organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 1-(4-methyl­phen­yl)-3-phenyl-5-oxopyrrolidine-2,2-di­carboxyl­ate

aDepartment of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India, and bDepartamento de Química Física e Enxeñería Química I, Facultade de Ciencias, Universidade da Coruña, Rúa Alejandro de la Sota 1, E-15008 A Coruña, Spain
*Correspondence e-mail: arturo@udc.es

(Received 1 November 2009; accepted 16 July 2010; online 24 July 2010)

In the title compound, C23H25NO5, the lactam ring adopts an envelope conformation and both eth­oxy­carbonyl side chains show an s-cis conformation: one is nearly planar, the dihedral angle between CO2 and OCH2CH3 groups being 7.95 (14)° and the other is almost orthogonal, the C—O—C—C torsion angle being 85.33 (9)°. Dimers related by inversion symmetry are stabilized by C—H⋯O hydrogen bonds. The crystal structure is consolidated by weak intermolecular C—H⋯O inter­actions. Weak intra­molecular inter­actions of the same kind also occur.

Related literature

The title compound may show anti­bacterial activity as has been found in other γ-lactam derivatives. For related structures see: Nigam et al. (1989[Nigam, G. D., Mattern, G. & Frohlich, R. (1989). Z. Kristallogr. 189, 293.]); Ray et al. (1994[Ray, J. K., Sami, I., Kar, G. K., Roy, B. C. & Brahma, N. K. (1994). Bioorg. Med. Chem. 2, 1417-1421.], 1998[Ray, J. K., Chakraborty, A., Adhikari, S. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 368-370.], 2004[Ray, J. K., Haldar, P., Canle L., M., Santaballa, J. A. & Mahía, J. (2004). Acta Cryst. C60, o163-o165.], 2010[Ray, J. K., Haldar, P., Canle L., M., Fernández P., M. I. & Santaballa, J. A. (2010). Acta Cryst. E66, o2103.]); Kandasamy et al. (1995[Kandasamy, S., Fun, H.-K., Ray, J. K., Roy, B. C. & Nigam, G. D. (1995). Acta Cryst. C51, 1942-1944.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]). For hydrogen bonding, see: Desiraju (2005[Desiraju, G. M. (2005). Chem. Commun. pp. 2995-3001.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25NO5

  • Mr = 395.44

  • Triclinic, [P \overline 1]

  • a = 9.4905 (2) Å

  • b = 10.6167 (2) Å

  • c = 10.8198 (2) Å

  • α = 93.014 (1)°

  • β = 95.167 (1)°

  • γ = 110.537 (1)°

  • V = 1012.60 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.42 × 0.30 × 0.12 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.996

  • 14991 measured reflections

  • 3672 independent reflections

  • 3331 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.091

  • S = 1.87

  • 3672 reflections

  • 362 parameters

  • All H-atom parameters refined

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.985 (14) 2.529 (14) 3.5096 (14) 173.4 (10)
C3—H3⋯O4 0.984 (13) 2.369 (13) 2.8814 (14) 111.7 (9)
C6—H6⋯O2 0.955 (15) 2.573 (14) 3.3143 (14) 134.7 (11)
C13—H13⋯O2i 0.975 (14) 2.453 (14) 3.4128 (14) 168.3 (12)
C15—H15⋯O1ii 0.987 (15) 2.462 (15) 3.2184 (15) 133.2 (10)
C22—H22A⋯O1iii 0.963 (13) 2.513 (14) 3.2100 (15) 129.2 (9)
C22—H22B⋯O4iv 0.983 (13) 2.579 (13) 3.2426 (14) 124.9 (10)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y-1, z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In addition to the γ-lactam unit (N1/C1—C4), the title compound contains two phenyl rings (C5—C10) and (C12—C17), and two ethoxycarbonyl side chains, with bond distances and angles within typical values. The asymmetric unit of the title compound with our numbering scheme is in Figure 1. The γ-lactam unit (N1/C1—C4) adopts an envelope conformation. Atom C3 deviates 0.4804 (11)Å from the mean plane passing through the remaining atoms in the ring (r.m.s. 0.026 Å). In the envelope the atom C3 is the flap, with puckering parameters q2 = 0.3030 (12)Å and φ2 = 291.9 (2)° (Cremer & Pople, 1975), and a pseudo-rotation angle P = 90.0 (1)°, and a maximum torsion angle τm = 30.6 (1)° (Rao et al., 1981) when the bond reference is N1—C1. The planar portion of the γ-lactam unit (N1—C1—C2—C4) forms dihedral angles of 69.53 (7)° and 67.61 (7)° with rings (C5—C10) and (C12—C17) respectively, and the dihedral angle between them is 56.66 (6)°. The ethoxycarbonyl side chain involving O2—C18—O3—C19—C20 adopts a s-cis conformation, with atoms of the group being nearly co-planar, the dihedral angle between CO2 and OCH2CH3 moieties being 7.95 (14)°; the other ethoxycarbonyl chain (O4—C21—O5—C22—C23) is also s-cis, the ethyl and the carboxylate moieties in a gauche relationship, the torsion angle of C21—O5—C22—C23 being 85.33 (9)°. The geometry of the title compound is similar to that of pirrolidinones (Nigam et al. 1989), (Ray et al., 2004), (Ray et al., 2010), (Kandasamy et al., 1995). The crystal structure contains van der Waals and C—H···O weak interactions, the latter are listed in Table 1. Carbonyl O atoms O1, O2 and O4 interact with two H atoms; such intermolecular interactions could be classified as supportive (Desiraju, 2005). Inversion dimers are formed involving oxygen atoms O2 and O4; in the first case, the same pair of molecules are linked, each oxygen O2 of one molecule interacting with H atoms H2a and H13 of the other (symmetry code: -x, 1 - y, 2 - z). When oxygen O4 is considered, three molecules participate; there is an inversion dimer due to the intermolecular interactions between oxygen O4 and hydrogen H2b (symmetry code: -x, 1 - y, 1 - z), and the same applies for O4 and H22b (symmetry code: 1 - x, 1 - y, 1 - z). In addition to those dimers, the interaction of oxygen O1 with H atoms H15 (symmetry code: x, 1 + y, z) and H22a (symmetry code: -1 + x, y, z) results in sheets propagating in the ab plane. The angle between the two C—H..O hydrogen bonds bifurcated at O1 (C15—H15—O1 and C22—H22a—O1) is almost a right angle (86.7°).

Related literature top

The title compound may show antibacterial activity as has been found in other γ-lactam derivatives. For related structures see: Nigam et al. (1989); Ray et al. (1994, 1998, 2004, 2010); Kandasamy et al. (1995). For conformational analysis, see: Cremer & Pople (1975); Rao et al. (1981). For hydrogen bonding, see: Desiraju (2005).

Experimental top

The title compound was synthesized via an intermolecular Michael addition reaction, followed by an intramolecular amidification reaction, between diethyl 4-methylanilinomalonate (synthesized by the condensation reaction between 4-methylaniline and diethyl bromomalonate) in the presence of triethylamine, using dry benzene as solvent. Single crystals were grown by slow evaporation at room temperature of a solution of the resulting compound in 2-propanol. Yield 79%. Colourless solid [m.p. 401–402 K (ethyl acetate-petroleum ether)]; νmax(liquid film)/cm-1 1727.75, 1638.76; δH (200 MHz; CDCl3; Me4Si) 0.79 (3H, t, J 7.04, OCH2CH3), 0.94 (3H, t, J 7.24, OCH2CH3), 2.34 (3H, s, ArCH3), 2.98–3.05 (2H, dd, J 5.2 and J 9.15, NCOCH2), 3.47–3.56 (1H, m, OCH2CH3), 3.81–4.16 (3H, m, OCH2CH3), 4.6 (1H, t, J 9.44, C(3)HPh), 7.19–7.25 (4H, m, ArH), 7.3–7.37 (5H, m, ArH). δC (100 MHz; CDCl3; Me4Si) 13.36, 13.47 (2× OCH2CH3), 21.18 (ArCH3), 35.12 (C(4)H2), 45.21 (C(3)HPh), 61.80, 62.28 (2×OCH2CH3), 79.34 (C(2)), 128.12 (CP), 128.45(2Cb), 128.49 (2Cn), 128.54 (2Co), 129.62 (2Cc), 134.17 (Cd), 136.65 (Ca), 138.29 (Cm), 167.06, 167.31 (2× COOCH2CH3), 174.90 (NCO).

Refinement top

Hydrogen atoms were found in subsequent difference Fourier maps and included in observed positions and refined as free isotropic atoms.

ALERTs all level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low. 0.98 RESPONSE: REason unknown. Optimized strategy by the software in order to get high completeness to resolution=0.75 A and enough redundancy and cut off in the refinement at 2theta=51, optimizing the the ratio parameters/data.

PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 20 A ng. RESPONSE: It is not a mistake.

PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 100 Deg. RESPONSE: It is not a mistake.

PLAT793_ALERT_4_G The Model has Chirality at C3 (Verify) ···. R RESPONSE: The compound is in a racemic mixture.

Structure description top

In addition to the γ-lactam unit (N1/C1—C4), the title compound contains two phenyl rings (C5—C10) and (C12—C17), and two ethoxycarbonyl side chains, with bond distances and angles within typical values. The asymmetric unit of the title compound with our numbering scheme is in Figure 1. The γ-lactam unit (N1/C1—C4) adopts an envelope conformation. Atom C3 deviates 0.4804 (11)Å from the mean plane passing through the remaining atoms in the ring (r.m.s. 0.026 Å). In the envelope the atom C3 is the flap, with puckering parameters q2 = 0.3030 (12)Å and φ2 = 291.9 (2)° (Cremer & Pople, 1975), and a pseudo-rotation angle P = 90.0 (1)°, and a maximum torsion angle τm = 30.6 (1)° (Rao et al., 1981) when the bond reference is N1—C1. The planar portion of the γ-lactam unit (N1—C1—C2—C4) forms dihedral angles of 69.53 (7)° and 67.61 (7)° with rings (C5—C10) and (C12—C17) respectively, and the dihedral angle between them is 56.66 (6)°. The ethoxycarbonyl side chain involving O2—C18—O3—C19—C20 adopts a s-cis conformation, with atoms of the group being nearly co-planar, the dihedral angle between CO2 and OCH2CH3 moieties being 7.95 (14)°; the other ethoxycarbonyl chain (O4—C21—O5—C22—C23) is also s-cis, the ethyl and the carboxylate moieties in a gauche relationship, the torsion angle of C21—O5—C22—C23 being 85.33 (9)°. The geometry of the title compound is similar to that of pirrolidinones (Nigam et al. 1989), (Ray et al., 2004), (Ray et al., 2010), (Kandasamy et al., 1995). The crystal structure contains van der Waals and C—H···O weak interactions, the latter are listed in Table 1. Carbonyl O atoms O1, O2 and O4 interact with two H atoms; such intermolecular interactions could be classified as supportive (Desiraju, 2005). Inversion dimers are formed involving oxygen atoms O2 and O4; in the first case, the same pair of molecules are linked, each oxygen O2 of one molecule interacting with H atoms H2a and H13 of the other (symmetry code: -x, 1 - y, 2 - z). When oxygen O4 is considered, three molecules participate; there is an inversion dimer due to the intermolecular interactions between oxygen O4 and hydrogen H2b (symmetry code: -x, 1 - y, 1 - z), and the same applies for O4 and H22b (symmetry code: 1 - x, 1 - y, 1 - z). In addition to those dimers, the interaction of oxygen O1 with H atoms H15 (symmetry code: x, 1 + y, z) and H22a (symmetry code: -1 + x, y, z) results in sheets propagating in the ab plane. The angle between the two C—H..O hydrogen bonds bifurcated at O1 (C15—H15—O1 and C22—H22a—O1) is almost a right angle (86.7°).

The title compound may show antibacterial activity as has been found in other γ-lactam derivatives. For related structures see: Nigam et al. (1989); Ray et al. (1994, 1998, 2004, 2010); Kandasamy et al. (1995). For conformational analysis, see: Cremer & Pople (1975); Rao et al. (1981). For hydrogen bonding, see: Desiraju (2005).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLEASE SUPPLY.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. H atoms are not shown for clarity.
Diethyl 1-(4-methylphenyl)-3-phenyl-5-oxopyrrolidine-2,2-dicarboxylate top
Crystal data top
C23H25NO5Z = 2
Mr = 395.44F(000) = 420
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Melting point: 401 K
a = 9.4905 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6167 (2) ÅCell parameters from 9079 reflections
c = 10.8198 (2) Åθ = 2.5–28.2°
α = 93.014 (1)°µ = 0.09 mm1
β = 95.167 (1)°T = 100 K
γ = 110.537 (1)°Block, colourless
V = 1012.60 (3) Å30.42 × 0.30 × 0.12 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3672 independent reflections
Radiation source: fine-focus sealed tube3331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.964, Tmax = 0.996k = 1212
14991 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091All H-atom parameters refined
S = 1.87 w = 1/[σ2(Fo2) + (0.0352P)2]
where P = (Fo2 + 2Fc2)/3
3672 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C23H25NO5γ = 110.537 (1)°
Mr = 395.44V = 1012.60 (3) Å3
Triclinic, P1Z = 2
a = 9.4905 (2) ÅMo Kα radiation
b = 10.6167 (2) ŵ = 0.09 mm1
c = 10.8198 (2) ÅT = 100 K
α = 93.014 (1)°0.42 × 0.30 × 0.12 mm
β = 95.167 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3672 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3331 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.996Rint = 0.020
14991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.091All H-atom parameters refined
S = 1.87Δρmax = 0.22 e Å3
3672 reflectionsΔρmin = 0.22 e Å3
362 parameters
Special details top

Experimental. Data was collected using a X8 APEX II BRUKER-Nonius diffractometer equipped with an KRYOFLEX low-temperature apparatus operating at 100 K. A suitable crystal was chosen and mounted on a glass fiber using grease. Data were measured using omega scans of 0.5° per frame for 10 s, such that a total of 2870 frames were collected in a optimized strategy and with a final resolution of 0.75 Å. Data integration and reduction was performed using the APEX2 (Bruker, 2009) software suite. Absorption corrections were applied using SADABS (Bruker, 2009). The structures are solved by direct methods using the SHELX97 program and refined by least squares on F2 SHELXL97, incorporated in the Apex2 software suite.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All non-hydrogen atoms were refined anisotropically. Hydrogen were found in subsequent difference Fourier maps and included as isotropic atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06859 (8)0.71231 (8)0.72064 (8)0.0250 (2)
O20.19397 (9)0.56920 (8)0.97081 (7)0.0205 (2)
O30.28043 (8)0.41475 (7)0.88942 (6)0.01674 (18)
O40.27852 (9)0.49468 (9)0.55611 (7)0.0247 (2)
O50.43697 (8)0.59245 (8)0.72998 (6)0.01664 (18)
N10.13851 (9)0.64837 (9)0.73404 (8)0.0144 (2)
C10.01411 (11)0.62475 (11)0.72555 (9)0.0162 (2)
C20.09624 (12)0.47497 (11)0.72503 (11)0.0169 (2)
H2A0.1303 (14)0.4554 (13)0.8076 (13)0.026 (3)*
H2B0.1846 (14)0.4437 (13)0.6609 (12)0.022 (3)*
C30.02044 (11)0.41224 (11)0.69452 (10)0.0150 (2)
H30.0252 (13)0.4114 (12)0.6039 (12)0.017 (3)*
C40.17508 (11)0.52637 (10)0.74648 (9)0.0140 (2)
C50.24744 (11)0.78151 (11)0.73057 (9)0.0146 (2)
C60.34323 (13)0.85116 (12)0.83513 (10)0.0215 (3)
H60.3365 (15)0.8085 (14)0.9110 (14)0.035 (4)*
C70.44489 (13)0.98064 (12)0.82749 (11)0.0244 (3)
H70.5146 (15)1.0322 (14)0.8986 (13)0.031 (3)*
C80.45132 (12)1.04361 (11)0.71799 (10)0.0204 (3)
C90.35414 (12)0.97144 (12)0.61366 (10)0.0218 (3)
H90.3578 (15)1.0138 (14)0.5335 (13)0.033 (4)*
C100.25387 (12)0.84142 (11)0.61952 (10)0.0196 (3)
H100.1856 (16)0.7897 (14)0.5467 (13)0.030 (3)*
C110.55881 (16)1.18611 (13)0.71308 (13)0.0290 (3)
H11A0.6210 (17)1.2226 (15)0.7902 (14)0.037 (4)*
H11B0.5053 (18)1.2474 (17)0.6996 (15)0.048 (4)*
H11C0.6186 (19)1.1952 (16)0.6448 (15)0.048 (4)*
C120.00523 (11)0.27271 (11)0.73582 (10)0.0163 (2)
C130.06002 (12)0.23452 (11)0.84876 (11)0.0197 (2)
H130.0828 (14)0.2983 (13)0.9043 (12)0.025 (3)*
C140.08302 (13)0.10562 (12)0.88368 (12)0.0247 (3)
H140.1211 (16)0.0818 (14)0.9631 (13)0.033 (4)*
C150.05170 (14)0.01258 (12)0.80671 (12)0.0283 (3)
H150.0677 (15)0.0789 (15)0.8318 (12)0.033 (4)*
C160.00369 (14)0.04957 (13)0.69484 (12)0.0277 (3)
H160.0251 (16)0.0136 (15)0.6414 (13)0.035 (4)*
C170.02681 (13)0.17826 (12)0.65939 (11)0.0216 (3)
H170.0627 (15)0.2023 (13)0.5821 (13)0.029 (3)*
C180.21958 (11)0.50969 (10)0.88294 (9)0.0140 (2)
C190.30418 (13)0.37111 (12)1.01290 (10)0.0198 (3)
H19A0.2082 (14)0.3496 (12)1.0498 (11)0.019 (3)*
H19B0.3819 (13)0.4486 (13)1.0648 (11)0.017 (3)*
C200.35183 (15)0.25173 (13)0.99354 (12)0.0266 (3)
H20A0.2751 (19)0.1811 (17)0.9407 (15)0.045 (4)*
H20B0.3660 (15)0.2159 (14)1.0749 (13)0.034 (4)*
H20C0.4514 (17)0.2762 (14)0.9584 (13)0.037 (4)*
C210.30183 (11)0.53278 (11)0.66516 (9)0.0148 (2)
C220.56966 (12)0.61488 (13)0.66233 (10)0.0194 (3)
H22A0.6495 (14)0.6216 (12)0.7267 (11)0.017 (3)*
H22B0.5482 (13)0.5336 (13)0.6052 (11)0.018 (3)*
C230.60496 (15)0.74321 (15)0.60006 (13)0.0299 (3)
H23A0.6205 (15)0.8196 (15)0.6628 (13)0.030 (4)*
H23B0.6949 (17)0.7600 (15)0.5572 (13)0.038 (4)*
H23C0.5222 (17)0.7335 (15)0.5358 (14)0.042 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0162 (4)0.0157 (4)0.0452 (5)0.0083 (3)0.0031 (3)0.0041 (4)
O20.0276 (4)0.0211 (4)0.0159 (4)0.0115 (3)0.0066 (3)0.0013 (3)
O30.0205 (4)0.0187 (4)0.0145 (4)0.0108 (3)0.0027 (3)0.0044 (3)
O40.0195 (4)0.0374 (5)0.0148 (4)0.0078 (4)0.0034 (3)0.0028 (3)
O50.0119 (4)0.0237 (4)0.0151 (4)0.0070 (3)0.0034 (3)0.0015 (3)
N10.0122 (4)0.0123 (5)0.0191 (5)0.0048 (4)0.0016 (3)0.0026 (4)
C10.0141 (5)0.0177 (6)0.0177 (5)0.0067 (4)0.0021 (4)0.0019 (4)
C20.0129 (5)0.0153 (6)0.0224 (6)0.0048 (4)0.0014 (4)0.0027 (4)
C30.0144 (5)0.0148 (5)0.0150 (5)0.0047 (4)0.0013 (4)0.0007 (4)
C40.0142 (5)0.0139 (5)0.0150 (5)0.0063 (4)0.0025 (4)0.0008 (4)
C50.0122 (5)0.0130 (5)0.0200 (5)0.0057 (4)0.0033 (4)0.0021 (4)
C60.0264 (6)0.0183 (6)0.0170 (6)0.0048 (5)0.0007 (5)0.0038 (5)
C70.0267 (6)0.0198 (6)0.0200 (6)0.0017 (5)0.0030 (5)0.0003 (5)
C80.0178 (6)0.0171 (6)0.0253 (6)0.0045 (5)0.0037 (4)0.0037 (5)
C90.0216 (6)0.0214 (6)0.0211 (6)0.0052 (5)0.0022 (5)0.0072 (5)
C100.0177 (6)0.0191 (6)0.0189 (6)0.0036 (5)0.0017 (4)0.0022 (5)
C110.0287 (7)0.0215 (7)0.0289 (7)0.0006 (6)0.0007 (6)0.0051 (5)
C120.0122 (5)0.0143 (6)0.0210 (5)0.0036 (4)0.0006 (4)0.0002 (4)
C130.0186 (6)0.0172 (6)0.0241 (6)0.0070 (5)0.0035 (4)0.0020 (5)
C140.0234 (6)0.0208 (6)0.0300 (7)0.0070 (5)0.0043 (5)0.0079 (5)
C150.0283 (7)0.0149 (6)0.0410 (7)0.0080 (5)0.0018 (5)0.0044 (5)
C160.0297 (7)0.0191 (6)0.0353 (7)0.0125 (5)0.0013 (5)0.0066 (5)
C170.0206 (6)0.0216 (6)0.0228 (6)0.0088 (5)0.0011 (5)0.0024 (5)
C180.0112 (5)0.0135 (5)0.0169 (5)0.0030 (4)0.0038 (4)0.0026 (4)
C190.0224 (6)0.0224 (6)0.0147 (5)0.0077 (5)0.0005 (5)0.0058 (5)
C200.0312 (7)0.0267 (7)0.0259 (7)0.0152 (6)0.0003 (5)0.0081 (5)
C210.0156 (5)0.0148 (5)0.0156 (5)0.0070 (4)0.0022 (4)0.0032 (4)
C220.0128 (5)0.0298 (7)0.0181 (6)0.0094 (5)0.0058 (4)0.0041 (5)
C230.0211 (6)0.0374 (8)0.0338 (7)0.0104 (6)0.0099 (6)0.0143 (6)
Geometric parameters (Å, º) top
O1—C11.2132 (13)C9—H90.996 (14)
O2—C181.2035 (12)C10—H100.977 (15)
O3—C181.3278 (12)C11—H11A0.955 (16)
O3—C191.4611 (12)C11—H11B0.965 (17)
O4—C211.2019 (13)C11—H11C0.960 (17)
O5—C211.3264 (13)C12—C131.3952 (15)
O5—C221.4671 (12)C12—C171.3978 (16)
N1—C11.3741 (13)C13—C141.3867 (16)
N1—C51.4337 (13)C13—H130.974 (13)
N1—C41.4633 (13)C14—C151.3862 (18)
C1—C21.5049 (15)C14—H140.974 (14)
C2—C31.5294 (14)C15—C161.3840 (18)
C2—H2A0.985 (13)C15—H150.986 (14)
C2—H2B0.985 (13)C16—C171.3862 (17)
C3—C121.5131 (15)C16—H160.949 (15)
C3—C41.5716 (14)C17—H170.945 (14)
C3—H30.985 (12)C19—C201.4987 (17)
C4—C181.5353 (14)C19—H19A0.985 (13)
C4—C211.5380 (14)C19—H19B0.994 (13)
C5—C61.3813 (15)C20—H20A0.957 (17)
C5—C101.3851 (15)C20—H20B0.994 (14)
C6—C71.3867 (16)C20—H20C1.004 (15)
C6—H60.955 (15)C22—C231.4964 (17)
C7—C81.3865 (16)C22—H22A0.963 (12)
C7—H70.969 (14)C22—H22B0.983 (13)
C8—C91.3920 (16)C23—H23A0.990 (15)
C8—C111.5059 (16)C23—H23B0.974 (15)
C9—C101.3833 (16)C23—H23C0.974 (16)
C18—O3—C19116.52 (8)H11B—C11—H11C104.4 (13)
C21—O5—C22117.09 (8)C13—C12—C17118.39 (10)
C1—N1—C5121.50 (9)C13—C12—C3122.07 (9)
C1—N1—C4113.50 (8)C17—C12—C3119.54 (10)
C5—N1—C4125.00 (8)C14—C13—C12120.68 (11)
O1—C1—N1124.33 (10)C14—C13—H13119.0 (8)
O1—C1—C2127.73 (9)C12—C13—H13120.3 (8)
N1—C1—C2107.93 (9)C15—C14—C13120.39 (12)
C1—C2—C3104.67 (8)C15—C14—H14120.7 (8)
C1—C2—H2A108.8 (8)C13—C14—H14118.9 (8)
C3—C2—H2A112.7 (7)C16—C15—C14119.46 (11)
C1—C2—H2B110.5 (8)C16—C15—H15120.2 (8)
C3—C2—H2B110.7 (7)C14—C15—H15120.3 (8)
H2A—C2—H2B109.5 (10)C15—C16—C17120.41 (11)
C12—C3—C2116.32 (9)C15—C16—H16120.0 (9)
C12—C3—C4116.64 (8)C17—C16—H16119.6 (9)
C2—C3—C4102.81 (8)C16—C17—C12120.67 (11)
C12—C3—H3110.1 (7)C16—C17—H17120.0 (8)
C2—C3—H3107.7 (7)C12—C17—H17119.3 (8)
C4—C3—H3102.0 (7)O2—C18—O3125.34 (9)
N1—C4—C18111.92 (8)O2—C18—C4124.12 (9)
N1—C4—C21108.16 (8)O3—C18—C4110.40 (8)
C18—C4—C21111.84 (8)O3—C19—C20106.36 (9)
N1—C4—C3101.81 (8)O3—C19—H19A107.5 (7)
C18—C4—C3110.42 (8)C20—C19—H19A113.3 (7)
C21—C4—C3112.27 (8)O3—C19—H19B107.9 (7)
C6—C5—C10119.81 (10)C20—C19—H19B113.4 (7)
C6—C5—N1121.64 (9)H19A—C19—H19B108.1 (10)
C10—C5—N1118.54 (9)C19—C20—H20A110.4 (9)
C5—C6—C7119.44 (10)C19—C20—H20B109.6 (8)
C5—C6—H6118.6 (9)H20A—C20—H20B107.7 (12)
C7—C6—H6122.0 (9)C19—C20—H20C112.2 (8)
C8—C7—C6121.76 (11)H20A—C20—H20C110.3 (12)
C8—C7—H7116.5 (8)H20B—C20—H20C106.5 (11)
C6—C7—H7121.8 (8)O4—C21—O5125.77 (10)
C7—C8—C9117.84 (10)O4—C21—C4123.35 (9)
C7—C8—C11120.84 (10)O5—C21—C4110.77 (8)
C9—C8—C11121.31 (10)O5—C22—C23110.51 (9)
C10—C9—C8120.96 (10)O5—C22—H22A103.6 (7)
C10—C9—H9119.6 (8)C23—C22—H22A110.8 (7)
C8—C9—H9119.4 (8)O5—C22—H22B106.9 (7)
C9—C10—C5120.17 (10)C23—C22—H22B114.4 (7)
C9—C10—H10121.6 (8)H22A—C22—H22B109.9 (10)
C5—C10—H10118.2 (8)C22—C23—H23A109.7 (8)
C8—C11—H11A112.6 (9)C22—C23—H23B110.8 (9)
C8—C11—H11B111.6 (10)H23A—C23—H23B110.0 (12)
H11A—C11—H11B103.5 (13)C22—C23—H23C108.9 (9)
C8—C11—H11C112.7 (10)H23A—C23—H23C111.5 (12)
H11A—C11—H11C111.4 (13)H23B—C23—H23C106.0 (12)
C5—N1—C1—O13.65 (16)C6—C5—C10—C91.04 (16)
C4—N1—C1—O1176.36 (10)N1—C5—C10—C9177.92 (10)
C5—N1—C1—C2176.93 (9)C2—C3—C12—C1338.01 (14)
C4—N1—C1—C23.06 (11)C4—C3—C12—C1383.65 (12)
O1—C1—C2—C3163.95 (11)C2—C3—C12—C17142.13 (10)
N1—C1—C2—C316.65 (11)C4—C3—C12—C1796.21 (12)
C1—C2—C3—C12156.77 (9)C17—C12—C13—C140.44 (16)
C1—C2—C3—C428.05 (10)C3—C12—C13—C14179.69 (10)
C1—N1—C4—C1897.26 (10)C12—C13—C14—C150.05 (17)
C5—N1—C4—C1882.75 (11)C13—C14—C15—C160.39 (18)
C1—N1—C4—C21139.09 (9)C14—C15—C16—C170.44 (18)
C5—N1—C4—C2140.89 (12)C15—C16—C17—C120.04 (18)
C1—N1—C4—C320.66 (10)C13—C12—C17—C160.40 (16)
C5—N1—C4—C3159.32 (9)C3—C12—C17—C16179.73 (10)
C12—C3—C4—N1157.57 (8)C19—O3—C18—O26.15 (14)
C2—C3—C4—N129.05 (10)C19—O3—C18—C4169.70 (8)
C12—C3—C4—C1838.57 (12)N1—C4—C18—O216.45 (14)
C2—C3—C4—C1889.95 (9)C21—C4—C18—O2138.00 (10)
C12—C3—C4—C2186.98 (11)C3—C4—C18—O296.21 (12)
C2—C3—C4—C21144.51 (8)N1—C4—C18—O3167.65 (8)
C1—N1—C5—C6109.35 (12)C21—C4—C18—O346.09 (11)
C4—N1—C5—C670.67 (14)C3—C4—C18—O379.70 (10)
C1—N1—C5—C1069.59 (13)C18—O3—C19—C20172.04 (9)
C4—N1—C5—C10110.40 (11)C22—O5—C21—O40.53 (16)
C10—C5—C6—C70.02 (16)C22—O5—C21—C4175.69 (8)
N1—C5—C6—C7178.91 (10)N1—C4—C21—O485.80 (12)
C5—C6—C7—C81.25 (18)C18—C4—C21—O4150.51 (10)
C6—C7—C8—C91.45 (17)C3—C4—C21—O425.74 (14)
C6—C7—C8—C11177.81 (12)N1—C4—C21—O590.53 (10)
C7—C8—C9—C100.40 (17)C18—C4—C21—O533.16 (12)
C11—C8—C9—C10178.86 (11)C3—C4—C21—O5157.93 (8)
C8—C9—C10—C50.83 (17)C21—O5—C22—C2384.62 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.985 (14)2.529 (14)3.5096 (14)173.4 (10)
C3—H3···O40.984 (13)2.369 (13)2.8814 (14)111.7 (9)
C6—H6···O20.955 (15)2.573 (14)3.3143 (14)134.7 (11)
C13—H13···O2i0.975 (14)2.453 (14)3.4128 (14)168.3 (12)
C15—H15···O1ii0.987 (15)2.462 (15)3.2184 (15)133.2 (10)
C22—H22A···O1iii0.963 (13)2.513 (14)3.2100 (15)129.2 (9)
C22—H22B···O4iv0.983 (13)2.579 (13)3.2426 (14)124.9 (10)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H25NO5
Mr395.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.4905 (2), 10.6167 (2), 10.8198 (2)
α, β, γ (°)93.014 (1), 95.167 (1), 110.537 (1)
V3)1012.60 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.30 × 0.12
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.964, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
14991, 3672, 3331
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.091, 1.87
No. of reflections3672
No. of parameters362
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLEASE SUPPLY.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.985 (14)2.529 (14)3.5096 (14)173.4 (10)
C3—H3···O40.984 (13)2.369 (13)2.8814 (14)111.7 (9)
C6—H6···O20.955 (15)2.573 (14)3.3143 (14)134.7 (11)
C13—H13···O2i0.975 (14)2.453 (14)3.4128 (14)168.3 (12)
C15—H15···O1ii0.987 (15)2.462 (15)3.2184 (15)133.2 (10)
C22—H22A···O1iii0.963 (13)2.513 (14)3.2100 (15)129.2 (9)
C22—H22B···O4iv0.983 (13)2.579 (13)3.2426 (14)124.9 (10)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

JKR thanks the Ministerio de Educación y Ciencia for funding a short sabbatical visit (SAB2006–0199) to the Universidade da Coruña. The authors wish to thank Dr Ana Isabel Balana Gracia (SAI-UDC technician) for her helpful comments and are indebted to the CESGA (Xunta de Galicia - Spain) for the use of the Cambridge Structural Database. Funds were provided by the Xunta de Galicia through the project PGIDIT05TAM10301PR.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. M. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKandasamy, S., Fun, H.-K., Ray, J. K., Roy, B. C. & Nigam, G. D. (1995). Acta Cryst. C51, 1942–1944.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNigam, G. D., Mattern, G. & Frohlich, R. (1989). Z. Kristallogr. 189, 293.  CrossRef Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRay, J. K., Chakraborty, A., Adhikari, S. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 368–370.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRay, J. K., Haldar, P., Canle L., M., Fernández P., M. I. & Santaballa, J. A. (2010). Acta Cryst. E66, o2103.  Google Scholar
First citationRay, J. K., Haldar, P., Canle L., M., Santaballa, J. A. & Mahía, J. (2004). Acta Cryst. C60, o163–o165.  Google Scholar
First citationRay, J. K., Sami, I., Kar, G. K., Roy, B. C. & Brahma, N. K. (1994). Bioorg. Med. Chem. 2, 1417–1421.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds