organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Ethyl­anilinium 4-methyl­benzene­sulfonate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wudh1971@sohu.com

(Received 12 July 2010; accepted 14 July 2010; online 21 July 2010)

In the crystal structure of the title molecular salt, C8H12N+·C7H7O3S, the 4-ethyl­anilinium cations and 4-methyl­benzene­sulfonate anions are linked into chains parallel to the b axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For background literature concerning mol­ecular–ionic compounds, see: Czupiński et al. (2002[Czupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Swiergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.]); Katrusiak & Szafrański (2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]). For related structures. see: Chen (2009[Chen, L.-Z. (2009). Acta Cryst. E65, o2626.]); Wang (2010[Wang, B. (2010). Acta Cryst. E66, o1473.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·C7H7O3S

  • Mr = 293.38

  • Monoclinic, C 2/c

  • a = 25.016 (3) Å

  • b = 5.6376 (11) Å

  • c = 21.6387 (13) Å

  • β = 95.227 (10)°

  • V = 3039.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 291 K

  • 0.36 × 0.28 × 0.24 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.930, Tmax = 0.950

  • 14572 measured reflections

  • 3490 independent reflections

  • 2614 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.178

  • S = 1.06

  • 3490 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O1i 0.89 2.24 2.792 (3) 120
N1—H1D⋯O1 0.89 2.26 3.085 (3) 154
N1—H1E⋯O2ii 0.89 2.04 2.815 (3) 146
N1—H1F⋯O3iii 0.89 2.24 2.808 (3) 122
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, y-1, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 2006). For similar structures, see: Chen, 2009; Wang, 2010. In our laboratory, the title compound has been synthesized and its crystal structure is herein reported.

The asymmetric unit of the title compound consists of a 4-ethylanilinium cation and a 4-methylbenzenesulfonate anion (Fig 1), in which proton transfer from the acid to the basic component has occurred (Fig. 1). In the crystal packing (Fig. 2), cations and anions are linked into one-dimensional chains parallel to b-axis by intermolecular N—H···O hydrogen bonds (Table 1).

Related literature top

For background literature concerning molecular–ionic compounds, see: Czupiński et al. (2002); Katrusiak & Szafrański (2006). For related structures. see: Chen (2009); Wang (2010).

Experimental top

4-Methylbenzenesulfonic acid hydrate (1.90 g; 10 mmol) was firstly dissolved in 50 ml ethanol, to which 4-ethybenzenamine (1.21 g; 10 mmol) was added under stirring at the ambient temperature to afford a clear solution without any participation. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of the above solution after 5 days in air (m. p. 192 °C).

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range between 93 K and 455 K.

Refinement top

H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93 Å for Csp2 atoms and C—H = 0.96 Å and 0.97 Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2, N) and 1.5Ueq(Csp3)] and allowed to ride.

Structure description top

Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 2006). For similar structures, see: Chen, 2009; Wang, 2010. In our laboratory, the title compound has been synthesized and its crystal structure is herein reported.

The asymmetric unit of the title compound consists of a 4-ethylanilinium cation and a 4-methylbenzenesulfonate anion (Fig 1), in which proton transfer from the acid to the basic component has occurred (Fig. 1). In the crystal packing (Fig. 2), cations and anions are linked into one-dimensional chains parallel to b-axis by intermolecular N—H···O hydrogen bonds (Table 1).

For background literature concerning molecular–ionic compounds, see: Czupiński et al. (2002); Katrusiak & Szafrański (2006). For related structures. see: Chen (2009); Wang (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. Hydrogen atoms not involved in hydrogen bonds (dashed lines) are omitted for clarity.
4-Ethylanilinium 4-methylbenzenesulfonate top
Crystal data top
C8H12N+·C7H7O3SF(000) = 1248
Mr = 293.38Dx = 1.283 Mg m3
Monoclinic, C2/cMelting point: 465 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.016 (3) ÅCell parameters from 12307 reflections
b = 5.6376 (11) Åθ = 3.1–27.6°
c = 21.6387 (13) ŵ = 0.22 mm1
β = 95.227 (10)°T = 291 K
V = 3039.0 (7) Å3Block, colourless
Z = 80.36 × 0.28 × 0.24 mm
Data collection top
Rigaku Mercury2
diffractometer
3490 independent reflections
Radiation source: fine-focus sealed tube2614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD_Profile_fitting scansh = 3232
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.930, Tmax = 0.950l = 2728
14572 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0988P)2 + 1.990P]
where P = (Fo2 + 2Fc2)/3
3490 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C8H12N+·C7H7O3SV = 3039.0 (7) Å3
Mr = 293.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.016 (3) ŵ = 0.22 mm1
b = 5.6376 (11) ÅT = 291 K
c = 21.6387 (13) Å0.36 × 0.28 × 0.24 mm
β = 95.227 (10)°
Data collection top
Rigaku Mercury2
diffractometer
3490 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2614 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.950Rint = 0.048
14572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
3490 reflectionsΔρmin = 0.44 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18002 (12)0.6568 (8)0.1475 (2)0.0771 (11)
H1A0.16360.78690.12430.116*
H1B0.16340.63860.18550.116*
H1C0.17540.51380.12350.116*
C20.23944 (10)0.7059 (5)0.16208 (13)0.0448 (7)
C30.26270 (11)0.9123 (6)0.14269 (15)0.0549 (8)
H3A0.24141.02310.12010.066*
C40.31647 (11)0.9576 (5)0.15593 (14)0.0471 (7)
H4A0.33111.09850.14280.056*
C50.34871 (9)0.7941 (4)0.18873 (10)0.0304 (5)
C60.32643 (10)0.5882 (5)0.20886 (13)0.0416 (6)
H6A0.34780.47690.23120.050*
C70.27173 (11)0.5477 (5)0.19556 (13)0.0473 (7)
H7A0.25680.40940.20980.057*
C80.32058 (15)0.5450 (11)0.52795 (18)0.1058 (18)
H8A0.30260.58950.56350.159*
H8B0.31300.38190.51800.159*
H8C0.30820.64320.49330.159*
C90.37861 (13)0.5763 (7)0.54173 (14)0.0620 (9)
H9A0.39080.47850.57710.074*
H9B0.38590.74040.55300.074*
C100.41024 (10)0.5113 (5)0.48754 (12)0.0414 (6)
C110.41036 (12)0.6573 (5)0.43615 (13)0.0473 (7)
H11A0.39190.80060.43580.057*
C120.43700 (11)0.5966 (5)0.38534 (12)0.0420 (6)
H12A0.43650.69690.35120.050*
C130.46425 (9)0.3857 (4)0.38629 (11)0.0317 (5)
C140.46589 (10)0.2380 (5)0.43700 (12)0.0417 (6)
H14A0.48510.09670.43750.050*
C150.43868 (11)0.3020 (5)0.48717 (13)0.0467 (7)
H15A0.43960.20190.52140.056*
N10.49149 (8)0.3138 (4)0.33224 (9)0.0373 (5)
H1D0.48740.42610.30330.056*
H1E0.47740.17860.31710.056*
H1F0.52630.29310.34350.056*
O10.44138 (7)0.6248 (4)0.22484 (10)0.0543 (6)
O20.42345 (8)1.0277 (4)0.25272 (9)0.0534 (5)
O30.43719 (8)0.9314 (4)0.14712 (9)0.0575 (6)
S10.41818 (2)0.84917 (11)0.20463 (3)0.0335 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (16)0.105 (3)0.089 (3)0.0119 (18)0.0011 (16)0.011 (2)
C20.0313 (13)0.0591 (18)0.0439 (14)0.0054 (12)0.0019 (11)0.0108 (13)
C30.0425 (15)0.0547 (18)0.0650 (19)0.0104 (13)0.0090 (14)0.0114 (16)
C40.0420 (14)0.0369 (14)0.0616 (18)0.0030 (12)0.0007 (12)0.0127 (13)
C50.0289 (11)0.0313 (12)0.0311 (11)0.0021 (9)0.0031 (9)0.0010 (9)
C60.0387 (13)0.0366 (14)0.0486 (15)0.0047 (11)0.0004 (11)0.0118 (12)
C70.0450 (15)0.0435 (16)0.0543 (16)0.0164 (13)0.0093 (12)0.0019 (13)
C80.068 (2)0.188 (5)0.067 (2)0.008 (3)0.032 (2)0.023 (3)
C90.069 (2)0.076 (2)0.0434 (16)0.0024 (18)0.0176 (15)0.0095 (17)
C100.0435 (14)0.0475 (15)0.0338 (13)0.0005 (12)0.0067 (11)0.0056 (12)
C110.0578 (17)0.0398 (15)0.0454 (15)0.0134 (13)0.0117 (13)0.0001 (12)
C120.0542 (16)0.0352 (14)0.0373 (14)0.0034 (12)0.0084 (11)0.0060 (11)
C130.0303 (11)0.0342 (13)0.0308 (12)0.0043 (10)0.0037 (9)0.0019 (10)
C140.0441 (14)0.0363 (14)0.0449 (15)0.0076 (12)0.0045 (12)0.0071 (12)
C150.0531 (16)0.0511 (17)0.0360 (14)0.0065 (13)0.0055 (12)0.0122 (12)
N10.0373 (11)0.0397 (12)0.0355 (11)0.0024 (9)0.0067 (8)0.0065 (9)
O10.0368 (10)0.0510 (12)0.0746 (15)0.0090 (9)0.0017 (9)0.0067 (11)
O20.0467 (11)0.0567 (13)0.0561 (12)0.0120 (9)0.0005 (9)0.0235 (10)
O30.0493 (12)0.0805 (16)0.0439 (11)0.0235 (11)0.0106 (9)0.0028 (11)
S10.0288 (3)0.0368 (4)0.0350 (3)0.0045 (2)0.0031 (2)0.0028 (3)
Geometric parameters (Å, º) top
C1—C21.517 (4)C9—H9A0.9700
C1—H1A0.9600C9—H9B0.9700
C1—H1B0.9600C10—C151.378 (4)
C1—H1C0.9600C10—C111.384 (4)
C2—C71.366 (4)C11—C121.379 (4)
C2—C31.383 (4)C11—H11A0.9300
C3—C41.374 (4)C12—C131.370 (3)
C3—H3A0.9300C12—H12A0.9300
C4—C51.378 (3)C13—C141.375 (3)
C4—H4A0.9300C13—N11.463 (3)
C5—C61.375 (3)C14—C151.381 (4)
C5—S11.768 (2)C14—H14A0.9300
C6—C71.391 (4)C15—H15A0.9300
C6—H6A0.9300N1—H1D0.8900
C7—H7A0.9300N1—H1E0.8900
C8—C91.466 (5)N1—H1F0.8900
C8—H8A0.9600O1—S11.443 (2)
C8—H8B0.9600O2—S11.4451 (19)
C8—H8C0.9600O3—S11.448 (2)
C9—C101.518 (4)
C2—C1—H1A109.5C8—C9—H9B109.0
C2—C1—H1B109.5C10—C9—H9B109.0
H1A—C1—H1B109.5H9A—C9—H9B107.8
C2—C1—H1C109.5C15—C10—C11117.7 (2)
H1A—C1—H1C109.5C15—C10—C9121.1 (3)
H1B—C1—H1C109.5C11—C10—C9121.1 (3)
C7—C2—C3117.7 (2)C12—C11—C10122.0 (2)
C7—C2—C1120.8 (3)C12—C11—H11A119.0
C3—C2—C1121.5 (3)C10—C11—H11A119.0
C4—C3—C2121.6 (3)C13—C12—C11118.6 (2)
C4—C3—H3A119.2C13—C12—H12A120.7
C2—C3—H3A119.2C11—C12—H12A120.7
C3—C4—C5119.9 (3)C12—C13—C14121.1 (2)
C3—C4—H4A120.0C12—C13—N1119.7 (2)
C5—C4—H4A120.0C14—C13—N1119.2 (2)
C6—C5—C4119.5 (2)C13—C14—C15119.2 (2)
C6—C5—S1120.41 (19)C13—C14—H14A120.4
C4—C5—S1120.08 (19)C15—C14—H14A120.4
C5—C6—C7119.5 (2)C10—C15—C14121.3 (2)
C5—C6—H6A120.2C10—C15—H15A119.3
C7—C6—H6A120.2C14—C15—H15A119.3
C2—C7—C6121.7 (3)C13—N1—H1D109.5
C2—C7—H7A119.2C13—N1—H1E109.5
C6—C7—H7A119.2H1D—N1—H1E109.5
C9—C8—H8A109.5C13—N1—H1F109.5
C9—C8—H8B109.5H1D—N1—H1F109.5
H8A—C8—H8B109.5H1E—N1—H1F109.5
C9—C8—H8C109.5O1—S1—O2112.62 (13)
H8A—C8—H8C109.5O1—S1—O3112.74 (14)
H8B—C8—H8C109.5O2—S1—O3112.34 (13)
C8—C9—C10113.0 (3)O1—S1—C5105.43 (11)
C8—C9—H9A109.0O2—S1—C5106.63 (11)
C10—C9—H9A109.0O3—S1—C5106.43 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O1i0.892.242.792 (3)120
N1—H1D···O10.892.263.085 (3)154
N1—H1E···O2ii0.892.042.815 (3)146
N1—H1F···O3iii0.892.242.808 (3)122
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y1, z; (iii) x+1, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H12N+·C7H7O3S
Mr293.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)25.016 (3), 5.6376 (11), 21.6387 (13)
β (°) 95.227 (10)
V3)3039.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.36 × 0.28 × 0.24
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.930, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
14572, 3490, 2614
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.178, 1.06
No. of reflections3490
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.44

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O1i0.892.242.792 (3)120.2
N1—H1D···O10.892.263.085 (3)154.2
N1—H1E···O2ii0.892.042.815 (3)145.7
N1—H1F···O3iii0.892.242.808 (3)121.7
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y1, z; (iii) x+1, y1, z+1/2.
 

Acknowledgements

The authors thank the China Postdoctoral Science Foundation funded project (20090451147), the Jiangsu Planned Projects for Postdoctoral Research Funds (0802003B) and the SEU Major Postdoctoral Research Funds (3212000901) for financial support.

References

First citationChen, L.-Z. (2009). Acta Cryst. E65, o2626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCzupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Swiergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B. (2010). Acta Cryst. E66, o1473.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds