organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-3-(4-fluoro­phenyl­sulfon­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 6 July 2010; accepted 13 July 2010; online 17 July 2010)

In the title compound, C15H10BrFO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 76.51 (6)° with the plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak non-classical inter­molecular C—H⋯O hydrogen bonds and an aromatic ππ inter­action between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.540 (3) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the structures of related 3-(4-fluoro­phenyl­sulfon­yl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1067.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1813.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o1909.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrFO3S

  • Mr = 369.20

  • Triclinic, [P \overline 1]

  • a = 7.4519 (3) Å

  • b = 9.2313 (4) Å

  • c = 11.4570 (5) Å

  • α = 70.652 (2)°

  • β = 78.495 (2)°

  • γ = 68.371 (2)°

  • V = 688.57 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.15 mm−1

  • T = 174 K

  • 0.35 × 0.33 × 0.31 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.405, Tmax = 0.439

  • 11771 measured reflections

  • 3137 independent reflections

  • 2741 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.08

  • 3137 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O3i 0.95 2.49 3.362 (3) 152
C11—H11⋯O2ii 0.95 2.67 3.345 (3) 128
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a benzofuran moiety show diverse pharmacological properties such as antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b,c), we report the molecular structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2)Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 76.51 (6)°. The molecular packing (Fig. 2) is stabilized by a weak intermolecular non-classical C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the OSO unit, with a C15—H15···O3i (Table 1). The crystal packing (Fig. 2) is further stabilized by an aromatic ππ interaction between the benzene rings of neighbouring molecules, with a Cg···Cgii distance of 3.540 (3)Å (Cg is the centroid of the C2–C7 benzene ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c).

Experimental top

The 77% 3-chloroperoxybenzoic acid (493 mg, 2.2 mmol) was added in small portions to a stirred solution of 5-bromo-3-(4-fluorophenylsulfanyl)-2-methyl-1-benzofuran (337 mg, 1.0 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colourless solid [yield 74%, m.p. 459–460 K; Rf=0.68 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95Å for aryl and 0.98Å for methyl H atoms. The Uiso(H) = 1.2Ueq(C) for aryl H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Many compounds containing a benzofuran moiety show diverse pharmacological properties such as antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b,c), we report the molecular structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2)Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 76.51 (6)°. The molecular packing (Fig. 2) is stabilized by a weak intermolecular non-classical C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the OSO unit, with a C15—H15···O3i (Table 1). The crystal packing (Fig. 2) is further stabilized by an aromatic ππ interaction between the benzene rings of neighbouring molecules, with a Cg···Cgii distance of 3.540 (3)Å (Cg is the centroid of the C2–C7 benzene ring).

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Presentation of non-classical C—H···O and ππ interactions (dashed lines) in the crystal structure of the title compound. Cg denotes the ring centroid. Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z.
5-Bromo-3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran top
Crystal data top
C15H10BrFO3SZ = 2
Mr = 369.20F(000) = 368
Triclinic, P1Dx = 1.781 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4519 (3) ÅCell parameters from 7545 reflections
b = 9.2313 (4) Åθ = 2.5–27.5°
c = 11.4570 (5) ŵ = 3.15 mm1
α = 70.652 (2)°T = 174 K
β = 78.495 (2)°Block, colourless
γ = 68.371 (2)°0.35 × 0.33 × 0.31 mm
V = 688.57 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3137 independent reflections
Radiation source: rotating anode2741 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.040
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.9°
φ– and ω–scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.405, Tmax = 0.439l = 1414
11771 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.0824P]
where P = (Fo2 + 2Fc2)/3
3137 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C15H10BrFO3Sγ = 68.371 (2)°
Mr = 369.20V = 688.57 (5) Å3
Triclinic, P1Z = 2
a = 7.4519 (3) ÅMo Kα radiation
b = 9.2313 (4) ŵ = 3.15 mm1
c = 11.4570 (5) ÅT = 174 K
α = 70.652 (2)°0.35 × 0.33 × 0.31 mm
β = 78.495 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3137 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2741 reflections with I > 2σ(I)
Tmin = 0.405, Tmax = 0.439Rint = 0.040
11771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
3137 reflectionsΔρmin = 0.58 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.75115 (3)0.08439 (3)0.82425 (2)0.04195 (10)
S0.46680 (7)0.39556 (6)0.29542 (5)0.02422 (12)
F1.0254 (2)0.73795 (18)0.06607 (16)0.0525 (4)
O10.7799 (2)0.06606 (16)0.35232 (13)0.0283 (3)
O20.3581 (2)0.41371 (18)0.19806 (14)0.0315 (3)
O30.3671 (2)0.44837 (18)0.40280 (14)0.0331 (3)
C10.6054 (3)0.1915 (2)0.34920 (18)0.0244 (4)
C20.6740 (3)0.1097 (2)0.47105 (18)0.0229 (4)
C30.6615 (3)0.1518 (2)0.57888 (18)0.0258 (4)
H30.58970.25830.58520.031*
C40.7587 (3)0.0310 (3)0.67691 (19)0.0273 (4)
C50.8637 (3)0.1268 (3)0.6709 (2)0.0304 (5)
H50.92690.20570.74070.037*
C60.8759 (3)0.1687 (2)0.5639 (2)0.0293 (5)
H60.94680.27540.55770.035*
C70.7807 (3)0.0488 (2)0.46705 (19)0.0249 (4)
C80.6742 (3)0.0817 (2)0.28167 (19)0.0262 (4)
C90.6637 (3)0.0903 (3)0.1523 (2)0.0356 (5)
H9A0.57770.19780.11090.053*
H9B0.61280.00670.15160.053*
H9C0.79360.07220.10830.053*
C100.6374 (3)0.4971 (2)0.22804 (19)0.0240 (4)
C110.6702 (3)0.5460 (3)0.0994 (2)0.0305 (5)
H110.60340.52260.04910.037*
C120.8000 (3)0.6283 (3)0.0455 (2)0.0373 (5)
H120.82270.66420.04230.045*
C130.8962 (3)0.6577 (3)0.1208 (2)0.0354 (5)
C140.8684 (3)0.6105 (3)0.2478 (2)0.0343 (5)
H140.93870.63240.29690.041*
C150.7348 (3)0.5297 (2)0.3030 (2)0.0283 (4)
H150.71030.49710.39080.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04901 (16)0.04935 (17)0.02543 (14)0.00911 (12)0.01044 (10)0.01172 (11)
S0.0240 (2)0.0251 (3)0.0201 (2)0.00436 (19)0.00352 (19)0.0053 (2)
F0.0530 (9)0.0482 (9)0.0613 (10)0.0315 (7)0.0082 (7)0.0033 (8)
O10.0304 (7)0.0261 (7)0.0282 (8)0.0070 (6)0.0013 (6)0.0107 (6)
O20.0301 (7)0.0349 (8)0.0286 (8)0.0102 (6)0.0104 (6)0.0038 (7)
O30.0335 (8)0.0316 (8)0.0249 (8)0.0015 (6)0.0021 (6)0.0091 (7)
C10.0239 (9)0.0257 (10)0.0216 (10)0.0067 (8)0.0014 (8)0.0060 (8)
C20.0202 (8)0.0238 (10)0.0231 (10)0.0077 (7)0.0004 (7)0.0050 (8)
C30.0264 (9)0.0249 (10)0.0232 (10)0.0062 (8)0.0019 (8)0.0058 (8)
C40.0239 (9)0.0341 (11)0.0226 (10)0.0098 (8)0.0026 (8)0.0060 (9)
C50.0269 (10)0.0305 (11)0.0276 (11)0.0086 (8)0.0053 (8)0.0006 (9)
C60.0242 (9)0.0231 (10)0.0344 (12)0.0048 (8)0.0012 (9)0.0044 (9)
C70.0240 (9)0.0260 (10)0.0256 (10)0.0102 (8)0.0003 (8)0.0076 (8)
C80.0254 (9)0.0277 (10)0.0241 (10)0.0078 (8)0.0022 (8)0.0064 (8)
C90.0418 (12)0.0394 (13)0.0278 (12)0.0100 (10)0.0040 (10)0.0154 (10)
C100.0256 (9)0.0202 (9)0.0245 (10)0.0037 (7)0.0048 (8)0.0069 (8)
C110.0368 (11)0.0335 (11)0.0242 (10)0.0135 (9)0.0076 (9)0.0070 (9)
C120.0432 (13)0.0379 (13)0.0295 (12)0.0179 (10)0.0021 (10)0.0036 (10)
C130.0363 (11)0.0255 (11)0.0456 (14)0.0126 (9)0.0061 (10)0.0072 (10)
C140.0358 (11)0.0271 (11)0.0459 (14)0.0074 (9)0.0137 (10)0.0153 (10)
C150.0323 (10)0.0248 (10)0.0253 (10)0.0005 (8)0.0084 (8)0.0105 (9)
Geometric parameters (Å, º) top
Br—C41.894 (2)C6—C71.371 (3)
S—O21.4369 (15)C6—H60.9500
S—O31.4385 (14)C8—C91.474 (3)
S—C11.745 (2)C9—H9A0.9800
S—C101.760 (2)C9—H9B0.9800
F—C131.359 (3)C9—H9C0.9800
O1—C81.366 (2)C10—C111.390 (3)
O1—C71.377 (2)C10—C151.391 (3)
C1—C81.367 (3)C11—C121.374 (3)
C1—C21.443 (3)C11—H110.9500
C2—C31.390 (3)C12—C131.370 (3)
C2—C71.396 (3)C12—H120.9500
C3—C41.389 (3)C13—C141.370 (3)
C3—H30.9500C14—C151.390 (3)
C4—C51.394 (3)C14—H140.9500
C5—C61.380 (3)C15—H150.9500
C5—H50.9500
O2—S—O3119.74 (9)O1—C8—C1110.28 (18)
O2—S—C1108.91 (9)O1—C8—C9115.36 (17)
O3—S—C1106.96 (9)C1—C8—C9134.3 (2)
O2—S—C10107.49 (9)C8—C9—H9A109.5
O3—S—C10107.99 (10)C8—C9—H9B109.5
C1—S—C10104.78 (9)H9A—C9—H9B109.5
C8—O1—C7107.04 (14)C8—C9—H9C109.5
C8—C1—C2107.63 (17)H9A—C9—H9C109.5
C8—C1—S125.95 (17)H9B—C9—H9C109.5
C2—C1—S126.38 (15)C11—C10—C15120.92 (19)
C3—C2—C7119.08 (18)C11—C10—S118.93 (16)
C3—C2—C1136.46 (18)C15—C10—S120.14 (16)
C7—C2—C1104.44 (17)C12—C11—C10119.6 (2)
C4—C3—C2116.97 (18)C12—C11—H11120.2
C4—C3—H3121.5C10—C11—H11120.2
C2—C3—H3121.5C13—C12—C11118.7 (2)
C3—C4—C5122.9 (2)C13—C12—H12120.7
C3—C4—Br118.43 (15)C11—C12—H12120.7
C5—C4—Br118.66 (16)F—C13—C14118.7 (2)
C6—C5—C4120.1 (2)F—C13—C12118.0 (2)
C6—C5—H5119.9C14—C13—C12123.4 (2)
C4—C5—H5119.9C13—C14—C15118.3 (2)
C7—C6—C5116.77 (18)C13—C14—H14120.9
C7—C6—H6121.6C15—C14—H14120.9
C5—C6—H6121.6C14—C15—C10119.2 (2)
C6—C7—O1125.27 (18)C14—C15—H15120.4
C6—C7—C2124.12 (19)C10—C15—H15120.4
O1—C7—C2110.59 (17)
O2—S—C1—C828.0 (2)C1—C2—C7—O10.0 (2)
O3—S—C1—C8158.69 (18)C7—O1—C8—C11.0 (2)
C10—S—C1—C886.8 (2)C7—O1—C8—C9177.27 (18)
O2—S—C1—C2154.43 (17)C2—C1—C8—O10.9 (2)
O3—S—C1—C223.7 (2)S—C1—C8—O1178.94 (14)
C10—S—C1—C290.80 (19)C2—C1—C8—C9176.8 (2)
C8—C1—C2—C3177.7 (2)S—C1—C8—C91.2 (4)
S—C1—C2—C30.3 (3)O2—S—C10—C1112.64 (18)
C8—C1—C2—C70.6 (2)O3—S—C10—C11143.12 (15)
S—C1—C2—C7178.53 (15)C1—S—C10—C11103.12 (17)
C7—C2—C3—C40.3 (3)O2—S—C10—C15166.35 (15)
C1—C2—C3—C4177.8 (2)O3—S—C10—C1535.87 (18)
C2—C3—C4—C50.6 (3)C1—S—C10—C1577.89 (17)
C2—C3—C4—Br178.41 (14)C15—C10—C11—C120.3 (3)
C3—C4—C5—C60.6 (3)S—C10—C11—C12178.67 (17)
Br—C4—C5—C6178.47 (15)C10—C11—C12—C131.0 (3)
C4—C5—C6—C70.1 (3)C11—C12—C13—F179.4 (2)
C5—C6—C7—O1178.37 (18)C11—C12—C13—C140.6 (4)
C5—C6—C7—C20.2 (3)F—C13—C14—C15179.46 (19)
C8—O1—C7—C6178.15 (19)C12—C13—C14—C150.5 (3)
C8—O1—C7—C20.6 (2)C13—C14—C15—C101.2 (3)
C3—C2—C7—C60.1 (3)C11—C10—C15—C140.8 (3)
C1—C2—C7—C6178.73 (19)S—C10—C15—C14179.79 (15)
C3—C2—C7—O1178.63 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.493.362 (3)152
C11—H11···O2ii0.952.673.345 (3)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H10BrFO3S
Mr369.20
Crystal system, space groupTriclinic, P1
Temperature (K)174
a, b, c (Å)7.4519 (3), 9.2313 (4), 11.4570 (5)
α, β, γ (°)70.652 (2), 78.495 (2), 68.371 (2)
V3)688.57 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.15
Crystal size (mm)0.35 × 0.33 × 0.31
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.405, 0.439
No. of measured, independent and
observed [I > 2σ(I)] reflections
11771, 3137, 2741
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.08
No. of reflections3137
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.58

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.493.362 (3)152.1
C11—H11···O2ii0.952.673.345 (3)128.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o1909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds