metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[(S)-N-(1-phenyl­ethyl­­idene)-1-(pyridin-2-yl)ethanamine-κ2N,N′]zinc(II) di­chloro­methane solvate

aDepartment of Chemistry, Kyungpook National University, Taegu, 702-701, Republic of Korea
*Correspondence e-mail: jeongjh@knu.ac.kr

(Received 5 July 2010; accepted 23 July 2010; online 31 July 2010)

In the title compound, [ZnCl2(C15H16N2)]·CH2Cl2, the Zn(II) atom has a distorted tetra­hedral coordination by two Cl atoms and two N atoms from the organic ligand [the average Zn—N and Zn—Cl bond lengths are 2.060 (4) Å and Zn—Cl = 2.179 (16) Å, respectively]. The dihedral angle between the N—Zn—N and Cl—Zn—Cl planes is 89.9 (1)°. The phenyl ring forms a dihedral angle of 40.6 (5)° with the imine plane.

Related literature

For related structures see: Brunner & Fisch (1987[Brunner, H. & Fisch, H. (1987). J. Organomet. Chem. 335, 1-14.]); Nguyen & Jeong (2008[Nguyen, Q. T. & Jeong, J. H. (2008). Acta Cryst. E64, m457.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C15H16N2)]·CH2Cl2

  • Mr = 445.51

  • Triclinic, [P \overline 1]

  • a = 7.9381 (7) Å

  • b = 10.7187 (8) Å

  • c = 11.8426 (7) Å

  • α = 96.724 (6)°

  • β = 108.466 (6)°

  • γ = 97.968 (7)°

  • V = 932.53 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 295 K

  • 0.45 × 0.40 × 0.35 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (ABSCALC; McArdle & Daly, 1999[McArdle, P. & Daly, P. (1999). ABSCALC. National University of Ireland, Galway, Ireland.]) Tmin = 0.489, Tmax = 0.569

  • 3871 measured reflections

  • 3463 independent reflections

  • 2873 reflections with I > 2σ(I)

  • Rint = 0.009

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.197

  • S = 1.11

  • 3463 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.38 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD (McArdle, 1999[McArdle, P. (1999). XCAD. National University of Ireland, Galway, Ireland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ligand, (S)–N–(1–phenylethylidene)–1–(pyridin–2–yl)ethanamine, was obtained from reaction of (S)–1–(pyridin–2–yl)ethanamine with acetophenone in toluene solution. The similar ligand was used in Rh or Zn complex (Brunner & Fisch, 1987; Nguyen & Jeong, 2008). The geometry around the Zn atom is nearly tetrahedral with two chlorine atoms and the one pyridyl and one amine nitrogen atoms of the ligand (Fig. 1). The dihedral angle between N—Zn—N and Cl—Zn—Cl planes is 89.9 (1)°. The phenyl cycle forms dihedral angle 40.6 (5)° with imine plane. This value may be explained by steric hinderance between the Cl atoms and phenyl moiety of organic ligand.

Related literature top

For related structures see: Brunner & Fisch (1987); Nguyen & Jeong (2008).

Experimental top

Acetophenone (2.04 g, 0.017 mol) was added to a solution of (S)–1–(pyridin–2–yl)ethanamine (2.07 g, 0.017 mol) in 40 ml of toluene. The reaction mixture was heated under reflux for 2 days in a Dean–Stark equipment. The solvent was removed by evaporation to yield pale brown oil, 3.43 g (90% yield). 1H NMR (400 MHz, CDCl3) δ 8.61 (t, 2H, ArH), 8.28 (d, 2H, ArH), 7.70 (m, 2H, ArH), 7.24 (m, 2H, ArH), 7.10 (m, 1H, ArH), 5.04 (q, J = 6.56 Hz, 1H, CH), 2.42 (s, 3H, CH3), 1.44 (d, J = 6.56 Hz, 3H, CH3). A solution of the ligand (1.01 g, 4.5 mmol) in ethanol (5 ml) was added dropwise to a solution of ZnCl2 (0.61 g, 4.5 mmol) in ethanol (10 ml). The mixture was stirred overnight at room temperature. The solvent was removed to yield white solid product. Colourless crystals were obtained by slow difussion of hexane to CH2Cl2 solution (1.43 g, 80%). Anal. Cacld. For [C15H16Cl2N2Zn].CH2Cl2: C, 43.14%; H, 4.07%; N, 6.29%. Found: C, 43.04%; H, 4.12%, N, 6.19%. 1H NMR (400 MHz, CDCl3) δ 8.63 (t, 2H, ArH), 8.44 (d, 2H, ArH), 7.81 (m, 2H, ArH), 7.24 (m, 2H, ArH), 7.11 (m, 1H, ArH), 5.23 (m, 1H, CH), 2.56 (s, 3H, CH3), 2.00 (d, J = 6.42 Hz, 3H, CH3).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with 0.96Å and Uiso(H) = 1.5Ueq(C) for CH3 groups; 0.93Å for aryl H atoms, 0.97Å for mehylene H atoms and 0.98Å for methine H atom with Uiso(H) = 1.2Ueq(C). The maximum remaining electron density was 0.85e/Å3 at 0.802Å from Zn.

Structure description top

The ligand, (S)–N–(1–phenylethylidene)–1–(pyridin–2–yl)ethanamine, was obtained from reaction of (S)–1–(pyridin–2–yl)ethanamine with acetophenone in toluene solution. The similar ligand was used in Rh or Zn complex (Brunner & Fisch, 1987; Nguyen & Jeong, 2008). The geometry around the Zn atom is nearly tetrahedral with two chlorine atoms and the one pyridyl and one amine nitrogen atoms of the ligand (Fig. 1). The dihedral angle between N—Zn—N and Cl—Zn—Cl planes is 89.9 (1)°. The phenyl cycle forms dihedral angle 40.6 (5)° with imine plane. This value may be explained by steric hinderance between the Cl atoms and phenyl moiety of organic ligand.

For related structures see: Brunner & Fisch (1987); Nguyen & Jeong (2008).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius.
Dichlorido[(S)-N-(1-phenylethylidene)-1-(pyridin-2-yl) ethanamine-κ2N,N']zinc(II) dichloromehtane solvate top
Crystal data top
[ZnCl2(C15H16N2)]·CH2Cl2Z = 2
Mr = 445.51F(000) = 452
Triclinic, P1Dx = 1.587 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9381 (7) ÅCell parameters from 25 reflections
b = 10.7187 (8) Åθ = 10–12°
c = 11.8426 (7) ŵ = 1.89 mm1
α = 96.724 (6)°T = 295 K
β = 108.466 (6)°Block, colourless
γ = 97.968 (7)°0.45 × 0.40 × 0.35 mm
V = 932.53 (13) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2873 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.009
Graphite monochromatorθmax = 25.5°, θmin = 1.8°
ω/2θ–scansh = 09
Absorption correction: ψ scan
(ABSCALC; McArdle & Daly, 1999)
k = 1212
Tmin = 0.489, Tmax = 0.569l = 1413
3871 measured reflections3 standard reflections every 60 min
3463 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.124P)2 + 1.3285P]
where P = (Fo2 + 2Fc2)/3
3463 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.38 e Å3
Crystal data top
[ZnCl2(C15H16N2)]·CH2Cl2γ = 97.968 (7)°
Mr = 445.51V = 932.53 (13) Å3
Triclinic, P1Z = 2
a = 7.9381 (7) ÅMo Kα radiation
b = 10.7187 (8) ŵ = 1.89 mm1
c = 11.8426 (7) ÅT = 295 K
α = 96.724 (6)°0.45 × 0.40 × 0.35 mm
β = 108.466 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2873 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ABSCALC; McArdle & Daly, 1999)
Rint = 0.009
Tmin = 0.489, Tmax = 0.5693 standard reflections every 60 min
3871 measured reflections intensity decay: none
3463 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.11Δρmax = 0.85 e Å3
3463 reflectionsΔρmin = 1.38 e Å3
210 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.75251 (7)0.65883 (5)0.79296 (5)0.0462 (2)
Cl10.57114 (18)0.80013 (15)0.78335 (15)0.0610 (4)
Cl20.6555 (2)0.45749 (14)0.80264 (16)0.0704 (5)
N10.8371 (6)0.6589 (4)0.6459 (4)0.0460 (9)
N21.0239 (5)0.7302 (4)0.8835 (3)0.0385 (8)
C10.7332 (8)0.6417 (6)0.5294 (5)0.0572 (13)
H10.60830.62360.51000.069*
C20.8008 (9)0.6494 (6)0.4393 (5)0.0631 (15)
H20.72440.63590.35940.076*
C30.9837 (10)0.6773 (7)0.4673 (6)0.0697 (17)
H31.03360.68390.40650.084*
C41.0944 (8)0.6959 (6)0.5869 (5)0.0578 (14)
H41.21950.71510.60770.069*
C51.0162 (7)0.6852 (5)0.6742 (4)0.0428 (10)
C61.1306 (6)0.6999 (5)0.8060 (4)0.0415 (10)
H61.23450.76950.82460.050*
C71.1975 (8)0.5778 (6)0.8317 (5)0.0587 (14)
H7A1.26450.58670.91630.088*
H7B1.27440.56050.78570.088*
H7C1.09630.50850.80940.088*
C81.1009 (6)0.7966 (5)0.9897 (4)0.0410 (10)
C91.2985 (7)0.8533 (6)1.0420 (5)0.0597 (14)
H9A1.35770.82620.98680.090*
H9B1.35030.82521.11740.090*
H9C1.31410.94491.05540.090*
C100.9907 (6)0.8173 (5)1.0667 (4)0.0406 (10)
C110.8521 (7)0.7222 (5)1.0654 (5)0.0516 (12)
H110.83150.64251.01780.062*
C120.7449 (8)0.7450 (7)1.1340 (6)0.0623 (15)
H120.65190.68051.13170.075*
C130.7731 (9)0.8608 (7)1.2053 (6)0.0654 (16)
H130.69870.87531.25040.078*
C140.9100 (10)0.9546 (6)1.2103 (6)0.0665 (16)
H140.92941.03311.25950.080*
C151.0214 (8)0.9348 (6)1.1429 (5)0.0557 (13)
H151.11630.99931.14810.067*
Cl1S0.4042 (8)0.8397 (6)0.3886 (5)0.204 (2)
Cl2S0.2730 (12)1.0098 (6)0.5042 (6)0.243 (3)
C1S0.368 (2)0.9595 (16)0.4503 (14)0.168 (7)
H1S10.48770.99260.50930.201*
H1S20.35961.01190.38800.201*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0334 (3)0.0516 (4)0.0525 (4)0.0000 (2)0.0164 (3)0.0086 (3)
Cl10.0397 (7)0.0689 (9)0.0770 (9)0.0123 (6)0.0210 (6)0.0166 (7)
Cl20.0694 (10)0.0540 (8)0.0794 (10)0.0110 (7)0.0235 (8)0.0106 (7)
N10.040 (2)0.053 (2)0.043 (2)0.0033 (17)0.0138 (17)0.0084 (18)
N20.0327 (19)0.044 (2)0.0399 (19)0.0044 (15)0.0150 (16)0.0062 (16)
C10.050 (3)0.065 (3)0.048 (3)0.005 (2)0.008 (2)0.005 (2)
C20.070 (4)0.072 (4)0.040 (3)0.007 (3)0.011 (3)0.006 (3)
C30.083 (4)0.085 (4)0.048 (3)0.011 (3)0.033 (3)0.013 (3)
C40.054 (3)0.073 (4)0.050 (3)0.008 (3)0.026 (3)0.007 (3)
C50.042 (2)0.042 (2)0.044 (2)0.0045 (19)0.015 (2)0.0058 (19)
C60.033 (2)0.051 (3)0.043 (2)0.0041 (19)0.0182 (19)0.006 (2)
C70.060 (3)0.069 (4)0.054 (3)0.028 (3)0.022 (3)0.011 (3)
C80.040 (2)0.042 (2)0.041 (2)0.0069 (19)0.0132 (19)0.0090 (19)
C90.041 (3)0.074 (4)0.055 (3)0.002 (3)0.013 (2)0.004 (3)
C100.040 (2)0.046 (2)0.038 (2)0.0100 (19)0.0141 (19)0.0112 (19)
C110.051 (3)0.055 (3)0.051 (3)0.004 (2)0.020 (2)0.014 (2)
C120.055 (3)0.079 (4)0.062 (3)0.009 (3)0.029 (3)0.025 (3)
C130.074 (4)0.084 (4)0.060 (3)0.034 (3)0.040 (3)0.025 (3)
C140.087 (5)0.064 (4)0.057 (3)0.024 (3)0.033 (3)0.004 (3)
C150.062 (3)0.053 (3)0.051 (3)0.008 (3)0.022 (3)0.004 (2)
Cl1S0.228 (5)0.247 (6)0.205 (5)0.112 (5)0.120 (4)0.085 (4)
Cl2S0.366 (10)0.203 (5)0.186 (5)0.083 (6)0.120 (6)0.022 (4)
C1S0.155 (12)0.176 (14)0.126 (10)0.047 (11)0.004 (9)0.051 (10)
Geometric parameters (Å, º) top
Zn—N12.055 (4)C7—H7C0.9600
Zn—N22.065 (4)C8—C101.469 (7)
Zn—Cl22.2175 (16)C8—C91.499 (7)
Zn—Cl12.2182 (15)C9—H9A0.9600
N1—C51.333 (6)C9—H9B0.9600
N1—C11.340 (7)C9—H9C0.9600
N2—C81.282 (6)C10—C111.388 (7)
N2—C61.471 (6)C10—C151.403 (7)
C1—C21.343 (9)C11—C121.375 (8)
C1—H10.9300C11—H110.9300
C2—C31.363 (10)C12—C131.365 (9)
C2—H20.9300C12—H120.9300
C3—C41.384 (9)C13—C141.355 (10)
C3—H30.9300C13—H130.9300
C4—C51.372 (7)C14—C151.388 (8)
C4—H40.9300C14—H140.9300
C5—C61.513 (7)C15—H150.9300
C6—C71.507 (8)Cl1S—C1S1.509 (14)
C6—H60.9800Cl2S—C1S1.268 (15)
C7—H7A0.9600C1S—H1S10.9700
C7—H7B0.9600C1S—H1S20.9700
N1—Zn—N281.55 (16)C6—C7—H7C109.5
N1—Zn—Cl2107.97 (13)H7A—C7—H7C109.5
N2—Zn—Cl2116.13 (12)H7B—C7—H7C109.5
N1—Zn—Cl1107.49 (13)N2—C8—C10118.5 (4)
N2—Zn—Cl1115.59 (12)N2—C8—C9124.1 (4)
Cl2—Zn—Cl1120.09 (6)C10—C8—C9117.3 (4)
C5—N1—C1118.7 (5)C8—C9—H9A109.5
C5—N1—Zn114.0 (3)C8—C9—H9B109.5
C1—N1—Zn127.2 (4)H9A—C9—H9B109.5
C8—N2—C6120.5 (4)C8—C9—H9C109.5
C8—N2—Zn129.0 (3)H9A—C9—H9C109.5
C6—N2—Zn110.4 (3)H9B—C9—H9C109.5
N1—C1—C2123.1 (6)C11—C10—C15118.0 (5)
N1—C1—H1118.5C11—C10—C8121.2 (5)
C2—C1—H1118.5C15—C10—C8120.8 (5)
C1—C2—C3118.7 (5)C12—C11—C10120.5 (5)
C1—C2—H2120.6C12—C11—H11119.8
C3—C2—H2120.6C10—C11—H11119.8
C2—C3—C4119.5 (6)C13—C12—C11121.0 (6)
C2—C3—H3120.3C13—C12—H12119.5
C4—C3—H3120.3C11—C12—H12119.5
C5—C4—C3118.7 (6)C14—C13—C12119.8 (6)
C5—C4—H4120.6C14—C13—H13120.1
C3—C4—H4120.6C12—C13—H13120.1
N1—C5—C4121.3 (5)C13—C14—C15120.8 (6)
N1—C5—C6117.6 (4)C13—C14—H14119.6
C4—C5—C6121.1 (5)C15—C14—H14119.6
N2—C6—C7108.9 (4)C14—C15—C10119.9 (6)
N2—C6—C5110.2 (4)C14—C15—H15120.1
C7—C6—C5110.2 (4)C10—C15—H15120.1
N2—C6—H6109.2Cl2S—C1S—Cl1S147.9 (16)
C7—C6—H6109.2Cl2S—C1S—H1S199.8
C5—C6—H6109.2Cl1S—C1S—H1S199.8
C6—C7—H7A109.5Cl2S—C1S—H1S299.8
C6—C7—H7B109.5Cl1S—C1S—H1S299.8
H7A—C7—H7B109.5H1S1—C1S—H1S2104.1
N2—Zn—N1—C58.3 (3)Zn—N2—C6—C794.2 (4)
Cl2—Zn—N1—C5106.5 (3)C8—N2—C6—C5150.7 (4)
Cl1—Zn—N1—C5122.6 (3)Zn—N2—C6—C526.8 (4)
N2—Zn—N1—C1168.3 (5)N1—C5—C6—N221.5 (6)
Cl2—Zn—N1—C176.9 (5)C4—C5—C6—N2159.9 (5)
Cl1—Zn—N1—C154.0 (5)N1—C5—C6—C798.6 (5)
N1—Zn—N2—C8157.6 (4)C4—C5—C6—C779.9 (6)
Cl2—Zn—N2—C896.5 (4)C6—N2—C8—C10176.1 (4)
Cl1—Zn—N2—C852.2 (4)Zn—N2—C8—C106.9 (7)
N1—Zn—N2—C619.7 (3)C6—N2—C8—C92.8 (7)
Cl2—Zn—N2—C686.2 (3)Zn—N2—C8—C9174.2 (4)
Cl1—Zn—N2—C6125.1 (3)N2—C8—C10—C1136.8 (7)
C5—N1—C1—C20.2 (9)C9—C8—C10—C11142.2 (5)
Zn—N1—C1—C2176.7 (5)N2—C8—C10—C15142.5 (5)
N1—C1—C2—C30.8 (10)C9—C8—C10—C1538.5 (7)
C1—C2—C3—C40.6 (11)C15—C10—C11—C122.2 (8)
C2—C3—C4—C50.1 (10)C8—C10—C11—C12177.1 (5)
C1—N1—C5—C40.5 (8)C10—C11—C12—C130.5 (9)
Zn—N1—C5—C4176.4 (4)C11—C12—C13—C140.9 (9)
C1—N1—C5—C6178.0 (5)C12—C13—C14—C150.5 (10)
Zn—N1—C5—C65.0 (6)C13—C14—C15—C101.2 (9)
C3—C4—C5—N10.7 (9)C11—C10—C15—C142.5 (8)
C3—C4—C5—C6177.9 (5)C8—C10—C15—C14176.8 (5)
C8—N2—C6—C788.3 (5)

Experimental details

Crystal data
Chemical formula[ZnCl2(C15H16N2)]·CH2Cl2
Mr445.51
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.9381 (7), 10.7187 (8), 11.8426 (7)
α, β, γ (°)96.724 (6), 108.466 (6), 97.968 (7)
V3)932.53 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.45 × 0.40 × 0.35
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(ABSCALC; McArdle & Daly, 1999)
Tmin, Tmax0.489, 0.569
No. of measured, independent and
observed [I > 2σ(I)] reflections
3871, 3463, 2873
Rint0.009
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.197, 1.11
No. of reflections3463
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 1.38

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD (McArdle, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

 

Acknowledgements

This Research was supported by Kyungpook National University Research Fund, 2008.

References

First citationBrunner, H. & Fisch, H. (1987). J. Organomet. Chem. 335, 1–14.  CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (1999). XCAD. National University of Ireland, Galway, Ireland.  Google Scholar
First citationMcArdle, P. & Daly, P. (1999). ABSCALC. National University of Ireland, Galway, Ireland.  Google Scholar
First citationNguyen, Q. T. & Jeong, J. H. (2008). Acta Cryst. E64, m457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds