metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[2-(Carb­­oxy­meth­­oxy)­phen­­oxy]acetato}[2,2′-(o-phenyl­enedi­­oxy)di­acetic acid]sodium 4,4′-bi­pyridine hemisolvate monohydrate

aCollege of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, People's Republic of China
*Correspondence e-mail: lnzyxuliang@eyou.com

(Received 4 June 2010; accepted 24 June 2010; online 3 July 2010)

In the title compound, [Na(C10H9O6)(C10H10O6)]·0.5C10H8N2·H2O, the Na atom is eight-coordinated in an distorted dicapped-octa­hedral geometry by eight O atoms from a 2-(2-carb­oxy­meth­oxy­phen­oxy)acetate (o-BDOAH) anion and a 2,2′-(o-phenyl­enedi­oxy)diacetic acid (o-BDOAH2) mol­ecule. The uncoordinated 4,4′-bipyridine mol­ecule is arranged around an inversion center and exhibits rotational disorder. A three-dimensional supra­molecular network is built up in the crystal through O—H⋯O and O—H⋯N hydrogen bonds between the uncoordinated water mol­ecule, the uncoordinated 4,4′-bipyridine mol­ecule and the sodium complex mol­ecule.

Related literature

For a related structure with o-BDOAH2 and 4,4′-bipyridine, see: Gao et al. (2006[Gao, J.-S., Hou, G.-F., Yu, Y.-H., Hou, Y.-J. & Yan, P.-F. (2006). Acta Cryst. E62, m2913-m2915.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C10H9O6)(C10H10O6)]·0.5C10H8N2·H2O

  • Mr = 570.45

  • Triclinic, [P \overline 1]

  • a = 8.427 (4) Å

  • b = 13.135 (7) Å

  • c = 13.411 (9) Å

  • α = 111.08 (2)°

  • β = 102.03 (2)°

  • γ = 103.17 (2)°

  • V = 1277.9 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 291 K

  • 0.24 × 0.23 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.972

  • 9959 measured reflections

  • 4457 independent reflections

  • 3497 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.213

  • S = 1.14

  • 4457 reflections

  • 392 parameters

  • 152 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H62⋯O8i 0.83 1.70 2.517 (4) 173
O6—H61⋯N1B 0.82 1.76 2.568 (7) 168
O6—H61⋯N1A 0.82 1.76 2.573 (5) 171
O13—H132⋯O2ii 0.85 2.16 2.958 (5) 156
Symmetry codes: (i) -x+3, -y+2, -z+1; (ii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2-Phenylenedioxydiacetic acid o-BDOAH2 is a multidentate flexible ligand, which can be regarded as an excellent candidate for the construction of supramolecular architectures through the coordination or hydrogen bonding interaction (Gao et al. 2006). Herein, we report the title compound structure, synthesized by the reaction of o-BDOAH2, 4,4'-bipyridine and NaOH in an aqueous solution.

The title compound consists of a Na(o-BDOAH)(o-BDOAH2) coordinated complex, a water molecule and hemi-4,4'-bipyridine molecule. The sodium is eight-coordinated in an distorted dicapped octahedral geometry environment defined by eight oxygen atoms from a o-BDOAH molecule and a o-BDOAH~2~ molecule. The uncoordinated 4,4'-bipyridine molecule is arranged around an inversion center and exhibits a rotational disorder with occupancy of 0.682 (17) and 0.318 (17) for two splitting positions, respectively. (Figure 1, Table 1).

A three-dimensional supramolecular network is built up through O—H···O and O—H···N hydrogen bonds between the lattice water molecule, uncoordinated 4,4'-bipyridine molecule and the sodium complex (Table 2).

Related literature top

For a related structure with o-BDOAH2 and 4,4'-bipyridine, see: Gao et al., (2006).

Experimental top

o-BDOAH2 was prepared by the reaction of chloroacetic acid with o-dihydroxybenzene. o-BDOAH2 (0.05 g, 2.5 mmol) and 4,4'-bipyridine (0.16 g, 1.0 mmol) were dissolved in 15 ml water, and then the pH was adjusted to about 5.5 using 0.5 M NaOH solution with stirring. The resulting solution was stand in the atmosphere for several days. Colorless block crystals of title compound were obtained.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methene C), and with Uiso(H) = 1.2Ueq(C). Water H atoms and carboxyl H atoms were initially located in a difference Fourier map but they were treated with O—H = 0.82 - 0.85 Å, and with Uiso(H) = 1.5Ueq(O). The pyridine ring of the centrosymmetric 4,4'-bipyridine molecule is rotational disordered (approximately along the N1A···C23A/N1B···C23B axis), which are splitted into two positions with free refined occupancy of 0.682 (17) and 0.318 (17), respectively.

Structure description top

1,2-Phenylenedioxydiacetic acid o-BDOAH2 is a multidentate flexible ligand, which can be regarded as an excellent candidate for the construction of supramolecular architectures through the coordination or hydrogen bonding interaction (Gao et al. 2006). Herein, we report the title compound structure, synthesized by the reaction of o-BDOAH2, 4,4'-bipyridine and NaOH in an aqueous solution.

The title compound consists of a Na(o-BDOAH)(o-BDOAH2) coordinated complex, a water molecule and hemi-4,4'-bipyridine molecule. The sodium is eight-coordinated in an distorted dicapped octahedral geometry environment defined by eight oxygen atoms from a o-BDOAH molecule and a o-BDOAH~2~ molecule. The uncoordinated 4,4'-bipyridine molecule is arranged around an inversion center and exhibits a rotational disorder with occupancy of 0.682 (17) and 0.318 (17) for two splitting positions, respectively. (Figure 1, Table 1).

A three-dimensional supramolecular network is built up through O—H···O and O—H···N hydrogen bonds between the lattice water molecule, uncoordinated 4,4'-bipyridine molecule and the sodium complex (Table 2).

For a related structure with o-BDOAH2 and 4,4'-bipyridine, see: Gao et al., (2006).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen bonds. Symmetry code i: -x + 1, -y, -z. Atoms that belong to the minor fraction of the disordered bipyridine molecule were omitted for clarity.
{2-[2-(Carboxymethoxy)phenoxy]acetato}[2,2'-(o-phenylenedioxy)diacetic acid]sodium 4,4'-bipyridine hemisolvate monohydrate top
Crystal data top
[Na(C10H9O6)(C10H10O6)]·0.5C10H8N2·H2OZ = 2
Mr = 570.45F(000) = 594
Triclinic, P1Dx = 1.482 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.427 (4) ÅCell parameters from 9090 reflections
b = 13.135 (7) Åθ = 3.1–27.6°
c = 13.411 (9) ŵ = 0.14 mm1
α = 111.08 (2)°T = 291 K
β = 102.03 (2)°Block, colorless
γ = 103.17 (2)°0.24 × 0.23 × 0.21 mm
V = 1277.9 (13) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4457 independent reflections
Radiation source: fine-focus sealed tube3497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scanθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 910
Tmin = 0.968, Tmax = 0.972k = 1515
9959 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1059P)2 + 1.3876P]
where P = (Fo2 + 2Fc2)/3
4457 reflections(Δ/σ)max < 0.001
392 parametersΔρmax = 0.79 e Å3
152 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Na(C10H9O6)(C10H10O6)]·0.5C10H8N2·H2Oγ = 103.17 (2)°
Mr = 570.45V = 1277.9 (13) Å3
Triclinic, P1Z = 2
a = 8.427 (4) ÅMo Kα radiation
b = 13.135 (7) ŵ = 0.14 mm1
c = 13.411 (9) ÅT = 291 K
α = 111.08 (2)°0.24 × 0.23 × 0.21 mm
β = 102.03 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4457 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3497 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.972Rint = 0.022
9959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066152 restraints
wR(F2) = 0.213H-atom parameters constrained
S = 1.14Δρmax = 0.79 e Å3
4457 reflectionsΔρmin = 0.43 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. 1. omit -3 50 2. eqiv $4 - x -1, -y, -z DFIX 1.485 0.015 C23A C23A_$4 C23B C23B_$4 3. SAME N1B C21B C22B C23B C24B C25B SAME N1A C21A C22A C23A C24A C25A SIMU C21A C22A C23A C24A C25A C21B C22B C23B C24B C25B SIMU N1A N1B

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.6188 (9)0.2495 (3)0.2549 (4)0.057 (3)0.682 (17)
C21A0.5554 (11)0.1402 (4)0.2509 (3)0.051 (2)0.682 (17)
H21A0.54360.13260.31560.062*0.682 (17)
C22A0.5096 (11)0.0423 (3)0.1503 (4)0.0451 (19)0.682 (17)
H22A0.46720.03090.14760.054*0.682 (17)
C23A0.5272 (8)0.0536 (4)0.0537 (3)0.042 (3)0.682 (17)
C24A0.5907 (14)0.1629 (6)0.0577 (5)0.050 (2)0.682 (17)
H24A0.60240.17060.00690.060*0.682 (17)
C25A0.6365 (14)0.2609 (4)0.1583 (6)0.061 (3)0.682 (17)
H25A0.67890.33400.16100.073*0.682 (17)
N1B0.591 (2)0.2514 (7)0.2486 (8)0.062 (7)0.318 (17)
C21B0.461 (3)0.1518 (9)0.2270 (11)0.067 (5)0.318 (17)
H21B0.40170.15180.27820.080*0.318 (17)
C22B0.420 (3)0.0521 (7)0.1287 (11)0.056 (5)0.318 (17)
H22B0.33330.01450.11420.067*0.318 (17)
C23B0.509 (2)0.0521 (9)0.0521 (7)0.049 (8)0.318 (17)
C24B0.6381 (16)0.1517 (12)0.0738 (10)0.036 (4)0.318 (17)
H24B0.69740.15170.02250.043*0.318 (17)
C25B0.6791 (16)0.2514 (10)0.1720 (11)0.029 (3)0.318 (17)
H25B0.76580.31800.18650.034*0.318 (17)
C11.2333 (5)0.9344 (3)0.3705 (3)0.0449 (9)
C21.2214 (5)0.9812 (3)0.4873 (3)0.0427 (9)
H2A1.33471.00830.54190.051*
H2B1.18011.04650.49950.051*
C31.1024 (5)0.9213 (3)0.6109 (3)0.0393 (8)
C41.1633 (5)1.0313 (3)0.6957 (3)0.0496 (10)
H41.21661.09330.68270.060*
C51.1456 (6)1.0503 (4)0.8009 (4)0.0616 (12)
H51.18651.12510.85800.074*
C61.0677 (6)0.9588 (4)0.8206 (4)0.0633 (12)
H61.05640.97180.89130.076*
C71.0057 (6)0.8471 (4)0.7356 (3)0.0537 (10)
H70.95240.78540.74910.064*
C81.0231 (5)0.8276 (3)0.6309 (3)0.0404 (8)
C90.8604 (5)0.6264 (3)0.5498 (3)0.0432 (9)
H9A0.75990.64410.56500.052*
H9B0.92040.61260.61110.052*
C100.8062 (5)0.5200 (3)0.4395 (3)0.0424 (9)
C111.4603 (5)0.7310 (3)0.4655 (3)0.0405 (8)
C121.4237 (5)0.6162 (3)0.3699 (3)0.0441 (9)
H12A1.49880.62350.32510.053*
H12B1.44320.56060.39870.053*
C131.1877 (5)0.4758 (3)0.2073 (3)0.0453 (9)
C141.2722 (7)0.3957 (4)0.1820 (4)0.0633 (12)
H141.37850.40950.23120.076*
C151.1982 (8)0.2955 (4)0.0837 (5)0.0784 (16)
H151.25530.24190.06650.094*
C161.0408 (7)0.2740 (4)0.0108 (4)0.0755 (16)
H160.99090.20510.05440.091*
C170.9552 (6)0.3544 (4)0.0336 (4)0.0629 (13)
H170.85080.34080.01740.076*
C181.0267 (5)0.4546 (3)0.1329 (3)0.0454 (9)
C190.7868 (5)0.5188 (4)0.0964 (3)0.0524 (11)
H19A0.71300.44130.07650.063*
H19B0.79440.52470.02740.063*
C200.7118 (5)0.6051 (4)0.1570 (4)0.0558 (11)
Na11.05417 (13)0.69107 (9)0.36791 (8)0.0184 (3)
O11.3113 (4)1.0102 (3)0.3415 (3)0.0670 (9)
H621.33581.07650.39030.100*
O21.1770 (4)0.8307 (2)0.3072 (2)0.0532 (7)
O31.1079 (3)0.8946 (2)0.5032 (2)0.0402 (6)
O40.9707 (3)0.7210 (2)0.5416 (2)0.0451 (6)
O50.8786 (4)0.5185 (2)0.3693 (2)0.0567 (8)
O60.6840 (5)0.4372 (2)0.4313 (3)0.0691 (10)
H610.66650.38170.37140.104*
O71.3450 (4)0.7679 (3)0.4858 (2)0.0601 (8)
O81.6201 (3)0.7822 (2)0.5237 (3)0.0588 (8)
O91.2474 (3)0.5785 (2)0.3023 (2)0.0503 (7)
O100.9534 (3)0.5391 (2)0.1663 (2)0.0499 (7)
O110.7838 (4)0.6794 (3)0.2531 (3)0.0636 (8)
O120.5598 (4)0.5927 (4)0.0985 (3)0.0941 (14)
H1210.57670.57530.03680.141*
O130.4114 (5)0.7809 (3)0.1738 (4)0.0892 (12)
H1310.46150.73130.17240.134*
H1320.37300.80570.22840.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.066 (5)0.043 (6)0.052 (6)0.014 (4)0.018 (4)0.014 (5)
C21A0.058 (5)0.042 (4)0.041 (3)0.001 (3)0.020 (3)0.012 (3)
C22A0.051 (5)0.034 (3)0.036 (3)0.002 (3)0.015 (3)0.010 (2)
C23A0.049 (5)0.037 (6)0.034 (6)0.011 (4)0.018 (4)0.008 (5)
C24A0.076 (6)0.034 (3)0.049 (4)0.024 (4)0.023 (4)0.023 (3)
C25A0.082 (7)0.042 (4)0.062 (5)0.027 (4)0.025 (4)0.020 (4)
N1B0.098 (13)0.044 (12)0.024 (9)0.010 (8)0.029 (8)0.008 (8)
C21B0.097 (14)0.044 (8)0.052 (8)0.013 (9)0.034 (9)0.014 (6)
C22B0.061 (10)0.044 (7)0.047 (8)0.001 (7)0.020 (8)0.012 (6)
C23B0.061 (11)0.040 (12)0.043 (13)0.005 (9)0.014 (9)0.023 (10)
C24B0.045 (8)0.034 (7)0.036 (6)0.021 (6)0.010 (5)0.020 (5)
C25B0.044 (6)0.020 (5)0.030 (6)0.012 (4)0.009 (5)0.020 (4)
C10.047 (2)0.033 (2)0.046 (2)0.0057 (16)0.0147 (17)0.0109 (17)
C20.0401 (19)0.0312 (19)0.045 (2)0.0077 (15)0.0110 (16)0.0084 (16)
C30.0376 (19)0.0364 (19)0.0345 (19)0.0144 (15)0.0075 (15)0.0059 (15)
C40.057 (2)0.033 (2)0.046 (2)0.0150 (17)0.0147 (19)0.0028 (17)
C50.075 (3)0.045 (2)0.038 (2)0.016 (2)0.015 (2)0.0074 (19)
C60.074 (3)0.064 (3)0.034 (2)0.016 (2)0.019 (2)0.005 (2)
C70.063 (3)0.054 (2)0.040 (2)0.019 (2)0.0191 (19)0.0151 (19)
C80.043 (2)0.0342 (19)0.0324 (18)0.0142 (15)0.0088 (15)0.0032 (15)
C90.054 (2)0.0333 (19)0.041 (2)0.0136 (16)0.0191 (17)0.0139 (16)
C100.052 (2)0.034 (2)0.042 (2)0.0178 (17)0.0177 (18)0.0148 (17)
C110.040 (2)0.0375 (19)0.0386 (19)0.0119 (16)0.0063 (16)0.0150 (16)
C120.038 (2)0.045 (2)0.043 (2)0.0134 (16)0.0134 (16)0.0118 (17)
C130.053 (2)0.039 (2)0.0298 (18)0.0097 (17)0.0136 (17)0.0017 (16)
C140.073 (3)0.051 (3)0.053 (3)0.026 (2)0.022 (2)0.003 (2)
C150.088 (4)0.056 (3)0.066 (3)0.029 (3)0.025 (3)0.004 (2)
C160.082 (4)0.050 (3)0.057 (3)0.013 (2)0.028 (3)0.017 (2)
C170.055 (3)0.063 (3)0.040 (2)0.002 (2)0.0141 (19)0.003 (2)
C180.051 (2)0.041 (2)0.0325 (19)0.0070 (17)0.0195 (17)0.0044 (16)
C190.040 (2)0.065 (3)0.033 (2)0.0003 (19)0.0008 (16)0.0171 (19)
C200.033 (2)0.078 (3)0.049 (3)0.010 (2)0.0011 (18)0.030 (2)
Na10.0191 (5)0.0129 (5)0.0135 (5)0.0036 (4)0.0030 (4)0.0026 (4)
O10.081 (2)0.0409 (17)0.063 (2)0.0012 (15)0.0347 (17)0.0113 (15)
O20.0685 (19)0.0348 (15)0.0458 (16)0.0087 (13)0.0225 (14)0.0088 (13)
O30.0462 (14)0.0321 (13)0.0340 (13)0.0111 (11)0.0135 (11)0.0059 (11)
O40.0557 (16)0.0328 (13)0.0371 (14)0.0091 (11)0.0181 (12)0.0061 (11)
O50.075 (2)0.0370 (15)0.0499 (17)0.0111 (14)0.0299 (15)0.0090 (13)
O60.094 (2)0.0361 (16)0.064 (2)0.0022 (16)0.0425 (18)0.0086 (14)
O70.0496 (17)0.0565 (18)0.0506 (17)0.0271 (14)0.0010 (14)0.0001 (14)
O80.0388 (15)0.0465 (16)0.0674 (19)0.0063 (12)0.0076 (14)0.0086 (14)
O90.0458 (15)0.0449 (15)0.0371 (14)0.0177 (12)0.0029 (12)0.0031 (12)
O100.0428 (15)0.0551 (17)0.0328 (14)0.0081 (12)0.0052 (11)0.0069 (12)
O110.0488 (17)0.064 (2)0.063 (2)0.0190 (15)0.0049 (15)0.0179 (17)
O120.051 (2)0.139 (4)0.069 (2)0.035 (2)0.0010 (18)0.026 (2)
O130.086 (3)0.084 (3)0.109 (3)0.034 (2)0.039 (2)0.046 (2)
Geometric parameters (Å, º) top
N1A—C21A1.3900C9—H9A0.9700
N1A—C25A1.3900C9—H9B0.9700
C21A—C22A1.3900C10—O51.221 (5)
C21A—H21A0.9300C10—O61.269 (5)
C22A—C23A1.3900C11—O71.217 (5)
C22A—H22A0.9300C11—O81.283 (5)
C23A—C24A1.3900C11—C121.499 (5)
C23A—C23Ai1.497 (7)C12—O91.434 (5)
C24A—C25A1.3900C12—H12A0.9700
C24A—H24A0.9300C12—H12B0.9700
C25A—H25A0.9300C13—O91.372 (4)
N1B—C21B1.3900C13—C141.383 (6)
N1B—C25B1.3900C13—C181.407 (6)
C21B—C22B1.3900C14—C151.376 (6)
C21B—H21B0.9300C14—H140.9300
C22B—C23B1.3900C15—C161.373 (8)
C22B—H22B0.9300C15—H150.9300
C23B—C24B1.3900C16—C171.391 (7)
C23B—C23Bi1.516 (12)C16—H160.9300
C24B—C25B1.3900C17—C181.382 (6)
C24B—H24B0.9300C17—H170.9300
C25B—H25B0.9300C18—O101.373 (5)
C1—O21.227 (5)C19—O101.421 (5)
C1—O11.289 (5)C19—C201.491 (7)
C1—C21.497 (6)C19—H19A0.9700
C2—O31.421 (5)C19—H19B0.9700
C2—H2A0.9700C20—O111.218 (5)
C2—H2B0.9700C20—O121.294 (5)
C3—C41.372 (5)Na1—O72.374 (3)
C3—O31.373 (5)Na1—O22.379 (3)
C3—C81.403 (6)Na1—O112.407 (3)
C4—C51.387 (6)Na1—O52.416 (3)
C4—H40.9300Na1—O42.495 (3)
C5—C61.375 (7)Na1—O32.501 (3)
C5—H50.9300Na1—O92.524 (3)
C6—C71.387 (6)Na1—O102.531 (3)
C6—H60.9300O1—H620.8261
C7—C81.379 (6)O6—H610.8239
C7—H70.9300O12—H1210.8280
C8—O41.372 (4)O13—H1310.8502
C9—O41.426 (5)O13—H1320.8500
C9—C101.513 (5)
C21A—N1A—C25A120.0H12A—C12—H12B108.5
C22A—C21A—N1A120.0O9—C13—C14125.3 (4)
C22A—C21A—H21A120.0O9—C13—C18114.6 (3)
N1A—C21A—H21A120.0C14—C13—C18120.1 (4)
C21A—C22A—C23A120.0C15—C14—C13119.7 (5)
C21A—C22A—H22A120.0C15—C14—H14120.2
C23A—C22A—H22A120.0C13—C14—H14120.2
C24A—C23A—C22A120.0C16—C15—C14120.6 (5)
C24A—C23A—C23Ai121.5 (7)C16—C15—H15119.7
C22A—C23A—C23Ai118.5 (8)C14—C15—H15119.7
C23A—C24A—C25A120.0C15—C16—C17120.6 (4)
C23A—C24A—H24A120.0C15—C16—H16119.7
C25A—C24A—H24A120.0C17—C16—H16119.7
C24A—C25A—N1A120.0C18—C17—C16119.5 (4)
C24A—C25A—H25A120.0C18—C17—H17120.3
N1A—C25A—H25A120.0C16—C17—H17120.3
C21B—N1B—C25B120.0O10—C18—C17125.0 (4)
N1B—C21B—C22B120.0O10—C18—C13115.4 (3)
N1B—C21B—H21B120.0C17—C18—C13119.6 (4)
C22B—C21B—H21B120.0O10—C19—C20109.9 (3)
C23B—C22B—C21B120.0O10—C19—H19A109.7
C23B—C22B—H22B120.0C20—C19—H19A109.7
C21B—C22B—H22B120.0O10—C19—H19B109.7
C24B—C23B—C22B120.0C20—C19—H19B109.7
C24B—C23B—C23Bi113.6 (18)H19A—C19—H19B108.2
C22B—C23B—C23Bi126.1 (18)O11—C20—O12122.4 (5)
C23B—C24B—C25B120.0O11—C20—C19123.8 (4)
C23B—C24B—H24B120.0O12—C20—C19113.8 (4)
C25B—C24B—H24B120.0O7—Na1—O278.09 (12)
C24B—C25B—N1B120.0O7—Na1—O11160.33 (12)
C24B—C25B—H25B120.0O2—Na1—O1184.79 (12)
N1B—C25B—H25B120.0O7—Na1—O5116.02 (13)
O2—C1—O1121.8 (4)O2—Na1—O5162.48 (11)
O2—C1—C2122.7 (4)O11—Na1—O582.69 (12)
O1—C1—C2115.4 (3)O7—Na1—O487.39 (12)
O3—C2—C1110.6 (3)O2—Na1—O4129.15 (10)
O3—C2—H2A109.5O11—Na1—O496.11 (12)
C1—C2—H2A109.5O5—Na1—O464.66 (10)
O3—C2—H2B109.5O7—Na1—O372.13 (10)
C1—C2—H2B109.5O2—Na1—O366.79 (10)
H2A—C2—H2B108.1O11—Na1—O392.31 (11)
C4—C3—O3124.4 (4)O5—Na1—O3125.85 (11)
C4—C3—C8119.8 (4)O4—Na1—O362.37 (9)
O3—C3—C8115.8 (3)O7—Na1—O963.92 (10)
C3—C4—C5120.2 (4)O2—Na1—O990.25 (11)
C3—C4—H4119.9O11—Na1—O9126.36 (11)
C5—C4—H4119.9O5—Na1—O987.35 (11)
C6—C5—C4120.1 (4)O4—Na1—O9126.16 (10)
C6—C5—H5120.0O3—Na1—O9133.82 (10)
C4—C5—H5120.0O7—Na1—O10123.12 (11)
C5—C6—C7120.2 (4)O2—Na1—O1088.79 (11)
C5—C6—H6119.9O11—Na1—O1065.49 (11)
C7—C6—H6119.9O5—Na1—O1074.88 (11)
C8—C7—C6119.9 (4)O4—Na1—O10137.55 (10)
C8—C7—H7120.0O3—Na1—O10148.93 (10)
C6—C7—H7120.0O9—Na1—O1061.03 (9)
O4—C8—C7125.0 (4)C1—O1—H62111.3
O4—C8—C3115.3 (3)C1—O2—Na1121.2 (3)
C7—C8—C3119.7 (3)C3—O3—C2116.6 (3)
O4—C9—C10108.7 (3)C3—O3—Na1121.5 (2)
O4—C9—H9A109.9C2—O3—Na1115.1 (2)
C10—C9—H9A109.9C8—O4—C9117.2 (3)
O4—C9—H9B109.9C8—O4—Na1122.4 (2)
C10—C9—H9B109.9C9—O4—Na1120.3 (2)
H9A—C9—H9B108.3C10—O5—Na1123.5 (2)
O5—C10—O6126.2 (4)C10—O6—H61107.1
O5—C10—C9120.8 (3)C11—O7—Na1126.1 (3)
O6—C10—C9113.0 (3)C13—O9—C12117.2 (3)
O7—C11—O8124.7 (4)C13—O9—Na1122.5 (2)
O7—C11—C12121.4 (3)C12—O9—Na1120.0 (2)
O8—C11—C12113.8 (3)C18—O10—C19117.3 (3)
O9—C12—C11107.5 (3)C18—O10—Na1121.9 (2)
O9—C12—H12A110.2C19—O10—Na1117.8 (2)
C11—C12—H12A110.2C20—O11—Na1122.4 (3)
O9—C12—H12B110.2C20—O12—H12197.1
C11—C12—H12B110.2H131—O13—H132117.5
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H62···O8ii0.831.702.517 (4)173
O6—H61···N1B0.821.762.568 (7)168
O6—H61···N1A0.821.762.573 (5)171
O13—H132···O2iii0.852.162.958 (5)156
Symmetry codes: (ii) x+3, y+2, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Na(C10H9O6)(C10H10O6)]·0.5C10H8N2·H2O
Mr570.45
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.427 (4), 13.135 (7), 13.411 (9)
α, β, γ (°)111.08 (2), 102.03 (2), 103.17 (2)
V3)1277.9 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.24 × 0.23 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.968, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9959, 4457, 3497
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.213, 1.14
No. of reflections4457
No. of parameters392
No. of restraints152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.43

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H62···O8i0.831.702.517 (4)172.5
O6—H61···N1B0.821.762.568 (7)168.3
O6—H61···N1A0.821.762.573 (5)170.7
O13—H132···O2ii0.852.162.958 (5)155.7
Symmetry codes: (i) x+3, y+2, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank Liaoning University of Traditional Chinese Medicine for supporting this study.

References

First citationGao, J.-S., Hou, G.-F., Yu, Y.-H., Hou, Y.-J. & Yan, P.-F. (2006). Acta Cryst. E62, m2913–m2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds