organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

16-[(E)-Benzyl­­idene]-2-hy­dr­oxy-12,13-di­phenyl-1,11-di­aza­penta­cyclo­[12.3.1.02,10.03,8.010,14]octa­deca-3(8),4,6-triene-9,15-dione

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 July 2010; accepted 15 July 2010; online 24 July 2010)

In the title compound, C35H28N2O3, an intra­molecular O—H⋯N hydrogen bonds generates a five-membered ring, producing an S(5) ring motif. The piperidone ring adopts a half-chair conformation and the two pyrrolidine rings adopt an envelope conformation. The dihedral angles formed between adjacent benzene rings are 74.39 (5) and 37.70 (6)°. In the crystal crystal, inter­molecular C—H⋯O hydrogen bonds link mol­ecules into dimers, which are further inter­connected into two-dimensional networks parallel to the ac plane by inter­molecular C—H⋯O hydrogen bonds. The crystal structure is consolidated by weak C—H⋯π inter­actions.

Related literature

For general background to and applications of the title compound, see: Daly et al. (1986[Daly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 49, 265-280.]); Monlineux & Pelletier (1987[Monlineux, R. J. & Pelletier, S. (1987). Alkaloids Chemical and Biological Perspectives. New York: Wiley.]); Padwa (1984[Padwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry. New York: Wiley.]); Tsuge & Kanemasa (1989[Tsuge, O. & Kanemasa, S. (1989). Adv. Heterocycl. Chem. 45, 231-349.]); Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For closely related structures, see: Kumar et al. (2010a[Kumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370-o1371.],b[Kumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1444-o1445.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C35H28N2O3

  • Mr = 524.59

  • Triclinic, [P \overline 1]

  • a = 8.6319 (2) Å

  • b = 11.8130 (2) Å

  • c = 14.3562 (3) Å

  • α = 75.395 (1)°

  • β = 72.876 (1)°

  • γ = 76.185 (1)°

  • V = 1332.18 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.32 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.980

  • 35745 measured reflections

  • 10026 independent reflections

  • 8085 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.02

  • 10026 reflections

  • 369 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C30–C35 and C9–C14 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.862 (18) 1.999 (18) 2.6383 (12) 130.2 (15)
C7—H7A⋯O1i 0.98 2.49 3.4701 (13) 177
C10—H10A⋯O1i 0.93 2.44 3.3605 (13) 173
C35—H35A⋯O3ii 0.93 2.44 3.3424 (16) 163
C13—H13ACg1iii 0.93 2.89 3.7470 (12) 155
C20—H20ACg2iv 0.93 2.84 3.4275 (15) 122
C33—H33ACg2v 0.93 2.96 3.7723 (15) 147
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) x, y-1, z; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 1,3-dipolar cycloaddition of azomethine ylides with olefinic dipolarophiles offers an excellent route for the construction of pyrrolidines (Tsuge & Kanemasa, 1989; Padwa, 1984). The chemistry of azomethine ylides has gained significance in recent years as it serves as an important route for the construction of nitrogen containing five-membered heterocycles, which are often central ring systems of numerous natural products (Daly et al., 1986; Waldmann, 1995). The pyrrolidine moiety is one of the significant core structures among the most extensively studied natural and synthetic heterocyclic compounds with remarkable medicinal activities (Monlineux & Pelletier, 1987).

In the title compound (Fig. 1), an intramolecular O1—H1O1···N1 hydrogen bond (Table 1) forms a five-membered ring, generating an S(5) hydrogen bond ring motif (Bernstein et al., 1995). The 4-piperidone ring (N2/C15/C25-C28) adopts a half-chair conformation, with puckering parameters Q = 0.6229 (10) Å, θ = 137.36 (9)° and φ = 236.70 (14)° (Cremer & Pople, 1975). The two fused pyrrolidine rings (N1/C7/C8/C15/C16 and N2/C15/C16/C17/C25) adopt an envelope conformation, with atoms C8 and C25 as the flap atoms, respectively. The puckering parameters are Q = 0.4071 (10) Å, φ = 248.43 (14)° for the N1/C7/C8/C15/C16 ring and Q = 0.4468 (10) Å, φ = 151.15 (13)° for the N2/C15/C16/C17/C25 pyrrolidine ring. The dihedral angles formed between benzene rings A/B and C/D are 74.39 (5) and 37.70 (6)°, respectively. The bond lengths and angles are comparable to those observed in closely related structures (Kumar et al., 2010a,b).

In the crystal structure (Fig. 2), intermolecular C35—H35A···O3 hydrogen bonds (Table 1) link neighbouring molecules into dimers. Intermolecular C7—H7A···O1 and C10—H10A···O1 hydrogen bonds (Table 1) further interconnect these dimers into two-dimensional networks parallel to the ac plane. The crystal structure is further stabilized by weak intermolecular C13—H13A···Cg1, C20—H20A···Cg2 and C33—H33A···Cg2 interactions, where Cg1 and Cg2 are the centroids of the C30-C35 and C9-C14 benzene rings, respectively.

Related literature top

For general background to and applications of the title compound, see: Daly et al. (1986); Monlineux & Pelletier (1987); Padwa (1984); Tsuge & Kanemasa (1989); Waldmann (1995). For ring puckering analysis, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Kumar et al. (2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-phenylmethylidene]tetrahydro-4(1H)- pyridinone (0.100 g, 0.363 mmol), ninhydrin (0.065 g, 0.363 mmol) and phenylglycine (0.055 g, 0.363 mmol) were dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The solid precipitated was filtered and washed with water to afford the product which was recrystallized from ethyl acetate to reveal the title compound as colourless crystals.

Refinement top

Atoms H1N1 and H1O1 were located from a difference Fourier map [N1—H1N1 = 0.904 (15) Å and O1—H1O1 = 0.863 (18) Å] and allowed to refine freely. The remaining H atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 Ueq(C).

Structure description top

The 1,3-dipolar cycloaddition of azomethine ylides with olefinic dipolarophiles offers an excellent route for the construction of pyrrolidines (Tsuge & Kanemasa, 1989; Padwa, 1984). The chemistry of azomethine ylides has gained significance in recent years as it serves as an important route for the construction of nitrogen containing five-membered heterocycles, which are often central ring systems of numerous natural products (Daly et al., 1986; Waldmann, 1995). The pyrrolidine moiety is one of the significant core structures among the most extensively studied natural and synthetic heterocyclic compounds with remarkable medicinal activities (Monlineux & Pelletier, 1987).

In the title compound (Fig. 1), an intramolecular O1—H1O1···N1 hydrogen bond (Table 1) forms a five-membered ring, generating an S(5) hydrogen bond ring motif (Bernstein et al., 1995). The 4-piperidone ring (N2/C15/C25-C28) adopts a half-chair conformation, with puckering parameters Q = 0.6229 (10) Å, θ = 137.36 (9)° and φ = 236.70 (14)° (Cremer & Pople, 1975). The two fused pyrrolidine rings (N1/C7/C8/C15/C16 and N2/C15/C16/C17/C25) adopt an envelope conformation, with atoms C8 and C25 as the flap atoms, respectively. The puckering parameters are Q = 0.4071 (10) Å, φ = 248.43 (14)° for the N1/C7/C8/C15/C16 ring and Q = 0.4468 (10) Å, φ = 151.15 (13)° for the N2/C15/C16/C17/C25 pyrrolidine ring. The dihedral angles formed between benzene rings A/B and C/D are 74.39 (5) and 37.70 (6)°, respectively. The bond lengths and angles are comparable to those observed in closely related structures (Kumar et al., 2010a,b).

In the crystal structure (Fig. 2), intermolecular C35—H35A···O3 hydrogen bonds (Table 1) link neighbouring molecules into dimers. Intermolecular C7—H7A···O1 and C10—H10A···O1 hydrogen bonds (Table 1) further interconnect these dimers into two-dimensional networks parallel to the ac plane. The crystal structure is further stabilized by weak intermolecular C13—H13A···Cg1, C20—H20A···Cg2 and C33—H33A···Cg2 interactions, where Cg1 and Cg2 are the centroids of the C30-C35 and C9-C14 benzene rings, respectively.

For general background to and applications of the title compound, see: Daly et al. (1986); Monlineux & Pelletier (1987); Padwa (1984); Tsuge & Kanemasa (1989); Waldmann (1995). For ring puckering analysis, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Kumar et al. (2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed down the b axis, showing a two-dimensional hydrogen-bonded network parallel to the ac plane. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.
16-[(E)-Benzylidene]-2-hydroxy-12,13-diphenyl-1,11- diazapentacyclo[12.3.1.02,10.03,8.010,14]octadeca-3(8),4,6-triene- 9,15-dione top
Crystal data top
C35H28N2O3Z = 2
Mr = 524.59F(000) = 552
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6319 (2) ÅCell parameters from 9908 reflections
b = 11.8130 (2) Åθ = 2.5–33.0°
c = 14.3562 (3) ŵ = 0.08 mm1
α = 75.395 (1)°T = 100 K
β = 72.876 (1)°Block, colourless
γ = 76.185 (1)°0.32 × 0.30 × 0.25 mm
V = 1332.18 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10026 independent reflections
Radiation source: fine-focus sealed tube8085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 33.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.973, Tmax = 0.980k = 1518
35745 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.3278P]
where P = (Fo2 + 2Fc2)/3
10026 reflections(Δ/σ)max < 0.001
369 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C35H28N2O3γ = 76.185 (1)°
Mr = 524.59V = 1332.18 (5) Å3
Triclinic, P1Z = 2
a = 8.6319 (2) ÅMo Kα radiation
b = 11.8130 (2) ŵ = 0.08 mm1
c = 14.3562 (3) ÅT = 100 K
α = 75.395 (1)°0.32 × 0.30 × 0.25 mm
β = 72.876 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10026 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8085 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.980Rint = 0.027
35745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.51 e Å3
10026 reflectionsΔρmin = 0.24 e Å3
369 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37832 (9)0.64683 (7)0.04084 (5)0.01893 (14)
O20.08312 (9)0.57843 (7)0.29194 (6)0.02456 (16)
O30.17358 (9)0.37449 (7)0.41701 (5)0.01996 (15)
N10.15205 (10)0.51021 (7)0.10911 (6)0.01565 (15)
N20.46901 (10)0.57415 (7)0.18617 (6)0.01554 (15)
C10.20254 (13)0.27449 (9)0.01412 (8)0.02146 (19)
H1A0.30560.29030.05190.026*
C20.12201 (16)0.20652 (10)0.04456 (10)0.0284 (2)
H2A0.17150.17720.10270.034*
C30.03146 (16)0.18240 (10)0.01147 (10)0.0290 (2)
H3A0.08340.13500.00800.035*
C40.10753 (14)0.22921 (10)0.09674 (9)0.0264 (2)
H4A0.21160.21450.13360.032*
C50.02863 (12)0.29778 (9)0.12704 (8)0.02011 (18)
H5A0.08080.32990.18360.024*
C60.12871 (11)0.31887 (8)0.07312 (7)0.01559 (16)
C70.22380 (11)0.38226 (8)0.11019 (7)0.01398 (16)
H7A0.33610.37680.06740.017*
C80.23468 (11)0.33085 (8)0.21896 (7)0.01388 (15)
H8A0.12200.32790.25980.017*
C90.33395 (11)0.20676 (8)0.23764 (7)0.01492 (16)
C100.47150 (12)0.16476 (8)0.16708 (8)0.01862 (18)
H10A0.50690.21470.10670.022*
C110.55647 (13)0.04853 (9)0.18631 (9)0.0231 (2)
H11A0.64880.02190.13900.028*
C120.50438 (14)0.02770 (9)0.27554 (9)0.0245 (2)
H12A0.56110.10520.28800.029*
C130.36703 (14)0.01263 (9)0.34600 (8)0.0241 (2)
H13A0.33100.03810.40580.029*
C140.28311 (13)0.12884 (9)0.32735 (8)0.01999 (18)
H14A0.19160.15520.37530.024*
C150.29208 (11)0.43124 (8)0.24213 (7)0.01354 (15)
C160.19664 (11)0.54615 (8)0.18681 (7)0.01378 (15)
C170.32511 (11)0.63251 (8)0.14526 (7)0.01468 (16)
C180.23354 (12)0.74740 (8)0.17864 (7)0.01695 (17)
C190.28408 (14)0.85751 (9)0.15035 (9)0.0227 (2)
H19A0.38790.86630.10910.027*
C200.17512 (16)0.95369 (10)0.18545 (10)0.0291 (2)
H20A0.20581.02810.16660.035*
C210.01984 (16)0.94031 (11)0.24878 (11)0.0319 (3)
H21A0.05081.00590.27180.038*
C220.03022 (14)0.83114 (10)0.27771 (9)0.0261 (2)
H22A0.13290.82200.32040.031*
C230.07820 (12)0.73506 (9)0.24084 (7)0.01799 (17)
C240.04469 (11)0.61565 (8)0.24970 (7)0.01689 (17)
C250.47371 (11)0.44701 (8)0.19245 (7)0.01582 (16)
H25A0.54660.39760.23280.019*
H25B0.50990.42720.12690.019*
C260.45734 (12)0.59095 (8)0.28658 (7)0.01673 (17)
H26A0.43520.67560.28600.020*
H26B0.56330.55840.30190.020*
C270.32554 (11)0.53394 (8)0.36921 (7)0.01594 (16)
C280.25652 (11)0.43883 (8)0.35060 (7)0.01509 (16)
C290.25868 (13)0.56680 (9)0.45800 (7)0.01835 (17)
H29A0.17390.52840.49990.022*
C300.30193 (13)0.65502 (9)0.49733 (7)0.01963 (18)
C310.46073 (14)0.68084 (9)0.47512 (8)0.0221 (2)
H31A0.54590.64420.42950.027*
C320.49189 (15)0.76115 (10)0.52097 (9)0.0255 (2)
H32A0.59780.77720.50600.031*
C330.36614 (17)0.81721 (10)0.58864 (9)0.0282 (2)
H33A0.38730.87060.61920.034*
C340.20874 (18)0.79293 (12)0.61028 (9)0.0321 (3)
H34A0.12350.83130.65480.039*
C350.17695 (15)0.71182 (11)0.56616 (8)0.0273 (2)
H35A0.07110.69510.58270.033*
H1O10.306 (2)0.6203 (15)0.0257 (13)0.039 (4)*
H1N10.0415 (18)0.5227 (13)0.1190 (11)0.023 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (3)0.0209 (3)0.0135 (3)0.0075 (3)0.0018 (2)0.0021 (2)
O20.0173 (3)0.0246 (4)0.0276 (4)0.0041 (3)0.0013 (3)0.0054 (3)
O30.0236 (3)0.0197 (3)0.0165 (3)0.0087 (3)0.0021 (3)0.0024 (3)
N10.0182 (3)0.0117 (3)0.0182 (4)0.0011 (3)0.0068 (3)0.0038 (3)
N20.0160 (3)0.0140 (3)0.0167 (4)0.0034 (3)0.0031 (3)0.0037 (3)
C10.0224 (4)0.0217 (5)0.0223 (5)0.0003 (3)0.0079 (4)0.0090 (4)
C20.0363 (6)0.0234 (5)0.0324 (6)0.0040 (4)0.0186 (5)0.0148 (4)
C30.0388 (6)0.0173 (4)0.0413 (7)0.0053 (4)0.0270 (5)0.0041 (4)
C40.0266 (5)0.0228 (5)0.0340 (6)0.0103 (4)0.0164 (4)0.0027 (4)
C50.0192 (4)0.0204 (4)0.0220 (5)0.0056 (3)0.0070 (3)0.0024 (4)
C60.0175 (4)0.0125 (4)0.0176 (4)0.0014 (3)0.0065 (3)0.0030 (3)
C70.0156 (4)0.0118 (4)0.0147 (4)0.0020 (3)0.0036 (3)0.0035 (3)
C80.0154 (4)0.0116 (3)0.0144 (4)0.0025 (3)0.0030 (3)0.0028 (3)
C90.0161 (4)0.0115 (4)0.0182 (4)0.0034 (3)0.0056 (3)0.0024 (3)
C100.0170 (4)0.0131 (4)0.0237 (5)0.0028 (3)0.0027 (3)0.0026 (3)
C110.0181 (4)0.0151 (4)0.0338 (6)0.0006 (3)0.0044 (4)0.0054 (4)
C120.0249 (5)0.0130 (4)0.0367 (6)0.0018 (3)0.0139 (4)0.0006 (4)
C130.0303 (5)0.0168 (4)0.0248 (5)0.0061 (4)0.0111 (4)0.0034 (4)
C140.0244 (4)0.0164 (4)0.0182 (4)0.0046 (3)0.0053 (3)0.0007 (3)
C150.0151 (4)0.0114 (3)0.0141 (4)0.0021 (3)0.0033 (3)0.0031 (3)
C160.0149 (4)0.0113 (4)0.0145 (4)0.0020 (3)0.0024 (3)0.0030 (3)
C170.0165 (4)0.0130 (4)0.0139 (4)0.0037 (3)0.0020 (3)0.0027 (3)
C180.0212 (4)0.0129 (4)0.0184 (4)0.0027 (3)0.0076 (3)0.0031 (3)
C190.0280 (5)0.0151 (4)0.0281 (5)0.0056 (4)0.0122 (4)0.0023 (4)
C200.0376 (6)0.0141 (4)0.0421 (7)0.0027 (4)0.0198 (5)0.0074 (4)
C210.0360 (6)0.0198 (5)0.0449 (7)0.0053 (4)0.0162 (5)0.0178 (5)
C220.0247 (5)0.0238 (5)0.0315 (6)0.0038 (4)0.0078 (4)0.0149 (4)
C230.0203 (4)0.0151 (4)0.0196 (4)0.0001 (3)0.0061 (3)0.0067 (3)
C240.0169 (4)0.0158 (4)0.0167 (4)0.0004 (3)0.0035 (3)0.0040 (3)
C250.0145 (4)0.0138 (4)0.0186 (4)0.0019 (3)0.0024 (3)0.0047 (3)
C260.0170 (4)0.0164 (4)0.0181 (4)0.0048 (3)0.0048 (3)0.0036 (3)
C270.0177 (4)0.0150 (4)0.0163 (4)0.0036 (3)0.0057 (3)0.0027 (3)
C280.0161 (4)0.0137 (4)0.0157 (4)0.0020 (3)0.0042 (3)0.0037 (3)
C290.0236 (4)0.0166 (4)0.0162 (4)0.0060 (3)0.0053 (3)0.0030 (3)
C300.0279 (5)0.0175 (4)0.0154 (4)0.0071 (3)0.0066 (3)0.0024 (3)
C310.0258 (5)0.0205 (4)0.0238 (5)0.0030 (4)0.0134 (4)0.0033 (4)
C320.0321 (5)0.0220 (5)0.0288 (5)0.0077 (4)0.0184 (4)0.0005 (4)
C330.0472 (7)0.0222 (5)0.0221 (5)0.0146 (5)0.0132 (5)0.0032 (4)
C340.0446 (7)0.0310 (6)0.0240 (5)0.0169 (5)0.0017 (5)0.0137 (5)
C350.0323 (5)0.0302 (6)0.0218 (5)0.0150 (4)0.0031 (4)0.0121 (4)
Geometric parameters (Å, º) top
O1—C171.4109 (11)C15—C281.5175 (13)
O1—H1O10.863 (18)C15—C251.5542 (13)
O2—C241.2171 (12)C15—C161.5683 (12)
O3—C281.2214 (11)C16—C241.5401 (13)
N1—C161.4636 (12)C16—C171.5717 (13)
N1—C71.4883 (12)C17—C181.5129 (13)
N1—H1N10.904 (15)C18—C231.3926 (14)
N2—C251.4731 (12)C18—C191.3955 (14)
N2—C261.4754 (13)C19—C201.3887 (16)
N2—C171.4763 (12)C19—H19A0.9300
C1—C21.3933 (16)C20—C211.3998 (19)
C1—C61.3969 (14)C20—H20A0.9300
C1—H1A0.9300C21—C221.3829 (17)
C2—C31.3857 (19)C21—H21A0.9300
C2—H2A0.9300C22—C231.3958 (14)
C3—C41.3892 (19)C22—H22A0.9300
C3—H3A0.9300C23—C241.4738 (14)
C4—C51.3874 (15)C25—H25A0.9700
C4—H4A0.9300C25—H25B0.9700
C5—C61.3968 (14)C26—C271.5242 (13)
C5—H5A0.9300C26—H26A0.9700
C6—C71.5064 (13)C26—H26B0.9700
C7—C81.5482 (13)C27—C291.3483 (14)
C7—H7A0.9800C27—C281.5012 (13)
C8—C91.5140 (12)C29—C301.4666 (14)
C8—C151.5295 (13)C29—H29A0.9300
C8—H8A0.9800C30—C351.3970 (15)
C9—C101.3949 (13)C30—C311.4025 (15)
C9—C141.4002 (13)C31—C321.3953 (15)
C10—C111.3952 (13)C31—H31A0.9300
C10—H10A0.9300C32—C331.3859 (18)
C11—C121.3880 (16)C32—H32A0.9300
C11—H11A0.9300C33—C341.3847 (18)
C12—C131.3867 (17)C33—H33A0.9300
C12—H12A0.9300C34—C351.3886 (16)
C13—C141.3911 (14)C34—H34A0.9300
C13—H13A0.9300C35—H35A0.9300
C14—H14A0.9300
C17—O1—H1O1103.4 (11)O1—C17—N2107.75 (7)
C16—N1—C7108.20 (7)O1—C17—C18112.40 (8)
C16—N1—H1N1110.8 (9)N2—C17—C18115.09 (8)
C7—N1—H1N1110.8 (9)O1—C17—C16109.81 (7)
C25—N2—C26107.71 (7)N2—C17—C16106.84 (7)
C25—N2—C17102.98 (7)C18—C17—C16104.70 (7)
C26—N2—C17115.82 (7)C23—C18—C19120.49 (9)
C2—C1—C6120.09 (10)C23—C18—C17111.55 (8)
C2—C1—H1A120.0C19—C18—C17127.87 (9)
C6—C1—H1A120.0C20—C19—C18118.18 (11)
C3—C2—C1120.29 (11)C20—C19—H19A120.9
C3—C2—H2A119.9C18—C19—H19A120.9
C1—C2—H2A119.9C19—C20—C21120.99 (11)
C2—C3—C4119.84 (10)C19—C20—H20A119.5
C2—C3—H3A120.1C21—C20—H20A119.5
C4—C3—H3A120.1C22—C21—C20121.03 (10)
C5—C4—C3120.16 (11)C22—C21—H21A119.5
C5—C4—H4A119.9C20—C21—H21A119.5
C3—C4—H4A119.9C21—C22—C23117.91 (11)
C4—C5—C6120.41 (10)C21—C22—H22A121.0
C4—C5—H5A119.8C23—C22—H22A121.0
C6—C5—H5A119.8C18—C23—C22121.38 (10)
C5—C6—C1119.14 (9)C18—C23—C24110.55 (8)
C5—C6—C7121.33 (9)C22—C23—C24127.71 (10)
C1—C6—C7119.45 (9)O2—C24—C23127.65 (9)
N1—C7—C6113.67 (7)O2—C24—C16124.17 (9)
N1—C7—C8104.17 (7)C23—C24—C16107.95 (8)
C6—C7—C8114.21 (7)N2—C25—C15103.48 (7)
N1—C7—H7A108.2N2—C25—H25A111.1
C6—C7—H7A108.2C15—C25—H25A111.1
C8—C7—H7A108.2N2—C25—H25B111.1
C9—C8—C15117.66 (7)C15—C25—H25B111.1
C9—C8—C7115.68 (7)H25A—C25—H25B109.0
C15—C8—C7101.04 (7)N2—C26—C27114.98 (8)
C9—C8—H8A107.3N2—C26—H26A108.5
C15—C8—H8A107.3C27—C26—H26A108.5
C7—C8—H8A107.3N2—C26—H26B108.5
C10—C9—C14118.20 (9)C27—C26—H26B108.5
C10—C9—C8122.50 (8)H26A—C26—H26B107.5
C14—C9—C8119.25 (8)C29—C27—C28116.36 (9)
C9—C10—C11120.58 (9)C29—C27—C26124.55 (9)
C9—C10—H10A119.7C28—C27—C26119.00 (8)
C11—C10—H10A119.7O3—C28—C27122.90 (9)
C12—C11—C10120.53 (10)O3—C28—C15122.12 (9)
C12—C11—H11A119.7C27—C28—C15114.94 (8)
C10—C11—H11A119.7C27—C29—C30128.62 (9)
C13—C12—C11119.47 (9)C27—C29—H29A115.7
C13—C12—H12A120.3C30—C29—H29A115.7
C11—C12—H12A120.3C35—C30—C31118.20 (10)
C12—C13—C14120.07 (10)C35—C30—C29117.01 (9)
C12—C13—H13A120.0C31—C30—C29124.68 (10)
C14—C13—H13A120.0C32—C31—C30120.50 (10)
C13—C14—C9121.14 (10)C32—C31—H31A119.8
C13—C14—H14A119.4C30—C31—H31A119.8
C9—C14—H14A119.4C33—C32—C31120.49 (11)
C28—C15—C8117.35 (7)C33—C32—H32A119.8
C28—C15—C25107.65 (7)C31—C32—H32A119.8
C8—C15—C25116.98 (7)C34—C33—C32119.32 (10)
C28—C15—C16108.88 (7)C34—C33—H33A120.3
C8—C15—C16103.12 (7)C32—C33—H33A120.3
C25—C15—C16101.25 (7)C33—C34—C35120.63 (11)
N1—C16—C24110.58 (7)C33—C34—H34A119.7
N1—C16—C15106.43 (7)C35—C34—H34A119.7
C24—C16—C15117.72 (7)C34—C35—C30120.84 (11)
N1—C16—C17113.59 (7)C34—C35—H35A119.6
C24—C16—C17104.93 (7)C30—C35—H35A119.6
C15—C16—C17103.62 (7)
C6—C1—C2—C30.08 (16)C24—C16—C17—C185.11 (9)
C1—C2—C3—C41.96 (17)C15—C16—C17—C18129.17 (7)
C2—C3—C4—C51.43 (16)O1—C17—C18—C23124.98 (9)
C3—C4—C5—C60.98 (16)N2—C17—C18—C23111.16 (9)
C4—C5—C6—C12.83 (14)C16—C17—C18—C235.82 (10)
C4—C5—C6—C7173.65 (9)O1—C17—C18—C1951.54 (13)
C2—C1—C6—C52.30 (15)N2—C17—C18—C1972.33 (13)
C2—C1—C6—C7174.25 (9)C16—C17—C18—C19170.69 (10)
C16—N1—C7—C6152.42 (8)C23—C18—C19—C200.35 (15)
C16—N1—C7—C827.49 (9)C17—C18—C19—C20175.89 (10)
C5—C6—C7—N168.57 (11)C18—C19—C20—C211.03 (17)
C1—C6—C7—N1114.96 (10)C19—C20—C21—C220.48 (19)
C5—C6—C7—C850.78 (11)C20—C21—C22—C230.74 (18)
C1—C6—C7—C8125.69 (9)C19—C18—C23—C220.89 (15)
N1—C7—C8—C9168.61 (7)C17—C18—C23—C22177.70 (9)
C6—C7—C8—C966.82 (10)C19—C18—C23—C24172.68 (9)
N1—C7—C8—C1540.39 (8)C17—C18—C23—C244.13 (11)
C6—C7—C8—C15164.96 (7)C21—C22—C23—C181.42 (17)
C15—C8—C9—C1086.52 (11)C21—C22—C23—C24170.96 (11)
C7—C8—C9—C1032.95 (12)C18—C23—C24—O2174.10 (10)
C15—C8—C9—C1496.07 (11)C22—C23—C24—O21.04 (18)
C7—C8—C9—C14144.46 (9)C18—C23—C24—C160.55 (11)
C14—C9—C10—C110.64 (15)C22—C23—C24—C16173.61 (10)
C8—C9—C10—C11178.07 (9)N1—C16—C24—O255.00 (12)
C9—C10—C11—C120.76 (16)C15—C16—C24—O267.59 (13)
C10—C11—C12—C130.23 (17)C17—C16—C24—O2177.86 (9)
C11—C12—C13—C140.40 (17)N1—C16—C24—C23119.88 (8)
C12—C13—C14—C90.51 (17)C15—C16—C24—C23117.52 (9)
C10—C9—C14—C130.01 (15)C17—C16—C24—C232.98 (10)
C8—C9—C14—C13177.53 (9)C26—N2—C25—C1575.74 (9)
C9—C8—C15—C2875.97 (10)C17—N2—C25—C1547.14 (9)
C7—C8—C15—C28157.10 (7)C28—C15—C25—N272.26 (9)
C9—C8—C15—C2554.29 (11)C8—C15—C25—N2153.07 (8)
C7—C8—C15—C2572.63 (9)C16—C15—C25—N241.91 (9)
C9—C8—C15—C16164.38 (7)C25—N2—C26—C2748.63 (10)
C7—C8—C15—C1637.46 (8)C17—N2—C26—C2765.98 (10)
C7—N1—C16—C24132.42 (8)N2—C26—C27—C29158.49 (9)
C7—N1—C16—C153.45 (9)N2—C26—C27—C2818.05 (12)
C7—N1—C16—C17109.92 (8)C29—C27—C28—O316.55 (14)
C28—C15—C16—N1147.40 (7)C26—C27—C28—O3166.63 (9)
C8—C15—C16—N122.08 (9)C29—C27—C28—C15161.28 (8)
C25—C15—C16—N199.34 (8)C26—C27—C28—C1515.54 (12)
C28—C15—C16—C2422.72 (11)C8—C15—C28—O36.06 (13)
C8—C15—C16—C24102.61 (9)C25—C15—C28—O3140.53 (9)
C25—C15—C16—C24135.97 (8)C16—C15—C28—O3110.49 (10)
C28—C15—C16—C1792.55 (8)C8—C15—C28—C27176.10 (7)
C8—C15—C16—C17142.13 (7)C25—C15—C28—C2741.63 (10)
C25—C15—C16—C1720.70 (8)C16—C15—C28—C2767.36 (9)
C25—N2—C17—O184.81 (8)C28—C27—C29—C30178.98 (9)
C26—N2—C17—O1157.91 (7)C26—C27—C29—C304.39 (16)
C25—N2—C17—C18148.90 (8)C27—C29—C30—C35151.84 (11)
C26—N2—C17—C1831.62 (11)C27—C29—C30—C3132.02 (17)
C25—N2—C17—C1633.14 (9)C35—C30—C31—C320.05 (15)
C26—N2—C17—C1684.14 (9)C29—C30—C31—C32176.05 (9)
N1—C16—C17—O15.11 (10)C30—C31—C32—C330.44 (16)
C24—C16—C17—O1126.00 (8)C31—C32—C33—C340.13 (17)
C15—C16—C17—O1109.94 (8)C32—C33—C34—C351.09 (19)
N1—C16—C17—N2121.70 (8)C33—C34—C35—C301.5 (2)
C24—C16—C17—N2117.40 (8)C31—C30—C35—C340.91 (17)
C15—C16—C17—N26.65 (9)C29—C30—C35—C34177.31 (11)
N1—C16—C17—C18115.78 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C30–C35 and C9–C14 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.862 (18)1.999 (18)2.6383 (12)130.2 (15)
C7—H7A···O1i0.982.493.4701 (13)177
C10—H10A···O1i0.932.443.3605 (13)173
C35—H35A···O3ii0.932.443.3424 (16)163
C13—H13A···Cg1iii0.932.893.7470 (12)155
C20—H20A···Cg2iv0.932.843.4275 (15)122
C33—H33A···Cg2v0.932.963.7723 (15)147
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC35H28N2O3
Mr524.59
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6319 (2), 11.8130 (2), 14.3562 (3)
α, β, γ (°)75.395 (1), 72.876 (1), 76.185 (1)
V3)1332.18 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.973, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
35745, 10026, 8085
Rint0.027
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.02
No. of reflections10026
No. of parameters369
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C30–C35 and C9–C14 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.862 (18)1.999 (18)2.6383 (12)130.2 (15)
C7—H7A···O1i0.98002.49003.4701 (13)177.00
C10—H10A···O1i0.93002.44003.3605 (13)173.00
C35—H35A···O3ii0.93002.44003.3424 (16)163.00
C13—H13A···Cg1iii0.93002.893.7470 (12)155
C20—H20A···Cg2iv0.93002.843.4275 (15)122
C33—H33A···Cg2v0.93002.963.7723 (15)147
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811016). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). RSK thanks USM for the award of a post doctoral fellowship and JHG also thanks USM for the award of a USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 49, 265–280.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1444–o1445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370–o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMonlineux, R. J. & Pelletier, S. (1987). Alkaloids Chemical and Biological Perspectives. New York: Wiley.  Google Scholar
First citationPadwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuge, O. & Kanemasa, S. (1989). Adv. Heterocycl. Chem. 45, 231–349.  CrossRef CAS Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds