organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-2-Methyl­piperazin-1-ium perchlorate

aDepartment of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitpch@yahoo.com.cn

(Received 30 June 2010; accepted 17 July 2010; online 24 July 2010)

In the title compound, C5H13N2+·ClO4, the monoprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into layers parallel to ([\overline{1}]01).

Related literature

For the properties of simple mol­ecular–ionic crystals, see: Czupiński et al. (2002[Czupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.]); Katrusiak & Szafrański (1999[Katrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576-579.], 2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]).

[Scheme 1]

Experimental

Crystal data
  • C5H13N2+·ClO4

  • Mr = 200.62

  • Monoclinic, P 21 /n

  • a = 6.8977 (5) Å

  • b = 8.1292 (6) Å

  • c = 16.2201 (11) Å

  • β = 98.614 (3)°

  • V = 899.25 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.80, Tmax = 0.90

  • 8953 measured reflections

  • 2055 independent reflections

  • 1541 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.224

  • S = 1.05

  • 2055 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.90 2.38 3.258 (6) 166
N1—H1C⋯O3 0.90 2.54 3.250 (5) 136
N2—H2D⋯O2i 0.90 2.43 2.998 (7) 121
N2—H2C⋯N1ii 0.90 1.99 2.883 (4) 169
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals in 1:1 molar ratio due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). As a contribution in this field, the crystal structure of title salt is reported here.

The asymmetric unit of the title compound (Fig.1) consists of a monoprotonated 2-methylpiperazinium cation and a ClO4-anions. The piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) into layers parallel to the (1 0 1) plane (Fig.2).

Related literature top

For the properties of simple molecular–ionic crystals, see: Czupiński et al. (2002); Katrusiak & Szafrański (1999, 2006).

Experimental top

(±)-2-Methylpiperazine (20 mmol) and 10% aqueous HClO4 solution in a molar ratio of 1:1 were mixed and dissolved in 25 ml water. The mixture was heated to 343 K to form a clear solution. On slow cooling of the reaction mixture to room temperature, block crystals of the title compound were formed.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.96–0.98Å and N—H = 0.90 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Structure description top

Recently, much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals in 1:1 molar ratio due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). As a contribution in this field, the crystal structure of title salt is reported here.

The asymmetric unit of the title compound (Fig.1) consists of a monoprotonated 2-methylpiperazinium cation and a ClO4-anions. The piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) into layers parallel to the (1 0 1) plane (Fig.2).

For the properties of simple molecular–ionic crystals, see: Czupiński et al. (2002); Katrusiak & Szafrański (1999, 2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level
[Figure 2] Fig. 2. Packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines
(±)-2-Methylpiperazin-1-ium perchlorate top
Crystal data top
C5H13N2+·ClO4F(000) = 424
Mr = 200.62Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 1541 reflections
a = 6.8977 (5) Åθ = 3.1–27.5°
b = 8.1292 (6) ŵ = 0.41 mm1
c = 16.2201 (11) ÅT = 293 K
β = 98.614 (3)°Block, colourless
V = 899.25 (11) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2055 independent reflections
Radiation source: fine-focus sealed tube1541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.80, Tmax = 0.90l = 2120
8953 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1123P)2 + 1.4914P]
where P = (Fo2 + 2Fc2)/3
2055 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C5H13N2+·ClO4V = 899.25 (11) Å3
Mr = 200.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8977 (5) ŵ = 0.41 mm1
b = 8.1292 (6) ÅT = 293 K
c = 16.2201 (11) Å0.30 × 0.25 × 0.20 mm
β = 98.614 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2055 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1541 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.90Rint = 0.040
8953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.05Δρmax = 0.86 e Å3
2055 reflectionsΔρmin = 0.56 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4992 (5)0.6921 (5)0.6807 (2)0.0414 (8)
H1B0.59750.77300.70190.050*
H1A0.55250.62330.64070.050*
C20.4487 (5)0.5875 (5)0.7518 (2)0.0406 (8)
H2A0.56440.52670.77590.049*
H2B0.41180.65910.79470.049*
C30.1170 (5)0.5531 (5)0.6809 (2)0.0389 (8)
H3A0.05990.62270.71940.047*
H3B0.02050.47030.66030.047*
C40.1591 (5)0.6579 (5)0.6075 (2)0.0384 (8)
H4A0.20620.58560.56640.046*
C50.0190 (7)0.7490 (7)0.5654 (3)0.0646 (13)
H5A0.01520.81170.51960.097*
H5B0.06560.82180.60480.097*
H5C0.12010.67160.54520.097*
Cl10.56264 (14)0.19954 (12)0.59443 (6)0.0442 (4)
N10.2890 (5)0.4712 (4)0.7261 (2)0.0392 (7)
H1C0.33050.39410.69290.047*
N20.3194 (4)0.7764 (3)0.63945 (18)0.0352 (7)
H2D0.34940.83690.59660.042*
H2C0.27610.84530.67610.042*
O10.3667 (7)0.1613 (7)0.6079 (3)0.1041 (16)
O20.5363 (11)0.2923 (9)0.5226 (3)0.154 (3)
O30.6614 (5)0.2921 (5)0.6628 (2)0.0759 (11)
O40.6557 (9)0.0550 (9)0.5835 (6)0.215 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (18)0.044 (2)0.046 (2)0.0020 (15)0.0098 (15)0.0026 (16)
C20.0404 (19)0.0397 (19)0.0410 (19)0.0043 (15)0.0037 (15)0.0042 (15)
C30.0395 (19)0.0380 (18)0.0401 (18)0.0068 (15)0.0095 (15)0.0047 (15)
C40.043 (2)0.0402 (19)0.0315 (17)0.0016 (15)0.0028 (14)0.0028 (14)
C50.054 (3)0.079 (3)0.056 (3)0.010 (2)0.007 (2)0.004 (2)
Cl10.0500 (6)0.0457 (6)0.0378 (5)0.0080 (4)0.0094 (4)0.0044 (4)
N10.0481 (18)0.0298 (14)0.0415 (16)0.0004 (13)0.0130 (13)0.0016 (12)
N20.0422 (16)0.0319 (15)0.0329 (15)0.0012 (12)0.0103 (12)0.0013 (12)
O10.089 (3)0.149 (4)0.080 (3)0.040 (3)0.034 (2)0.028 (3)
O20.196 (7)0.199 (7)0.067 (3)0.086 (5)0.017 (3)0.048 (4)
O30.072 (2)0.076 (2)0.074 (2)0.0078 (18)0.0083 (19)0.0251 (19)
O40.132 (5)0.151 (5)0.318 (11)0.089 (4)0.105 (6)0.155 (7)
Geometric parameters (Å, º) top
C1—N21.485 (5)C4—C51.507 (6)
C1—C21.514 (5)C4—H4A0.9800
C1—H1B0.9700C5—H5A0.9600
C1—H1A0.9700C5—H5B0.9600
C2—N11.465 (5)C5—H5C0.9600
C2—H2A0.9700Cl1—O41.363 (5)
C2—H2B0.9700Cl1—O21.377 (5)
C3—N11.459 (5)Cl1—O31.426 (4)
C3—C41.526 (5)Cl1—O11.436 (4)
C3—H3A0.9700N1—H1C0.8998
C3—H3B0.9700N2—H2D0.9000
C4—N21.500 (5)N2—H2C0.9000
N2—C1—C2109.3 (3)C3—C4—H4A108.5
N2—C1—H1B109.8C4—C5—H5A109.5
C2—C1—H1B109.8C4—C5—H5B109.5
N2—C1—H1A109.8H5A—C5—H5B109.5
C2—C1—H1A109.8C4—C5—H5C109.5
H1B—C1—H1A108.3H5A—C5—H5C109.5
N1—C2—C1113.3 (3)H5B—C5—H5C109.5
N1—C2—H2A108.9O4—Cl1—O2111.5 (6)
C1—C2—H2A108.9O4—Cl1—O3112.1 (3)
N1—C2—H2B108.9O2—Cl1—O3110.9 (3)
C1—C2—H2B108.9O4—Cl1—O1107.8 (5)
H2A—C2—H2B107.7O2—Cl1—O1103.9 (4)
N1—C3—C4114.3 (3)O3—Cl1—O1110.3 (2)
N1—C3—H3A108.7C3—N1—C2111.6 (3)
C4—C3—H3A108.7C3—N1—H1C109.0
N1—C3—H3B108.7C2—N1—H1C109.1
C4—C3—H3B108.7C1—N2—C4112.5 (3)
H3A—C3—H3B107.6C1—N2—H2D109.1
N2—C4—C5110.5 (3)C4—N2—H2D109.1
N2—C4—C3107.8 (3)C1—N2—H2C109.1
C5—C4—C3113.0 (4)C4—N2—H2C109.1
N2—C4—H4A108.5H2D—N2—H2C107.8
C5—C4—H4A108.5
N2—C1—C2—N154.6 (4)C1—C2—N1—C352.3 (4)
N1—C3—C4—N254.1 (4)C2—C1—N2—C457.7 (4)
N1—C3—C4—C5176.4 (3)C5—C4—N2—C1179.4 (3)
C4—C3—N1—C252.7 (4)C3—C4—N2—C156.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.902.383.258 (6)166
N1—H1C···O30.902.543.250 (5)136
N2—H2D···O2i0.902.432.998 (7)121
N2—H2C···N1ii0.901.992.883 (4)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC5H13N2+·ClO4
Mr200.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.8977 (5), 8.1292 (6), 16.2201 (11)
β (°) 98.614 (3)
V3)899.25 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.80, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
8953, 2055, 1541
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.224, 1.05
No. of reflections2055
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.56

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.902.383.258 (6)166.3
N1—H1C···O30.902.543.250 (5)135.8
N2—H2D···O2i0.902.432.998 (7)121.1
N2—H2C···N1ii0.901.992.883 (4)168.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology.

References

First citationCzupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Google Scholar
First citationKatrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576–579.  Web of Science CrossRef CAS Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds