)0.0045 (6)
O30.0463 (9)0.0363 (8)0.0297 (8)0.0110 (7)0.0030 (6)0.0039 (6)
O40.0476 (9)0.0261 (7)0.0292 (7)0.0043 (6)0.0207 (6)0.0031 (6)
O50.0553 (10)0.0449 (8)0.0197 (7)0.0086 (7)0.0050 (6)0.0063 (6)
O60.0618 (10)0.0324 (7)0.0219 (7)0.0103 (7)0.0124 (7)0.0051 (6)
O70.0377 (8)0.0490 (9)0.0286 (7)0.0148 (7)0.0095 (6)0.0045 (6)
O80.0338 (8)0.0335 (7)0.0316 (8)0.0091 (6)0.0045 (6)0.0042 (6)
O90.0346 (7)0.0344 (7)0.0214 (7)0.0050 (6)0.0085 (6)0.0002 (6)
O100.0303 (7)0.0240 (6)0.0201 (6)0.0031 (5)0.0057 (5)0.0027 (5)
C10.0314 (10)0.0235 (9)0.0250 (10)0.0009 (7)0.0059 (8)0.0016 (7)
C20.0290 (10)0.0354 (10)0.0215 (9)0.0047 (8)0.0025 (7)0.0035 (8)
C30.0321 (10)0.0292 (10)0.0253 (10)0.0012 (8)0.0099 (8)0.0028 (8)
C40.0311 (10)0.0292 (10)0.0280 (10)0.0023 (8)0.0045 (8)0.0073 (8)
C50.0347 (11)0.0266 (9)0.0299 (10)0.0041 (8)0.0083 (8)0.0041 (8)
C60.0317 (10)0.0293 (10)0.0205 (9)0.0021 (8)0.0070 (7)0.0008 (8)
C70.0220 (9)0.0277 (9)0.0286 (10)0.0020 (7)0.0034 (7)0.0040 (8)
C80.0304 (10)0.0341 (10)0.0270 (10)0.0008 (8)0.0010 (8)0.0088 (8)
C90.0232 (9)0.0268 (9)0.0225 (9)0.0058 (7)0.0040 (7)0.0015 (7)
C100.0211 (9)0.0268 (9)0.0230 (9)0.0041 (7)0.0021 (7)0.0046 (7)
C110.0226 (9)0.0245 (9)0.0244 (9)0.0048 (7)0.0051 (7)0.0031 (7)
C120.0241 (9)0.0244 (9)0.0258 (9)0.0048 (7)0.0074 (7)0.0005 (7)
C130.0213 (9)0.0222 (8)0.0266 (10)0.0025 (7)0.0064 (7)0.0007 (7)
C140.0219 (9)0.0285 (9)0.0219 (9)0.0092 (7)0.0044 (7)0.0004 (7)
C150.0223 (9)0.0269 (9)0.0224 (9)0.0029 (7)0.0040 (7)0.0023 (7)
Na10.0363 (4)0.0398 (4)0.0239 (4)0.0026 (3)0.0038 (3)0.0064 (3)
O130.0419 (9)0.0356 (8)0.0295 (8)0.0001 (6)0.0124 (6)0.0025 (6)
O120.0565 (10)0.0388 (8)0.0330 (9)0.0063 (7)0.0072 (8)0.0014 (7)
O110.0839 (14)0.0463 (10)0.0333 (9)0.0074 (9)0.0062 (9)0.0016 (8)
Geometric parameters (Å, º) top
S1—O71.4498 (15)C3—C111.401 (3)
S1—O21.4510 (15)C3—H3B0.9300
S1—O31.4581 (15)C4—C51.381 (3)
S1—C151.7671 (19)C4—C61.396 (3)
O1—C41.365 (2)C5—H5A0.9300
O1—Na1i2.3919 (17)C7—C81.397 (3)
O1—H1A0.8200C7—C151.402 (3)
O2—Na1ii2.3517 (16)C8—H8A0.9300
O4—C121.356 (2)C9—C101.388 (3)
O4—H4A0.8200C9—C141.437 (3)
O5—C21.349 (2)C10—C151.404 (2)
O5—H5B0.8200C11—C131.462 (3)
O6—C61.375 (2)C12—C131.364 (3)
O6—Na1i2.3784 (16)C12—C141.442 (3)
O6—H6A0.8200Na1—O2ii2.3517 (16)
O8—C71.339 (2)Na1—O6iii2.3784 (16)
O8—H8B0.8200Na1—O1iii2.3919 (17)
O9—C141.259 (2)Na1—O132.4070 (18)
O9—Na12.4074 (15)Na1—O122.555 (2)
O10—C101.353 (2)Na1—O92.4074 (15)
O10—C131.378 (2)O13—H13A0.85 (3)
C1—C61.375 (3)O13—H13B0.79 (3)
C1—C111.409 (3)O12—H12A0.83 (3)
C1—H1B0.9300O12—H12B0.90 (3)
C2—C81.371 (3)O11—H11A0.86 (4)
C2—C91.414 (3)O11—H11B0.87 (4)
C3—C51.380 (3)
O7—S1—O2112.09 (8)C10—C9—C14119.29 (16)
O7—S1—O3111.69 (9)C2—C9—C14122.76 (17)
O2—S1—O3111.94 (9)O10—C10—C9120.78 (16)
O7—S1—C15108.31 (8)O10—C10—C15116.87 (16)
O2—S1—C15107.22 (8)C9—C10—C15122.35 (17)
O3—S1—C15105.18 (8)C3—C11—C1117.98 (16)
C4—O1—Na1i117.41 (12)C3—C11—C13123.15 (16)
C4—O1—H1A109.5C1—C11—C13118.75 (16)
Na1i—O1—H1A130.6O4—C12—C13120.25 (16)
S1—O2—Na1ii141.71 (9)O4—C12—C14118.36 (15)
C12—O4—H4A109.5C13—C12—C14121.35 (16)
C2—O5—H5B109.5C12—C13—O10119.16 (16)
C6—O6—Na1i117.44 (11)C12—C13—C11129.68 (16)
C6—O6—H6A109.5O10—C13—C11111.15 (15)
Na1i—O6—H6A126.9O9—C14—C9122.20 (17)
C7—O8—H8B109.5O9—C14—C12121.20 (16)
C14—O9—Na1155.71 (12)C9—C14—C12116.61 (16)
C10—O10—C13122.23 (14)C7—C15—C10117.60 (17)
C6—C1—C11121.25 (16)C7—C15—S1122.63 (14)
C6—C1—H1B119.4C10—C15—S1119.70 (14)
C11—C1—H1B119.4O2ii—Na1—O6iii160.25 (6)
O5—C2—C8119.29 (17)O2ii—Na1—O1iii115.40 (6)
O5—C2—C9119.81 (17)O6iii—Na1—O1iii67.01 (5)
C8—C2—C9120.86 (17)O2ii—Na1—O13102.00 (6)
C5—C3—C11120.22 (17)O6iii—Na1—O1397.74 (6)
C5—C3—H3B119.9O1iii—Na1—O1381.25 (6)
C11—C3—H3B119.9O2ii—Na1—O982.95 (6)
O1—C4—C5123.83 (17)O6iii—Na1—O9101.98 (6)
O1—C4—C6116.98 (17)O1iii—Na1—O9154.60 (6)
C5—C4—C6119.19 (17)O13—Na1—O977.62 (6)
C3—C5—C4121.35 (17)O2ii—Na1—O1281.05 (6)
C3—C5—H5A119.3O6iii—Na1—O1280.12 (6)
C4—C5—H5A119.3O1iii—Na1—O1280.40 (6)
C1—C6—O6123.26 (16)O13—Na1—O12160.82 (6)
C1—C6—C4120.01 (17)O9—Na1—O12121.53 (6)
O6—C6—C4116.70 (16)Na1—O13—H13A107.5 (19)
O8—C7—C8115.11 (16)Na1—O13—H13B106 (2)
O8—C7—C15124.11 (17)H13A—O13—H13B106 (3)
C8—C7—C15120.77 (17)Na1—O12—H12A109 (2)
C2—C8—C7120.17 (17)Na1—O12—H12B98.1 (19)
C2—C8—H8A119.9H12A—O12—H12B106 (3)
C7—C8—H8A119.9H11A—O11—H11B120 (3)
C10—C9—C2117.94 (16)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O13iv0.821.882.677 (2)164
O4—H4A···O2ii0.821.972.786 (2)170
O4—H4A···S1ii0.822.973.7139 (18)152
O5—H5B···O90.821.892.619 (2)148
O6—H6A···O12ii0.821.872.688 (2)177
O8—H8B···O30.821.852.596 (2)152
O8—H8B···S10.822.653.1344 (16)120
O13—H13A···O11v0.85 (3)1.95 (3)2.799 (3)174 (3)
O13—H13B···O7vi0.79 (3)2.22 (3)2.983 (2)161 (3)
O13—H13B···O90.79 (3)2.64 (3)3.017 (2)111 (2)
O13—H13B···S1vi0.79 (3)3.02 (3)3.7333 (18)152 (3)
O12—H12A···O11vii0.83 (3)2.07 (3)2.850 (3)155 (3)
O12—H12B···O7ii0.90 (3)1.87 (3)2.767 (2)172 (3)
O12—H12B···S1ii0.90 (3)2.74 (3)3.494 (2)142 (2)
O11—H11A···O5viii0.86 (4)2.10 (4)2.914 (3)158 (3)
O11—H11B···O30.87 (4)1.99 (4)2.832 (2)163 (3)
Symmetry codes: (ii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z1; (vi) x+2, y, z+1; (vii) x1, y+1, z1; (viii) x+2, y1, z+1.

Experimental details

Crystal data
Chemical formula[Na(C15H9O10S)(H2O)2]·H2O
Mr458.33
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.595 (3), 10.157 (3), 12.183 (4)
α, β, γ (°)76.576 (4), 81.031 (4), 77.385 (3)
V3)886.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.60 × 0.31 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4109, 2994, 2691
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.01
No. of reflections2994
No. of parameters289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Na1—O2i2.3517 (16)Na1—O132.4070 (18)
Na1—O6ii2.3784 (16)Na1—O122.555 (2)
Na1—O1ii2.3919 (17)Na1—O92.4074 (15)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O13iii0.821.882.677 (2)164.3
O4—H4A···O2i0.821.972.786 (2)170.3
O4—H4A···S1i0.822.973.7139 (18)152.1
O5—H5B···O90.821.892.619 (2)147.7
O6—H6A···O12i0.821.872.688 (2)176.7
O8—H8B···O30.821.852.596 (2)151.5
O8—H8B···S10.822.653.1344 (16)119.8
O13—H13A···O11iv0.85 (3)1.95 (3)2.799 (3)174 (3)
O13—H13B···O7v0.79 (3)2.22 (3)2.983 (2)161 (3)
O13—H13B···O90.79 (3)2.64 (3)3.017 (2)111 (2)
O13—H13B···S1v0.79 (3)3.02 (3)3.7333 (18)152 (3)
O12—H12A···O11vi0.83 (3)2.07 (3)2.850 (3)155 (3)
O12—H12B···O7i0.90 (3)1.87 (3)2.767 (2)172 (3)
O12—H12B···S1i0.90 (3)2.74 (3)3.494 (2)142 (2)
O11—H11A···O5vii0.86 (4)2.10 (4)2.914 (3)158 (3)
O11—H11B···O30.87 (4)1.99 (4)2.832 (2)163 (3)
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z1; (v) x+2, y, z+1; (vi) x1, y+1, z1; (vii) x+2, y1, z+1.
 

Acknowledgements

We thank Dr Cheng He for his help during the refinement. This work was supported by the Fundamental Research Funds of the Central Universities of China.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X.–L. (2006). Masters Thesis, Shanxi Normal University, Xian, China.  Google Scholar
First citationKashiwada Y., Aoshima A., Ikeshiro Y. & Chen, Y.-Pan. (2005). Bioorg. Med. Chem. 13, 443–448.  Google Scholar
First citationKopacz, M. & Nitka, B. (1978). Inst. Chem. Anal. (Wars.), 23, 343–349.  CAS Google Scholar
First citationKopacz, M., Nitka, B., Pusz, J. & Kopacz, S. (1983). Zh. Org. Khim. 19, 1681–1684.  CAS Google Scholar
First citationLameira, J., Medeiros, I. G., Reis, M. & Santos, A. S. (2006). Bioorg. Med. Chem. 14, 7105–7112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Z.-L., Zhao, W.-J., Yang, Y.-S. & Li, Y.-Q. (2010). CN Patent CN101653437.  Google Scholar
First citationLiu, B. & Yang, B.-L. (2009). Chin. J. Struct. Chem. 28, 1112–1120.  CAS Google Scholar
First citationReutrakul, V., Ningnuek, N., Pohmakotr, M. & Yoosook, C. (2007). Planta Med. 73, 683–688.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-C. (2007). Masters Thesis, Shanxi Normal University, Xian, China.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds