organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-16-[(E)-4-methyl­benzyl­­idene]-13-(4-methyl­phen­yl)-12-phenyl-1,11-di­aza­penta­cyclo­[12.3.1.02,10.03,8.010,14]octa­deca-3(8),4,6-triene-9,15-dione

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 July 2010; accepted 15 July 2010; online 24 July 2010)

In the title compound, C37H32N2O3, an intra­molecular O—H⋯N hydrogen bond generates a five-membered ring, producing an S(5) motif. The piperidone ring adopts a half-chair conformation. The two fused pyrrolidine rings have similar envelope conformations. The interplanar angles between the benzene rings A/B and C/D are 75.68 (7) and 30.22 (6)°, respectively. In the crystal structure, adjacent mol­ecules are inter­connected into chains propagating along the [010] direction via inter­molecular C—H⋯O hydrogen bonds. Further stabilization is provided by weak C—H⋯π inter­actions.

Related literature

For general background to and applications of related structures, see: Ban et al. (1974[Ban, Y., Taga, N. & Oishi, T. (1974). Tetrahedron Lett. 15, 187-190.]); De Amici et al. (1990[De Amici, M., De Michelli, C. & Sani, V. M. (1990). Tetrahedron, 46, 1975-1986.]); Howe & Shelton (1990[Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603-4607.]); Kornet & Thio (1976[Kornet, M. J. & Thio, A. P. (1976). J. Med. Chem. 19, 892-898.]); Kozikowski (1984[Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410-416.]); Li et al. (1996[Li, Q., Chu, D. T. W., Claiborne, A., Cooper, C. S., Lee, C. M., Raye, K., Berst, K. B., Donner, P., Wang, W., Hasvold, L., Fung, A., Ma, Z., Tufano, M., Flamm, R., Shen, L. L., Baranowski, J., Nilius, A., Alder, J., Meulbroek, J., Marsh, K., Crowell, D. A., Hui, Y., Seif, L., Melcher, L. M., Henry, R., Spanton, S., Faghih, R., Klein, L. L., Tanaka, S. K. & Plattner, J. J. (1996). J. Med. Chem. 39, 3070-3088.]); Okita & Isobe (1994[Okita, T. & Isobe, M. (1994). Tetrahedron, 50, 11143-11152.]); Rosenmond et al. (1994[Rosenmond, P., Hosseini-Merescht, M. & Bub, C. (1994). Liebigs Ann. Chem. 2, 151-154.]); Southon & Buckingham (1989[Southon, I. W. & Buckingham, J. (1989). Dictionary of Alkaloids. New York: Chapman and Hall.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For closely related structures, see: Kumar et al. (2010a[Kumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370-o1371.],b[Kumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1444-o1445.],c[Kumar, R. S., Osman, H., Ali, M. A., Goh, J. H. & Fun, H.-K. (2010c). Acta Cryst. E66, o2084-o2085.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C37H32N2O3

  • Mr = 552.65

  • Monoclinic, C 2/c

  • a = 42.936 (5) Å

  • b = 7.3759 (9) Å

  • c = 17.990 (2) Å

  • β = 91.154 (2)°

  • V = 5696.0 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.48 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.990

  • 21929 measured reflections

  • 7946 independent reflections

  • 6021 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.04

  • 7946 reflections

  • 389 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C14 and C18–C23 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.98 (2) 1.94 (2) 2.6477 (15) 126.7 (18)
C22—H22A⋯O1i 0.93 2.42 3.2564 (16) 149
C3—H3ACg1ii 0.93 2.73 3.5620 (18) 150
C37—H37BCg2iii 0.96 2.61 3.3932 (16) 139
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{5\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The versatility of 1,3-dipolar cycloadditions for the construction of five-membered heterocyclic rings is well established. The reaction of azomethine ylides with alkenes affords pyrrolidines which are present in numerous alkaloids (Southon & Buckingham, 1989) and physiologically active compounds (Li et al., 1996). Spiropyrrolidines have received considerable attention due to its biological activity (Kozikowski, 1984; Howe & Shelton, 1990; De Amici et al., 1990; Ban et al., 1974). They display interesting anti-microbial, anti-tumor and antibiotic properties besides acting as inhibitors of human NK-I receptor activity (Okita & Isobe, 1994; Rosenmond et al., 1994; Kornet & Thio, 1976). The biological significance of the above mentioned heterocycles, prompted us to synthesize the title compound whose crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. An intramolecular O1—H1O1···N1 hydrogen bond (Table 1) forms a five-membered ring, generating an S(5) hydrogen bond ring motif (Bernstein et al., 1995). The 4-piperidone ring (N2/C15/C25-C28) adopts a half-chair conformation, with puckering parameters Q = 0.6128 (13) Å, θ = 36.28 (12)° and φ = 58.1 (2)° (Cremer & Pople, 1975). The two fused pyrrolidine rings with atom sequences C7/C8/C15/C16/N1 and C15/C16/C17/N2/C25, adopt similar envelope conformations, with atoms C8 and C25, respectively, as the flap atoms. The puckering parameters are Q = 0.3433 (14) Å, φ = 77.2 (2)° for the C7/C8/C15/C16/N1 pyrrolidine ring and Q = 0.4564 (13) Å, φ = 331.35 (17)° for the C15/C16/C17/N2/C25 pyrrolidine ring. The benzene rings A/B and C/D form interplanar angles of 75.68 (7) and 30.22 (6)°, respectively. The geometric parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b,c).

In the crystal structure, adjacent molecules are interconnected into one-dimensional chains propagating along the [010] direction via intermolecular C22—H22A···O1 hydrogen bonds (Fig. 2, Table 1). Further stabilization is provided by weak intermolecular C3—H3A···Cg1 and C37—H37B···Cg2 interactions involving the C9-C14 (Cg1) and C18-C23 (Cg2) benzene rings.

Related literature top

For general background to and applications of the title compound, see: Ban et al. (1974); De Amici et al. (1990); Howe & Shelton (1990); Kornet & Thio (1976); Kozikowski (1984); Li et al. (1996); Okita & Isobe (1994); Rosenmond et al. (1994); Southon & Buckingham (1989). For ring puckering analysis, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Kumar et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-(4-methylphenyl)methylidene]tetrahydro-4(1H)-pyridinone (0.100 g, 0.330 mmol), ninhydrin (0.059 g, 0.330 mmol) and phenylglycine (0.050 g, 0.330 mmol) were dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The solid precipitated was filtered and washed with water to afford the product which was recrystallized from ethyl acetate to reveal the title compound as colourless crystals.

Refinement top

Atoms H1N1 and H1O1 were located from difference Fourier map [N1—H1N1 = 0.853 (19) Å and O1—H1O1 = 0.98 (2) Å] and allowed to refine freely. The remaining H atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was applied to the methyl groups.

Structure description top

The versatility of 1,3-dipolar cycloadditions for the construction of five-membered heterocyclic rings is well established. The reaction of azomethine ylides with alkenes affords pyrrolidines which are present in numerous alkaloids (Southon & Buckingham, 1989) and physiologically active compounds (Li et al., 1996). Spiropyrrolidines have received considerable attention due to its biological activity (Kozikowski, 1984; Howe & Shelton, 1990; De Amici et al., 1990; Ban et al., 1974). They display interesting anti-microbial, anti-tumor and antibiotic properties besides acting as inhibitors of human NK-I receptor activity (Okita & Isobe, 1994; Rosenmond et al., 1994; Kornet & Thio, 1976). The biological significance of the above mentioned heterocycles, prompted us to synthesize the title compound whose crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. An intramolecular O1—H1O1···N1 hydrogen bond (Table 1) forms a five-membered ring, generating an S(5) hydrogen bond ring motif (Bernstein et al., 1995). The 4-piperidone ring (N2/C15/C25-C28) adopts a half-chair conformation, with puckering parameters Q = 0.6128 (13) Å, θ = 36.28 (12)° and φ = 58.1 (2)° (Cremer & Pople, 1975). The two fused pyrrolidine rings with atom sequences C7/C8/C15/C16/N1 and C15/C16/C17/N2/C25, adopt similar envelope conformations, with atoms C8 and C25, respectively, as the flap atoms. The puckering parameters are Q = 0.3433 (14) Å, φ = 77.2 (2)° for the C7/C8/C15/C16/N1 pyrrolidine ring and Q = 0.4564 (13) Å, φ = 331.35 (17)° for the C15/C16/C17/N2/C25 pyrrolidine ring. The benzene rings A/B and C/D form interplanar angles of 75.68 (7) and 30.22 (6)°, respectively. The geometric parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b,c).

In the crystal structure, adjacent molecules are interconnected into one-dimensional chains propagating along the [010] direction via intermolecular C22—H22A···O1 hydrogen bonds (Fig. 2, Table 1). Further stabilization is provided by weak intermolecular C3—H3A···Cg1 and C37—H37B···Cg2 interactions involving the C9-C14 (Cg1) and C18-C23 (Cg2) benzene rings.

For general background to and applications of the title compound, see: Ban et al. (1974); De Amici et al. (1990); Howe & Shelton (1990); Kornet & Thio (1976); Kozikowski (1984); Li et al. (1996); Okita & Isobe (1994); Rosenmond et al. (1994); Southon & Buckingham (1989). For ring puckering analysis, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Kumar et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 20 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed down the c axis, showing infinite chains propagating along the [010] direction. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.
2-Hydroxy-16-[(E)-4-methylbenzylidene]-13-(4-methylphenyl)-12-phenyl- 1,11-diazapentacyclo[12.3.1.02,10.03,8.010,14]octadeca-3(8),4,6- triene-9,15-dione top
Crystal data top
C37H32N2O3F(000) = 2336
Mr = 552.65Dx = 1.289 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5678 reflections
a = 42.936 (5) Åθ = 2.4–29.4°
b = 7.3759 (9) ŵ = 0.08 mm1
c = 17.990 (2) ÅT = 100 K
β = 91.154 (2)°Block, colourless
V = 5696.0 (12) Å30.48 × 0.15 × 0.12 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7946 independent reflections
Radiation source: fine-focus sealed tube6021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 29.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 5957
Tmin = 0.962, Tmax = 0.990k = 1010
21929 measured reflectionsl = 1724
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.075P)2 + 2.0745P]
where P = (Fo2 + 2Fc2)/3
7946 reflections(Δ/σ)max < 0.001
389 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C37H32N2O3V = 5696.0 (12) Å3
Mr = 552.65Z = 8
Monoclinic, C2/cMo Kα radiation
a = 42.936 (5) ŵ = 0.08 mm1
b = 7.3759 (9) ÅT = 100 K
c = 17.990 (2) Å0.48 × 0.15 × 0.12 mm
β = 91.154 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7946 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6021 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.990Rint = 0.034
21929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
7946 reflectionsΔρmin = 0.23 e Å3
389 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18627 (2)1.03210 (12)0.30204 (5)0.01996 (19)
O20.13482 (2)0.48587 (12)0.29378 (6)0.0250 (2)
O30.08307 (2)0.67065 (13)0.41752 (5)0.0241 (2)
N10.13953 (3)0.86274 (16)0.23346 (6)0.0199 (2)
N20.15966 (2)1.00834 (14)0.41487 (6)0.0178 (2)
C10.08158 (3)1.0494 (2)0.10439 (8)0.0304 (3)
H1A0.08541.16980.11710.036*
C20.06469 (4)1.0090 (3)0.03965 (9)0.0421 (5)
H2A0.05691.10220.00980.050*
C30.05942 (4)0.8310 (3)0.01968 (9)0.0442 (5)
H3A0.04820.80420.02370.053*
C40.07088 (4)0.6919 (3)0.06415 (9)0.0379 (4)
H4A0.06760.57190.05020.046*
C50.08731 (3)0.7314 (2)0.12971 (8)0.0287 (3)
H5A0.09460.63770.15990.034*
C60.09286 (3)0.9115 (2)0.15028 (7)0.0220 (3)
C70.10909 (3)0.95777 (18)0.22299 (7)0.0192 (3)
H7A0.11291.08880.22420.023*
C80.08979 (3)0.90609 (17)0.29166 (7)0.0177 (2)
H8A0.08080.78590.28240.021*
C90.06333 (3)1.03429 (18)0.30922 (7)0.0200 (3)
C100.06675 (3)1.22327 (19)0.30781 (8)0.0242 (3)
H10A0.08571.27370.29440.029*
C110.04219 (3)1.3357 (2)0.32621 (9)0.0287 (3)
H11A0.04511.46070.32550.034*
C120.01336 (3)1.2665 (2)0.34572 (8)0.0293 (3)
C130.00988 (3)1.0786 (2)0.34639 (8)0.0291 (3)
H13A0.00921.02860.35900.035*
C140.03436 (3)0.9650 (2)0.32861 (8)0.0238 (3)
H14A0.03140.84010.32960.029*
C150.11491 (3)0.88589 (16)0.35278 (7)0.0170 (2)
C160.14402 (3)0.81013 (16)0.31136 (7)0.0168 (2)
C170.17248 (3)0.90762 (16)0.35090 (7)0.0167 (2)
C180.19448 (3)0.75676 (17)0.37353 (7)0.0171 (2)
C190.22436 (3)0.77126 (18)0.40446 (7)0.0198 (3)
H19A0.23350.88410.41250.024*
C200.24021 (3)0.61228 (19)0.42312 (7)0.0223 (3)
H20A0.26030.61940.44320.027*
C210.22647 (3)0.44229 (19)0.41226 (8)0.0229 (3)
H21A0.23720.33840.42710.027*
C220.19708 (3)0.42651 (17)0.37970 (8)0.0213 (3)
H22A0.18800.31350.37150.026*
C230.18143 (3)0.58607 (17)0.35960 (7)0.0181 (2)
C240.15120 (3)0.60572 (17)0.31985 (7)0.0183 (2)
C250.12859 (3)1.06363 (17)0.38670 (7)0.0188 (2)
H25A0.13021.15740.34920.023*
H25B0.11581.10790.42670.023*
C260.15543 (3)0.89938 (17)0.48297 (7)0.0184 (2)
H26A0.14860.97920.52230.022*
H26B0.17550.84980.49830.022*
C270.13222 (3)0.74384 (17)0.47496 (7)0.0181 (2)
C280.10700 (3)0.75907 (17)0.41627 (7)0.0183 (2)
C290.13492 (3)0.58452 (18)0.51089 (7)0.0201 (3)
H29A0.11970.49820.50010.024*
C300.15930 (3)0.53178 (18)0.56535 (7)0.0199 (3)
C310.17147 (3)0.35579 (18)0.56138 (8)0.0231 (3)
H31A0.16350.27510.52610.028*
C320.19527 (3)0.30077 (18)0.60963 (8)0.0228 (3)
H32A0.20300.18340.60610.027*
C330.20786 (3)0.41771 (18)0.66347 (7)0.0203 (3)
C340.19511 (3)0.59187 (19)0.66842 (7)0.0232 (3)
H34A0.20270.67130.70460.028*
C350.17126 (3)0.64854 (18)0.62047 (7)0.0225 (3)
H35A0.16320.76490.62500.027*
C360.01298 (4)1.3907 (3)0.36736 (11)0.0440 (4)
H36A0.00911.51060.34900.066*
H36B0.01431.39410.42050.066*
H36C0.03221.34620.34630.066*
C370.23421 (3)0.35823 (19)0.71403 (8)0.0234 (3)
H37A0.23200.23150.72500.035*
H37B0.23380.42660.75940.035*
H37D0.25370.37860.69000.035*
H1O10.1756 (5)1.015 (3)0.2538 (13)0.056 (6)*
H1N10.1405 (4)0.767 (3)0.2071 (10)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (5)0.0179 (4)0.0209 (5)0.0028 (3)0.0006 (4)0.0031 (4)
O20.0225 (5)0.0194 (4)0.0330 (5)0.0036 (4)0.0018 (4)0.0046 (4)
O30.0216 (5)0.0251 (5)0.0254 (5)0.0044 (4)0.0012 (4)0.0033 (4)
N10.0183 (5)0.0239 (6)0.0177 (5)0.0019 (4)0.0002 (4)0.0017 (4)
N20.0192 (5)0.0162 (5)0.0179 (5)0.0014 (4)0.0002 (4)0.0006 (4)
C10.0224 (7)0.0431 (9)0.0257 (7)0.0004 (6)0.0035 (5)0.0129 (6)
C20.0246 (8)0.0774 (14)0.0242 (8)0.0027 (8)0.0005 (6)0.0195 (8)
C30.0224 (7)0.0920 (15)0.0181 (7)0.0063 (8)0.0005 (6)0.0006 (8)
C40.0241 (7)0.0609 (11)0.0289 (8)0.0092 (7)0.0039 (6)0.0152 (8)
C50.0242 (7)0.0367 (8)0.0252 (7)0.0022 (6)0.0008 (5)0.0033 (6)
C60.0162 (6)0.0316 (7)0.0183 (6)0.0003 (5)0.0019 (5)0.0031 (5)
C70.0176 (6)0.0207 (6)0.0193 (6)0.0006 (5)0.0002 (5)0.0016 (5)
C80.0167 (6)0.0184 (6)0.0179 (6)0.0002 (4)0.0002 (4)0.0005 (5)
C90.0180 (6)0.0239 (6)0.0179 (6)0.0028 (5)0.0020 (5)0.0006 (5)
C100.0210 (6)0.0236 (6)0.0279 (7)0.0015 (5)0.0027 (5)0.0018 (5)
C110.0270 (7)0.0250 (7)0.0338 (8)0.0057 (6)0.0063 (6)0.0032 (6)
C120.0222 (7)0.0371 (8)0.0282 (7)0.0091 (6)0.0058 (6)0.0090 (6)
C130.0182 (6)0.0400 (8)0.0291 (8)0.0011 (6)0.0000 (5)0.0057 (6)
C140.0207 (6)0.0272 (7)0.0236 (7)0.0004 (5)0.0003 (5)0.0027 (5)
C150.0156 (6)0.0176 (5)0.0178 (6)0.0005 (4)0.0008 (4)0.0005 (5)
C160.0158 (6)0.0169 (5)0.0176 (6)0.0004 (4)0.0002 (4)0.0009 (4)
C170.0169 (6)0.0150 (5)0.0183 (6)0.0017 (4)0.0004 (4)0.0006 (4)
C180.0181 (6)0.0168 (5)0.0162 (6)0.0008 (4)0.0008 (4)0.0008 (4)
C190.0205 (6)0.0200 (6)0.0188 (6)0.0008 (5)0.0012 (5)0.0018 (5)
C200.0209 (6)0.0269 (7)0.0189 (6)0.0035 (5)0.0027 (5)0.0017 (5)
C210.0255 (7)0.0219 (6)0.0213 (6)0.0067 (5)0.0002 (5)0.0002 (5)
C220.0237 (6)0.0160 (6)0.0242 (7)0.0014 (5)0.0022 (5)0.0019 (5)
C230.0181 (6)0.0179 (6)0.0184 (6)0.0002 (4)0.0015 (5)0.0019 (5)
C240.0172 (6)0.0175 (6)0.0202 (6)0.0003 (4)0.0020 (5)0.0019 (5)
C250.0188 (6)0.0168 (6)0.0208 (6)0.0008 (4)0.0007 (5)0.0002 (5)
C260.0203 (6)0.0175 (6)0.0175 (6)0.0006 (5)0.0003 (5)0.0008 (5)
C270.0191 (6)0.0193 (6)0.0160 (6)0.0001 (5)0.0012 (4)0.0005 (5)
C280.0189 (6)0.0167 (5)0.0193 (6)0.0017 (4)0.0016 (5)0.0013 (5)
C290.0202 (6)0.0211 (6)0.0191 (6)0.0018 (5)0.0004 (5)0.0017 (5)
C300.0219 (6)0.0201 (6)0.0178 (6)0.0014 (5)0.0012 (5)0.0027 (5)
C310.0268 (7)0.0179 (6)0.0245 (7)0.0031 (5)0.0027 (5)0.0001 (5)
C320.0258 (7)0.0173 (6)0.0253 (7)0.0013 (5)0.0009 (5)0.0014 (5)
C330.0199 (6)0.0226 (6)0.0184 (6)0.0004 (5)0.0024 (5)0.0030 (5)
C340.0281 (7)0.0242 (6)0.0172 (6)0.0006 (5)0.0007 (5)0.0016 (5)
C350.0284 (7)0.0203 (6)0.0189 (6)0.0041 (5)0.0003 (5)0.0005 (5)
C360.0301 (8)0.0494 (10)0.0524 (11)0.0153 (7)0.0035 (8)0.0168 (9)
C370.0223 (6)0.0272 (7)0.0205 (6)0.0019 (5)0.0003 (5)0.0018 (5)
Geometric parameters (Å, º) top
O1—C171.4095 (15)C16—C241.5458 (17)
O1—H1O10.98 (2)C16—C171.5753 (17)
O2—C241.2176 (15)C17—C181.5101 (17)
O3—C281.2175 (16)C18—C191.3922 (18)
N1—C161.4631 (17)C18—C231.3986 (17)
N1—C71.4914 (17)C19—C201.3935 (18)
N1—H1N10.853 (19)C19—H19A0.9300
N2—C251.4748 (16)C20—C211.3978 (19)
N2—C261.4795 (16)C20—H20A0.9300
N2—C171.4848 (16)C21—C221.3851 (19)
C1—C61.391 (2)C21—H21A0.9300
C1—C21.392 (2)C22—C231.3992 (17)
C1—H1A0.9300C22—H22A0.9300
C2—C31.379 (3)C23—C241.4766 (18)
C2—H2A0.9300C25—H25A0.9700
C3—C41.385 (3)C25—H25B0.9700
C3—H3A0.9300C26—C271.5248 (17)
C4—C51.393 (2)C26—H26A0.9700
C4—H4A0.9300C26—H26B0.9700
C5—C61.398 (2)C27—C291.3451 (18)
C5—H5A0.9300C27—C281.5012 (18)
C6—C71.5090 (18)C29—C301.4717 (18)
C7—C81.5490 (18)C29—H29A0.9300
C7—H7A0.9800C30—C311.4016 (18)
C8—C91.5162 (18)C30—C351.4028 (19)
C8—C151.5321 (17)C31—C321.3880 (19)
C8—H8A0.9800C31—H31A0.9300
C9—C141.3953 (19)C32—C331.3976 (19)
C9—C101.4019 (19)C32—H32A0.9300
C10—C111.3867 (19)C33—C341.4000 (19)
C10—H10A0.9300C33—C371.5027 (19)
C11—C121.391 (2)C34—C351.3898 (19)
C11—H11A0.9300C34—H34A0.9300
C12—C131.394 (2)C35—H35A0.9300
C12—C361.512 (2)C36—H36A0.9600
C13—C141.387 (2)C36—H36B0.9600
C13—H13A0.9300C36—H36C0.9600
C14—H14A0.9300C37—H37A0.9600
C15—C281.5202 (18)C37—H37B0.9600
C15—C251.5562 (17)C37—H37D0.9600
C15—C161.5708 (17)
C17—O1—H1O1105.8 (13)C19—C18—C23120.23 (11)
C16—N1—C7110.12 (10)C19—C18—C17128.13 (11)
C16—N1—H1N1107.8 (12)C23—C18—C17111.64 (11)
C7—N1—H1N1111.8 (12)C18—C19—C20118.25 (12)
C25—N2—C26108.03 (10)C18—C19—H19A120.9
C25—N2—C17102.65 (10)C20—C19—H19A120.9
C26—N2—C17115.06 (10)C19—C20—C21121.22 (12)
C6—C1—C2120.58 (17)C19—C20—H20A119.4
C6—C1—H1A119.7C21—C20—H20A119.4
C2—C1—H1A119.7C22—C21—C20120.86 (12)
C3—C2—C1120.15 (16)C22—C21—H21A119.6
C3—C2—H2A119.9C20—C21—H21A119.6
C1—C2—H2A119.9C21—C22—C23117.85 (12)
C2—C3—C4120.01 (15)C21—C22—H22A121.1
C2—C3—H3A120.0C23—C22—H22A121.1
C4—C3—H3A120.0C18—C23—C22121.48 (12)
C3—C4—C5120.16 (17)C18—C23—C24110.10 (11)
C3—C4—H4A119.9C22—C23—C24128.36 (12)
C5—C4—H4A119.9O2—C24—C23127.63 (12)
C4—C5—C6120.23 (15)O2—C24—C16123.90 (12)
C4—C5—H5A119.9C23—C24—C16108.36 (10)
C6—C5—H5A119.9N2—C25—C15103.50 (10)
C1—C6—C5118.85 (14)N2—C25—H25A111.1
C1—C6—C7119.87 (13)C15—C25—H25A111.1
C5—C6—C7121.18 (12)N2—C25—H25B111.1
N1—C7—C6113.04 (11)C15—C25—H25B111.1
N1—C7—C8105.38 (10)H25A—C25—H25B109.0
C6—C7—C8112.98 (10)N2—C26—C27114.92 (10)
N1—C7—H7A108.4N2—C26—H26A108.5
C6—C7—H7A108.4C27—C26—H26A108.5
C8—C7—H7A108.4N2—C26—H26B108.5
C9—C8—C15115.52 (10)C27—C26—H26B108.5
C9—C8—C7115.34 (11)H26A—C26—H26B107.5
C15—C8—C7102.47 (10)C29—C27—C28117.22 (11)
C9—C8—H8A107.7C29—C27—C26124.19 (12)
C15—C8—H8A107.7C28—C27—C26118.11 (11)
C7—C8—H8A107.7O3—C28—C27122.95 (12)
C14—C9—C10117.58 (12)O3—C28—C15123.02 (12)
C14—C9—C8119.93 (12)C27—C28—C15113.92 (11)
C10—C9—C8122.49 (12)C27—C29—C30127.18 (12)
C11—C10—C9120.66 (13)C27—C29—H29A116.4
C11—C10—H10A119.7C30—C29—H29A116.4
C9—C10—H10A119.7C31—C30—C35118.24 (12)
C10—C11—C12121.71 (14)C31—C30—C29118.15 (12)
C10—C11—H11A119.1C35—C30—C29123.61 (12)
C12—C11—H11A119.1C32—C31—C30120.62 (13)
C11—C12—C13117.58 (13)C32—C31—H31A119.7
C11—C12—C36121.11 (15)C30—C31—H31A119.7
C13—C12—C36121.29 (15)C31—C32—C33121.50 (12)
C14—C13—C12121.15 (14)C31—C32—H32A119.2
C14—C13—H13A119.4C33—C32—H32A119.2
C12—C13—H13A119.4C32—C33—C34117.64 (12)
C13—C14—C9121.31 (14)C32—C33—C37121.02 (12)
C13—C14—H14A119.3C34—C33—C37121.34 (12)
C9—C14—H14A119.3C35—C34—C33121.39 (13)
C28—C15—C8115.74 (10)C35—C34—H34A119.3
C28—C15—C25108.19 (10)C33—C34—H34A119.3
C8—C15—C25117.02 (10)C34—C35—C30120.57 (12)
C28—C15—C16109.24 (10)C34—C35—H35A119.7
C8—C15—C16104.45 (10)C30—C35—H35A119.7
C25—C15—C16100.84 (9)C12—C36—H36A109.5
N1—C16—C24112.06 (10)C12—C36—H36B109.5
N1—C16—C15105.61 (10)H36A—C36—H36B109.5
C24—C16—C15117.32 (10)C12—C36—H36C109.5
N1—C16—C17113.43 (10)H36A—C36—H36C109.5
C24—C16—C17104.44 (10)H36B—C36—H36C109.5
C15—C16—C17103.93 (9)C33—C37—H37A109.5
O1—C17—N2108.92 (10)C33—C37—H37B109.5
O1—C17—C18112.33 (10)H37A—C37—H37B109.5
N2—C17—C18113.54 (10)C33—C37—H37D109.5
O1—C17—C16110.32 (10)H37A—C37—H37D109.5
N2—C17—C16106.38 (10)H37B—C37—H37D109.5
C18—C17—C16105.11 (10)
C6—C1—C2—C31.1 (2)C24—C16—C17—C184.01 (12)
C1—C2—C3—C40.2 (2)C15—C16—C17—C18127.53 (10)
C2—C3—C4—C51.0 (2)O1—C17—C18—C1953.74 (17)
C3—C4—C5—C61.2 (2)N2—C17—C18—C1970.41 (16)
C2—C1—C6—C50.9 (2)C16—C17—C18—C19173.73 (12)
C2—C1—C6—C7175.58 (13)O1—C17—C18—C23126.08 (11)
C4—C5—C6—C10.3 (2)N2—C17—C18—C23109.78 (12)
C4—C5—C6—C7176.70 (13)C16—C17—C18—C236.09 (14)
C16—N1—C7—C6142.49 (11)C23—C18—C19—C202.07 (19)
C16—N1—C7—C818.64 (13)C17—C18—C19—C20178.13 (12)
C1—C6—C7—N1130.42 (13)C18—C19—C20—C210.9 (2)
C5—C6—C7—N153.20 (17)C19—C20—C21—C222.7 (2)
C1—C6—C7—C8110.02 (14)C20—C21—C22—C231.3 (2)
C5—C6—C7—C866.36 (16)C19—C18—C23—C223.43 (19)
N1—C7—C8—C9158.63 (11)C17—C18—C23—C22176.73 (12)
C6—C7—C8—C977.49 (14)C19—C18—C23—C24174.12 (11)
N1—C7—C8—C1532.27 (12)C17—C18—C23—C245.71 (15)
C6—C7—C8—C15156.15 (11)C21—C22—C23—C181.68 (19)
C15—C8—C9—C14103.93 (14)C21—C22—C23—C24175.39 (13)
C7—C8—C9—C14136.68 (13)C18—C23—C24—O2173.47 (13)
C15—C8—C9—C1075.22 (16)C22—C23—C24—O23.9 (2)
C7—C8—C9—C1044.16 (17)C18—C23—C24—C162.83 (14)
C14—C9—C10—C110.9 (2)C22—C23—C24—C16179.82 (13)
C8—C9—C10—C11178.22 (12)N1—C16—C24—O254.22 (17)
C9—C10—C11—C120.8 (2)C15—C16—C24—O268.20 (17)
C10—C11—C12—C130.2 (2)C17—C16—C24—O2177.41 (12)
C10—C11—C12—C36178.59 (15)N1—C16—C24—C23122.25 (11)
C11—C12—C13—C140.3 (2)C15—C16—C24—C23115.33 (12)
C36—C12—C13—C14178.10 (14)C17—C16—C24—C230.94 (13)
C12—C13—C14—C90.2 (2)C26—N2—C25—C1573.87 (11)
C10—C9—C14—C130.5 (2)C17—N2—C25—C1548.11 (11)
C8—C9—C14—C13178.72 (13)C28—C15—C25—N271.91 (12)
C9—C8—C15—C2880.11 (14)C8—C15—C25—N2155.19 (10)
C7—C8—C15—C28153.65 (10)C16—C15—C25—N242.68 (11)
C9—C8—C15—C2549.30 (15)C25—N2—C26—C2751.24 (13)
C7—C8—C15—C2576.94 (12)C17—N2—C26—C2762.74 (14)
C9—C8—C15—C16159.75 (10)N2—C26—C27—C29146.41 (12)
C7—C8—C15—C1633.51 (12)N2—C26—C27—C2825.38 (16)
C7—N1—C16—C24126.20 (11)C29—C27—C28—O327.66 (18)
C7—N1—C16—C152.66 (13)C26—C27—C28—O3159.97 (12)
C7—N1—C16—C17115.84 (11)C29—C27—C28—C15148.73 (12)
C28—C15—C16—N1147.51 (10)C26—C27—C28—C1523.64 (15)
C8—C15—C16—N123.11 (12)C8—C15—C28—O33.79 (18)
C25—C15—C16—N198.70 (11)C25—C15—C28—O3137.36 (12)
C28—C15—C16—C2421.84 (15)C16—C15—C28—O3113.72 (13)
C8—C15—C16—C24102.57 (12)C8—C15—C28—C27179.82 (10)
C25—C15—C16—C24135.63 (11)C25—C15—C28—C2746.25 (13)
C28—C15—C16—C1792.83 (11)C16—C15—C28—C2762.67 (13)
C8—C15—C16—C17142.76 (10)C28—C27—C29—C30174.18 (12)
C25—C15—C16—C1720.96 (11)C26—C27—C29—C302.3 (2)
C25—N2—C17—O185.20 (11)C27—C29—C30—C31138.76 (14)
C26—N2—C17—O1157.73 (10)C27—C29—C30—C3540.5 (2)
C25—N2—C17—C18148.83 (10)C35—C30—C31—C321.6 (2)
C26—N2—C17—C1831.75 (14)C29—C30—C31—C32177.71 (12)
C25—N2—C17—C1633.71 (12)C30—C31—C32—C330.0 (2)
C26—N2—C17—C1683.36 (12)C31—C32—C33—C341.5 (2)
N1—C16—C17—O13.03 (14)C31—C32—C33—C37178.33 (13)
C24—C16—C17—O1125.32 (10)C32—C33—C34—C351.5 (2)
C15—C16—C17—O1111.16 (10)C37—C33—C34—C35178.38 (13)
N1—C16—C17—N2121.02 (11)C33—C34—C35—C300.1 (2)
C24—C16—C17—N2116.69 (10)C31—C30—C35—C341.7 (2)
C15—C16—C17—N26.83 (12)C29—C30—C35—C34177.62 (13)
N1—C16—C17—C18118.28 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 and C18–C23 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.98 (2)1.94 (2)2.6477 (15)126.7 (18)
C22—H22A···O1i0.932.423.2564 (16)149
C3—H3A···Cg1ii0.932.733.5620 (18)150
C37—H37B···Cg2iii0.962.613.3932 (16)139
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+5/2, z1/2; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC37H32N2O3
Mr552.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)42.936 (5), 7.3759 (9), 17.990 (2)
β (°) 91.154 (2)
V3)5696.0 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
21929, 7946, 6021
Rint0.034
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.04
No. of reflections7946
No. of parameters389
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 and C18–C23 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.98 (2)1.94 (2)2.6477 (15)126.7 (18)
C22—H22A···O1i0.93002.42003.2564 (16)149.00
C3—H3A···Cg1ii0.93002.733.5620 (18)150
C37—H37B···Cg2iii0.96002.613.3932 (16)139
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+5/2, z1/2; (iii) x+1/2, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811016). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). RSK thanks USM for the award of a post doctoral fellowship and JHG also thanks USM for the award of a USM fellowship.

References

First citationBan, Y., Taga, N. & Oishi, T. (1974). Tetrahedron Lett. 15, 187–190.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDe Amici, M., De Michelli, C. & Sani, V. M. (1990). Tetrahedron, 46, 1975–1986.  CrossRef CAS Web of Science Google Scholar
First citationHowe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603–4607.  CrossRef CAS Web of Science Google Scholar
First citationKornet, M. J. & Thio, A. P. (1976). J. Med. Chem. 19, 892–898.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKozikowski, A. P. (1984). Acc. Chem. Res. 17, 410–416.  CrossRef CAS Web of Science Google Scholar
First citationKumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1444–o1445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Goh, J. H. & Fun, H.-K. (2010c). Acta Cryst. E66, o2084–o2085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370–o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Q., Chu, D. T. W., Claiborne, A., Cooper, C. S., Lee, C. M., Raye, K., Berst, K. B., Donner, P., Wang, W., Hasvold, L., Fung, A., Ma, Z., Tufano, M., Flamm, R., Shen, L. L., Baranowski, J., Nilius, A., Alder, J., Meulbroek, J., Marsh, K., Crowell, D. A., Hui, Y., Seif, L., Melcher, L. M., Henry, R., Spanton, S., Faghih, R., Klein, L. L., Tanaka, S. K. & Plattner, J. J. (1996). J. Med. Chem. 39, 3070–3088.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationOkita, T. & Isobe, M. (1994). Tetrahedron, 50, 11143–11152.  CrossRef CAS Web of Science Google Scholar
First citationRosenmond, P., Hosseini-Merescht, M. & Bub, C. (1994). Liebigs Ann. Chem. 2, 151–154.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouthon, I. W. & Buckingham, J. (1989). Dictionary of Alkaloids. New York: Chapman and Hall.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds