organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(2-Hy­dr­oxy-1-naphth­yl)(pyrrolidin-1-yl)meth­yl]benzo­nitrile

aBiochemical and Environmental Engineering College, Nanjing Xiaozhuang University, Nanjing 210017, People's Republic of China
*Correspondence e-mail: xmw1102@sina.com

(Received 7 June 2010; accepted 2 July 2010; online 14 July 2010)

The title compound, C22H20N2O, was obtained from the condensation reaction of 3-formyl­benzonitrile, 2-naphthol and pyrrolidine. There are two mol­ecules in the asymmetric unit, having similar conformations. Intra­molecular O—H⋯N and C—H⋯O hydrogen bonds occur, with only van der Waals forces between mol­ecules. The dihedral angles between the naphthalene ring system and the phenyl ring in the two molecules are 75.28 (10) and 76.07 (11)°. The five-membered rings adopt half-chair conformations.

Related literature

For the applications of Betti-type reactions, see: Lu et al. (2002[Lu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367-8369.]); Xu et al. (2004[Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475-479.]); Wang et al. (2005[Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897-1900.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O

  • Mr = 328.40

  • Orthorhombic, P c a 21

  • a = 18.735 (4) Å

  • b = 10.475 (2) Å

  • c = 18.122 (4) Å

  • V = 3556.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.825, Tmax = 1.000

  • 31413 measured reflections

  • 3612 independent reflections

  • 2166 reflections with I > 2σ(I)

  • Rint = 0.125

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.149

  • S = 1.07

  • 3612 reflections

  • 452 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.90 2.576 (5) 139
O2—H2A⋯N3 0.82 1.93 2.593 (5) 138
C39—H39A⋯O2 0.93 2.58 3.292 (6) 133

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Over one hundred years ago, Betti developed a straightforward synthesis involving the condensation of 2-naphthol, ammonia and equivalents of benzaldehyde, followed by the addition of HCl and KOH to yield 1-(a-aminobenzyl)-2-naphthol. This product which possesses an asymmetric carbon center is known as a Betti base. Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu et al. 2002; Xu et al. 2004; Wang et al. 2005). Here we report the synthesis and crystal structure of the title compound, 3-[(2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl]benzonitrile (Fig. 1).

Both molecules in the asymmetric unit have the same relative conformation at the chiral carbon atoms. The naphthalene (A; C1–C10, B; C23–C32) and benzene (C; C16–C21, D; C34–C39) rings are strictly planar and the dihedral angles between A/C and B/D are 75.28 (10) and 76.07 (11)°, respectively. The two molecules are stabilized by intramolecular O—H···N hydrogen bonding, whereas only one is involved in intramolecular C—H···O hydrogen bonds (Table 1). Intermolecular interactions are only van der Waals forces.

Related literature top

For the applications of Betti-type reactions, see: Lu et al. (2002); Xu et al. (2004); Wang et al. (2005)

Experimental top

3-Formylbenzonitrile (1.97 g, 0.015 mol) and pyrrolidine (1.065 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised gradually to 120°C in one hour and the mixture was stirred at this temperature for 12 h. The system was treated with 30 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (petroleum ether:ethyl acetate 4:1 v/v). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O). In the absence of significant anomalous scattering effects, the 3377 Friedel pairs were merged. The relatively high Rint value and the low data/parameter ratio reflects the poor quality of the crystal.

Structure description top

Over one hundred years ago, Betti developed a straightforward synthesis involving the condensation of 2-naphthol, ammonia and equivalents of benzaldehyde, followed by the addition of HCl and KOH to yield 1-(a-aminobenzyl)-2-naphthol. This product which possesses an asymmetric carbon center is known as a Betti base. Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu et al. 2002; Xu et al. 2004; Wang et al. 2005). Here we report the synthesis and crystal structure of the title compound, 3-[(2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl]benzonitrile (Fig. 1).

Both molecules in the asymmetric unit have the same relative conformation at the chiral carbon atoms. The naphthalene (A; C1–C10, B; C23–C32) and benzene (C; C16–C21, D; C34–C39) rings are strictly planar and the dihedral angles between A/C and B/D are 75.28 (10) and 76.07 (11)°, respectively. The two molecules are stabilized by intramolecular O—H···N hydrogen bonding, whereas only one is involved in intramolecular C—H···O hydrogen bonds (Table 1). Intermolecular interactions are only van der Waals forces.

For the applications of Betti-type reactions, see: Lu et al. (2002); Xu et al. (2004); Wang et al. (2005)

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
3-[(2-Hydroxy-1-naphthyl)(pyrrolidin-1-yl)methyl]benzonitrile top
Crystal data top
C22H20N2OF(000) = 1392
Mr = 328.40Dx = 1.227 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3612 reflections
a = 18.735 (4) Åθ = 2.6–26.0°
b = 10.475 (2) ŵ = 0.08 mm1
c = 18.122 (4) ÅT = 293 K
V = 3556.4 (12) Å3Prism, colourless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
3612 independent reflections
Radiation source: fine-focus sealed tube2166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.1°
CCD_Profile_fitting scansh = 2323
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.825, Tmax = 1.000l = 2222
31413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.065P)2 + 0.150P]
where P = (Fo2 + 2Fc2)/3
3612 reflections(Δ/σ)max < 0.001
452 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C22H20N2OV = 3556.4 (12) Å3
Mr = 328.40Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 18.735 (4) ŵ = 0.08 mm1
b = 10.475 (2) ÅT = 293 K
c = 18.122 (4) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
3612 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2166 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.125
31413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0641 restraint
wR(F2) = 0.149H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
3612 reflectionsΔρmin = 0.16 e Å3
452 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.99425 (19)0.9948 (4)0.6386 (2)0.0722 (11)
H1A0.98480.92790.61730.108*
O20.1596 (2)0.5126 (4)0.3506 (2)0.0758 (11)
H2A0.17990.58050.35870.114*
C200.8916 (3)0.9893 (4)0.4063 (3)0.0511 (12)
C340.2940 (2)0.6121 (4)0.4724 (3)0.0481 (11)
C10.8658 (3)1.0060 (5)0.6434 (3)0.0506 (12)
N30.1789 (2)0.7119 (3)0.4331 (2)0.0556 (11)
C170.8022 (3)0.8267 (5)0.4799 (3)0.0613 (13)
H17A0.77170.77070.50440.074*
C160.8526 (2)0.8953 (4)0.5204 (3)0.0478 (11)
N10.9174 (2)0.7925 (4)0.6241 (2)0.0553 (11)
C350.3411 (3)0.6798 (5)0.5162 (3)0.0649 (14)
H35A0.32320.73540.55160.078*
C230.1768 (2)0.4942 (4)0.4814 (3)0.0540 (12)
C210.8972 (2)0.9772 (4)0.4825 (3)0.0511 (12)
H21A0.93121.02450.50810.061*
C330.2139 (2)0.6242 (4)0.4850 (3)0.0512 (12)
H33A0.20680.65830.53480.061*
C20.9328 (3)1.0546 (5)0.6582 (3)0.0560 (13)
C90.8046 (3)1.0760 (5)0.6660 (2)0.0495 (12)
C390.3220 (2)0.5309 (4)0.4191 (3)0.0504 (12)
H39A0.29150.48410.38900.060*
C110.8581 (3)0.8773 (4)0.6034 (3)0.0521 (13)
H11A0.81370.83750.62040.063*
C310.1686 (3)0.4212 (5)0.5466 (3)0.0596 (14)
C220.9394 (3)1.0752 (6)0.3687 (3)0.0764 (17)
C260.1079 (3)0.2602 (6)0.4724 (5)0.084 (2)
H26A0.08420.18250.46890.100*
C420.1570 (3)0.9229 (6)0.3957 (4)0.091 (2)
H42A0.15930.92490.34220.110*
H42B0.16281.00910.41420.110*
C320.1309 (3)0.3015 (5)0.5413 (4)0.0719 (18)
C410.2134 (3)0.8384 (4)0.4258 (3)0.0692 (15)
H41A0.25380.83410.39250.083*
H41B0.22970.86910.47340.083*
C100.8134 (3)1.1955 (5)0.7035 (3)0.0591 (14)
C40.8831 (3)1.2381 (5)0.7176 (3)0.0683 (16)
H4A0.88951.31370.74360.082*
C380.3954 (2)0.5194 (5)0.4108 (3)0.0522 (12)
C30.9407 (3)1.1739 (5)0.6948 (3)0.0665 (15)
H3A0.98601.20720.70300.080*
C120.9237 (3)0.6728 (5)0.5805 (3)0.0701 (16)
H12A0.94320.68940.53180.084*
H12B0.87780.63080.57540.084*
C80.7341 (3)1.0379 (5)0.6519 (3)0.0622 (14)
H8A0.72650.96300.62540.075*
C300.1949 (3)0.4570 (6)0.6151 (4)0.0794 (18)
H30A0.22110.53200.61930.095*
C240.1520 (3)0.4480 (5)0.4139 (4)0.0611 (14)
C440.1058 (3)0.7426 (5)0.4580 (4)0.0766 (17)
H44A0.10420.75140.51120.092*
H44B0.07260.67610.44330.092*
C270.1212 (4)0.2315 (6)0.6069 (6)0.098 (3)
H27A0.09670.15430.60420.118*
C250.1188 (3)0.3286 (5)0.4107 (4)0.0712 (16)
H25A0.10400.29620.36540.085*
C190.8404 (3)0.9221 (5)0.3668 (3)0.0645 (15)
H19A0.83600.93260.31600.077*
C180.7966 (3)0.8401 (5)0.4044 (3)0.0686 (15)
H18A0.76270.79290.37870.082*
C370.4410 (3)0.5868 (5)0.4566 (3)0.0708 (16)
H37A0.49010.57740.45170.085*
C50.7527 (4)1.2623 (5)0.7266 (3)0.0744 (16)
H5A0.75901.33840.75230.089*
C150.9121 (3)0.7469 (5)0.7019 (3)0.0729 (16)
H15A0.86400.71900.71310.088*
H15B0.92560.81380.73620.088*
N20.9776 (4)1.1433 (6)0.3394 (3)0.114 (2)
C280.1449 (5)0.2691 (8)0.6720 (6)0.113 (3)
H28A0.13650.22040.71410.136*
C400.4246 (3)0.4309 (6)0.3597 (4)0.0746 (17)
C60.6855 (4)1.2217 (7)0.7135 (4)0.0821 (18)
H40A0.64641.26910.72940.099*
C70.6758 (3)1.1065 (7)0.6754 (4)0.0794 (18)
H7A0.63001.07640.66610.095*
C130.9750 (4)0.5932 (6)0.6269 (4)0.103 (2)
H13A0.96430.50290.62220.123*
H13B1.02400.60770.61180.123*
N40.4512 (3)0.3616 (7)0.3192 (4)0.119 (2)
C430.0872 (3)0.8681 (6)0.4207 (5)0.103 (2)
H43A0.05580.85390.37890.123*
H43B0.06380.92540.45510.123*
C290.1831 (5)0.3845 (8)0.6764 (4)0.111 (3)
H29A0.20060.41170.72170.134*
C140.9633 (4)0.6377 (6)0.7056 (4)0.100 (2)
H14A0.94370.56920.73530.121*
H14B1.00810.66490.72740.121*
C360.4140 (3)0.6667 (5)0.5085 (4)0.0752 (17)
H36A0.44470.71270.53890.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.060 (2)0.066 (2)0.090 (3)0.0146 (19)0.007 (2)0.011 (2)
O20.081 (3)0.067 (3)0.079 (3)0.006 (2)0.009 (2)0.005 (2)
C200.055 (3)0.046 (3)0.052 (3)0.000 (2)0.001 (3)0.007 (2)
C340.051 (3)0.041 (3)0.052 (3)0.006 (2)0.002 (2)0.001 (2)
C10.055 (3)0.046 (3)0.051 (3)0.010 (2)0.003 (2)0.000 (2)
N30.053 (2)0.039 (2)0.074 (3)0.0024 (18)0.012 (2)0.004 (2)
C170.050 (3)0.063 (3)0.071 (4)0.015 (3)0.003 (3)0.009 (3)
C160.049 (3)0.043 (3)0.052 (3)0.004 (2)0.002 (2)0.009 (2)
N10.065 (3)0.047 (2)0.054 (3)0.001 (2)0.002 (2)0.002 (2)
C350.075 (4)0.050 (3)0.070 (4)0.005 (3)0.004 (3)0.011 (3)
C230.047 (3)0.042 (3)0.073 (3)0.001 (2)0.016 (3)0.001 (3)
C210.050 (3)0.049 (3)0.055 (3)0.007 (2)0.000 (2)0.005 (2)
C330.064 (3)0.035 (2)0.055 (3)0.001 (2)0.012 (3)0.002 (2)
C20.055 (3)0.054 (3)0.059 (3)0.009 (3)0.010 (3)0.001 (2)
C90.059 (3)0.048 (3)0.041 (3)0.007 (2)0.004 (2)0.002 (2)
C390.052 (3)0.044 (3)0.055 (3)0.006 (2)0.004 (2)0.005 (2)
C110.049 (3)0.045 (3)0.062 (3)0.009 (2)0.001 (2)0.004 (2)
C310.061 (3)0.041 (3)0.077 (4)0.003 (2)0.023 (3)0.001 (3)
C220.088 (4)0.084 (5)0.057 (4)0.013 (4)0.007 (3)0.006 (3)
C260.046 (3)0.047 (3)0.158 (7)0.004 (3)0.008 (4)0.017 (5)
C420.090 (5)0.056 (4)0.129 (6)0.017 (3)0.001 (4)0.007 (4)
C320.052 (3)0.043 (3)0.121 (6)0.005 (3)0.030 (4)0.014 (3)
C410.076 (4)0.042 (3)0.090 (4)0.003 (3)0.003 (3)0.002 (3)
C100.068 (4)0.052 (3)0.058 (3)0.002 (3)0.002 (3)0.001 (3)
C40.084 (4)0.056 (3)0.065 (4)0.018 (3)0.005 (3)0.010 (3)
C380.047 (3)0.050 (3)0.059 (3)0.005 (2)0.007 (3)0.004 (3)
C30.069 (4)0.065 (3)0.066 (4)0.022 (3)0.004 (3)0.011 (3)
C120.090 (4)0.054 (3)0.067 (4)0.009 (3)0.009 (3)0.003 (3)
C80.064 (4)0.057 (3)0.066 (4)0.004 (3)0.004 (3)0.001 (3)
C300.101 (5)0.058 (4)0.079 (5)0.003 (3)0.026 (4)0.012 (4)
C240.049 (3)0.049 (3)0.085 (4)0.007 (2)0.005 (3)0.015 (3)
C440.063 (3)0.066 (4)0.101 (5)0.005 (3)0.012 (3)0.001 (3)
C270.086 (5)0.049 (4)0.160 (8)0.008 (3)0.048 (5)0.029 (5)
C250.053 (3)0.051 (3)0.110 (5)0.005 (3)0.000 (3)0.015 (4)
C190.071 (4)0.064 (4)0.058 (3)0.001 (3)0.002 (3)0.005 (3)
C180.070 (4)0.066 (4)0.070 (4)0.012 (3)0.010 (3)0.014 (3)
C370.046 (3)0.070 (4)0.097 (5)0.007 (3)0.003 (3)0.000 (3)
C50.094 (5)0.065 (3)0.064 (4)0.006 (4)0.007 (3)0.007 (3)
C150.096 (4)0.062 (4)0.061 (4)0.001 (3)0.011 (3)0.002 (3)
N20.135 (5)0.125 (5)0.083 (4)0.047 (4)0.015 (4)0.016 (4)
C280.148 (8)0.080 (6)0.112 (7)0.016 (5)0.056 (6)0.050 (5)
C400.045 (3)0.090 (5)0.089 (5)0.003 (3)0.007 (3)0.012 (4)
C60.084 (5)0.081 (5)0.081 (5)0.026 (4)0.003 (4)0.002 (4)
C70.060 (4)0.092 (5)0.086 (5)0.007 (4)0.004 (3)0.007 (4)
C130.146 (7)0.076 (4)0.087 (5)0.021 (4)0.015 (5)0.003 (4)
N40.072 (4)0.150 (6)0.134 (6)0.023 (4)0.011 (4)0.041 (5)
C430.070 (4)0.074 (4)0.164 (7)0.015 (3)0.006 (5)0.002 (5)
C290.158 (7)0.096 (6)0.081 (5)0.014 (5)0.043 (5)0.018 (4)
C140.136 (6)0.067 (4)0.098 (6)0.013 (4)0.035 (5)0.008 (4)
C360.071 (4)0.061 (4)0.094 (5)0.014 (3)0.014 (3)0.018 (3)
Geometric parameters (Å, º) top
O1—C21.357 (6)C41—H41A0.9700
O1—H1A0.8200C41—H41B0.9700
O2—C241.339 (7)C10—C51.400 (8)
O2—H2A0.8200C10—C41.403 (7)
C20—C191.388 (7)C4—C31.336 (8)
C20—C211.391 (7)C4—H4A0.9300
C20—C221.441 (8)C38—C371.384 (7)
C34—C351.382 (7)C38—C401.419 (8)
C34—C391.389 (7)C3—H3A0.9300
C34—C331.523 (6)C12—C131.526 (8)
C1—C21.381 (7)C12—H12A0.9700
C1—C91.421 (7)C12—H12B0.9700
C1—C111.537 (7)C8—C71.376 (8)
N3—C331.469 (6)C8—H8A0.9300
N3—C441.477 (6)C30—C291.363 (9)
N3—C411.481 (6)C30—H30A0.9300
C17—C181.381 (8)C24—C251.399 (7)
C17—C161.395 (7)C44—C431.519 (8)
C17—H17A0.9300C44—H44A0.9700
C16—C211.381 (6)C44—H44B0.9700
C16—C111.520 (7)C27—C281.322 (11)
N1—C111.471 (6)C27—H27A0.9300
N1—C121.487 (6)C25—H25A0.9300
N1—C151.491 (7)C19—C181.369 (8)
C35—C361.381 (7)C19—H19A0.9300
C35—H35A0.9300C18—H18A0.9300
C23—C241.395 (8)C37—C361.357 (8)
C23—C311.415 (7)C37—H37A0.9300
C23—C331.531 (6)C5—C61.351 (9)
C21—H21A0.9300C5—H5A0.9300
C33—H33A0.9800C15—C141.494 (8)
C2—C31.423 (7)C15—H15A0.9700
C9—C81.403 (7)C15—H15B0.9700
C9—C101.433 (7)C28—C291.408 (12)
C39—C381.389 (6)C28—H28A0.9300
C39—H39A0.9300C40—N41.147 (7)
C11—H11A0.9800C6—C71.402 (9)
C31—C301.388 (8)C6—H40A0.9300
C31—C321.442 (8)C7—H7A0.9300
C22—N21.142 (7)C13—C141.516 (9)
C26—C251.343 (9)C13—H13A0.9700
C26—C321.389 (9)C13—H13B0.9700
C26—H26A0.9300C43—H43A0.9700
C42—C411.482 (8)C43—H43B0.9700
C42—C431.497 (9)C29—H29A0.9300
C42—H42A0.9700C14—H14A0.9700
C42—H42B0.9700C14—H14B0.9700
C32—C271.409 (10)C36—H36A0.9300
C2—O1—H1A109.5C39—C38—C40120.6 (5)
C24—O2—H2A109.5C4—C3—C2120.1 (5)
C19—C20—C21121.3 (5)C4—C3—H3A119.9
C19—C20—C22120.1 (5)C2—C3—H3A119.9
C21—C20—C22118.6 (5)N1—C12—C13102.5 (4)
C35—C34—C39118.2 (4)N1—C12—H12A111.3
C35—C34—C33120.0 (4)C13—C12—H12A111.3
C39—C34—C33121.8 (4)N1—C12—H12B111.3
C2—C1—C9119.1 (4)C13—C12—H12B111.3
C2—C1—C11120.0 (4)H12A—C12—H12B109.2
C9—C1—C11120.9 (4)C7—C8—C9122.8 (5)
C33—N3—C44110.8 (4)C7—C8—H8A118.6
C33—N3—C41114.9 (4)C9—C8—H8A118.6
C44—N3—C41103.7 (4)C29—C30—C31121.4 (7)
C18—C17—C16121.3 (5)C29—C30—H30A119.3
C18—C17—H17A119.3C31—C30—H30A119.3
C16—C17—H17A119.3O2—C24—C23122.8 (4)
C21—C16—C17118.0 (5)O2—C24—C25117.6 (6)
C21—C16—C11121.9 (4)C23—C24—C25119.7 (6)
C17—C16—C11120.2 (4)N3—C44—C43105.3 (5)
C11—N1—C12115.7 (4)N3—C44—H44A110.7
C11—N1—C15112.6 (4)C43—C44—H44A110.7
C12—N1—C15103.7 (4)N3—C44—H44B110.7
C36—C35—C34121.5 (5)C43—C44—H44B110.7
C36—C35—H35A119.2H44A—C44—H44B108.8
C34—C35—H35A119.2C28—C27—C32123.7 (7)
C24—C23—C31120.5 (5)C28—C27—H27A118.1
C24—C23—C33119.8 (5)C32—C27—H27A118.1
C31—C23—C33119.7 (5)C26—C25—C24120.6 (6)
C16—C21—C20120.3 (5)C26—C25—H25A119.7
C16—C21—H21A119.9C24—C25—H25A119.7
C20—C21—H21A119.9C18—C19—C20118.4 (5)
N3—C33—C34113.3 (4)C18—C19—H19A120.8
N3—C33—C23109.1 (4)C20—C19—H19A120.8
C34—C33—C23111.5 (4)C19—C18—C17120.8 (5)
N3—C33—H33A107.6C19—C18—H18A119.6
C34—C33—H33A107.6C17—C18—H18A119.6
C23—C33—H33A107.6C36—C37—C38120.1 (5)
O1—C2—C1123.4 (4)C36—C37—H37A120.0
O1—C2—C3116.0 (5)C38—C37—H37A120.0
C1—C2—C3120.6 (5)C6—C5—C10123.2 (6)
C8—C9—C1124.0 (4)C6—C5—H5A118.4
C8—C9—C10116.3 (5)C10—C5—H5A118.4
C1—C9—C10119.7 (4)N1—C15—C14104.2 (5)
C34—C39—C38120.1 (4)N1—C15—H15A110.9
C34—C39—H39A119.9C14—C15—H15A110.9
C38—C39—H39A119.9N1—C15—H15B110.9
N1—C11—C16112.2 (4)C14—C15—H15B110.9
N1—C11—C1109.8 (4)H15A—C15—H15B108.9
C16—C11—C1111.4 (4)C27—C28—C29118.5 (7)
N1—C11—H11A107.7C27—C28—H28A120.8
C16—C11—H11A107.7C29—C28—H28A120.8
C1—C11—H11A107.7N4—C40—C38176.9 (6)
C30—C31—C23124.2 (5)C5—C6—C7118.6 (6)
C30—C31—C32117.9 (6)C5—C6—H40A120.7
C23—C31—C32117.8 (6)C7—C6—H40A120.7
N2—C22—C20179.4 (7)C8—C7—C6119.9 (6)
C25—C26—C32122.4 (5)C8—C7—H7A120.0
C25—C26—H26A118.8C6—C7—H7A120.0
C32—C26—H26A118.8C14—C13—C12105.1 (5)
C41—C42—C43106.4 (5)C14—C13—H13A110.7
C41—C42—H42A110.4C12—C13—H13A110.7
C43—C42—H42A110.4C14—C13—H13B110.7
C41—C42—H42B110.4C12—C13—H13B110.7
C43—C42—H42B110.4H13A—C13—H13B108.8
H42A—C42—H42B108.6C42—C43—C44105.4 (5)
C26—C32—C27123.8 (7)C42—C43—H43A110.7
C26—C32—C31118.8 (6)C44—C43—H43A110.7
C27—C32—C31117.4 (7)C42—C43—H43B110.7
N3—C41—C42104.8 (4)C44—C43—H43B110.7
N3—C41—H41A110.8H43A—C43—H43B108.8
C42—C41—H41A110.8C30—C29—C28121.1 (8)
N3—C41—H41B110.8C30—C29—H29A119.5
C42—C41—H41B110.8C28—C29—H29A119.5
H41A—C41—H41B108.9C15—C14—C13106.6 (5)
C5—C10—C4122.9 (5)C15—C14—H14A110.4
C5—C10—C9119.0 (5)C13—C14—H14A110.4
C4—C10—C9118.1 (5)C15—C14—H14B110.4
C3—C4—C10122.4 (5)C13—C14—H14B110.4
C3—C4—H4A118.8H14A—C14—H14B108.6
C10—C4—H4A118.8C37—C36—C35120.0 (5)
C37—C38—C39120.1 (5)C37—C36—H36A120.0
C37—C38—C40119.1 (5)C35—C36—H36A120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.902.576 (5)139
O2—H2A···N30.821.932.593 (5)138
C39—H39A···O20.932.583.292 (6)133

Experimental details

Crystal data
Chemical formulaC22H20N2O
Mr328.40
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)18.735 (4), 10.475 (2), 18.122 (4)
V3)3556.4 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
31413, 3612, 2166
Rint0.125
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.149, 1.07
No. of reflections3612
No. of parameters452
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.902.576 (5)138.6
O2—H2A···N30.821.932.593 (5)137.8
C39—H39A···O20.932.583.292 (6)133.2
 

Acknowledgements

This work was supported by the Natural Science Foundation (04KJD150112) of Jiangsu Provincial Education Department.

References

First citationLu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367–8369.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897–1900.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475–479.  Web of Science CrossRef CSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds