organic compounds
5,8-Dibromo-15,18-dimethoxy-2,11-dithia[3.3]paracyclophane
aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: jgj6100449@163.com
In the title compound [systematic name: 12,15-dibromo-52,55-dimethoxy-2,7-dithia-1,5(1,4)-dibenzenaoctaphane], C18H18Br2O2S2, the dihedral angle between the aromatic rings is 0.6 (2)° and their centroid separation is 3.251 (2) Å, indicating that a trans-annular π–π interaction occurs. The dimethoxy and dibromo substituents are located at crossed positions because of the electronic and the steric nature of the substituents.
Related literature
For the preparation of the title compound, see: Kay & Baek (1997); Xu et al. (2008). For paracyclophane and its derivatives, see: Clément et al. (2009); Wang et al. (2006); Yamamoto et al. (1997). For studies on the benzene dimer of [2.2]paracyclophane, see: Ball et al. (2004); Dahmen & Bräse (2002); Rowlands (2008); Valentini et al. (2008). For studies of [3.3]paracyclophane, see: Wang et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810029053/si2274sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810029053/si2274Isup2.hkl
A solution with equimolar amounts of 2,5-dibromo-1,4-bis(mercaptomethyl)benzene (3.26 g,10 mmol) and 1,4-dibromomethyl-2,5-dimethoxybenzene(3.22 g,10 mmol) in degassed THF(500 mL) was added dropwise under N2 over 12 h to a refluxing solution of potassium carbonate(6.9 g,50 mmol) in EtOH(1.5L). After an additional 2 h at the reflux temperature (353 K), the mixture was cooled and the solvent were removed. The resulting residue was treated with CH2Cl2(500 mL) and water(500 mL). The organic phase was separated, the aqueous extracted with CH2Cl2 three times. The combined organic layers was dried over Na2SO4,then the solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2/petroleum ether(1:1,v/v) as
Colourless single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane/n-hexane(1:30) solution over a period of 5 days.Hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2Ueq(C-H, CH2), 1.5Ueq(CH3).
Various studies on the benzene dimer of [2.2]paracyclophane have focused on the face-to-face stacking (Rowlands, 2008),it is known to play a significant role in chiral catalysis (Dahmen & Bräse, 2002), molecular electronics (Ball et al.,2004), and organic solar cells (Valentini et al.,2008). However, the [3.3]paracyclophane have received less attention (Wang et al.2004). In our research, we have synthetized a series of novel dithia[3.3]paracyclophane. The inter plane distance of the two benzene rings of 3.251Å is less than the normal packing distance of aromatic rings in organic aromatic molecules(3.4°), thus suggesting probable transannular π-π interaction.
For the preparation of the title compound, see: Kay & Baek (1997); Xu et al. (2008); for the paracyclophanes and its derivatives, see: Clément et al. (2009); Wang et al. (2006); Yamamoto et al. (1997).
For the preparation of the title compound, see: Kay & Baek (1997); Xu et al. (2008). For paracyclophane and its derivatives, see: Clément et al. (2009); Wang et al. (2006); Yamamoto et al. (1997). For studies on the benzene dimer of [2.2]paracyclophane, see: Ball et al. (2004); Dahmen & Bräse (2002); Rowlands (2008); Valentini et al. (2008). For studies of [3.3]paracyclophane, see: Wang et al. (2004).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the tite compound with displacement ellipsoids drawn at the 30% probability level. |
C18H18Br2O2S2 | F(000) = 976 |
Mr = 490.26 | Dx = 1.767 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3885 reflections |
a = 8.9576 (8) Å | θ = 2.5–26.9° |
b = 16.2291 (14) Å | µ = 4.63 mm−1 |
c = 13.0251 (11) Å | T = 298 K |
β = 103.240 (1)° | Block, colorless |
V = 1843.2 (3) Å3 | 0.16 × 0.12 × 0.10 mm |
Z = 4 |
Bruker SMART CCD area detector diffractometer | 2812 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.126 |
Graphite monochromator | θmax = 28.3°, θmin = 2.0° |
phi and ω scans | h = −11→11 |
12800 measured reflections | k = −19→21 |
4475 independent reflections | l = −15→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0753P)2] where P = (Fo2 + 2Fc2)/3 |
4475 reflections | (Δ/σ)max = 0.001 |
219 parameters | Δρmax = 1.00 e Å−3 |
0 restraints | Δρmin = −1.27 e Å−3 |
C18H18Br2O2S2 | V = 1843.2 (3) Å3 |
Mr = 490.26 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.9576 (8) Å | µ = 4.63 mm−1 |
b = 16.2291 (14) Å | T = 298 K |
c = 13.0251 (11) Å | 0.16 × 0.12 × 0.10 mm |
β = 103.240 (1)° |
Bruker SMART CCD area detector diffractometer | 2812 reflections with I > 2σ(I) |
12800 measured reflections | Rint = 0.126 |
4475 independent reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 0.95 | Δρmax = 1.00 e Å−3 |
4475 reflections | Δρmin = −1.27 e Å−3 |
219 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.56512 (6) | 0.00221 (3) | 0.68306 (4) | 0.0672 (2) | |
Br2 | 1.04343 (6) | 0.17844 (3) | 0.44267 (4) | 0.05796 (19) | |
C1 | 0.9651 (5) | 0.0721 (2) | 0.6001 (3) | 0.0383 (9) | |
C2 | 0.8556 (5) | 0.0352 (2) | 0.6428 (3) | 0.0414 (9) | |
H2 | 0.8858 | −0.0067 | 0.6919 | 0.050* | |
C3 | 0.7037 (5) | 0.0569 (2) | 0.6166 (3) | 0.0421 (9) | |
C4 | 0.6510 (5) | 0.1210 (2) | 0.5448 (3) | 0.0426 (9) | |
C5 | 0.7568 (5) | 0.1535 (2) | 0.4937 (3) | 0.0419 (9) | |
H5 | 0.7248 | 0.1924 | 0.4408 | 0.050* | |
C6 | 0.9099 (5) | 0.1296 (2) | 0.5193 (3) | 0.0386 (9) | |
C7 | 1.1351 (5) | 0.0552 (3) | 0.6408 (3) | 0.0478 (10) | |
H7A | 1.1921 | 0.1026 | 0.6250 | 0.057* | |
H7B | 1.1630 | 0.0085 | 0.6027 | 0.057* | |
C8 | 1.2053 (5) | 0.1368 (3) | 0.8357 (3) | 0.0603 (13) | |
H8A | 1.2330 | 0.1323 | 0.9120 | 0.072* | |
H8B | 1.2865 | 0.1669 | 0.8140 | 0.072* | |
C9 | 1.0584 (5) | 0.1853 (3) | 0.8039 (3) | 0.0483 (11) | |
C10 | 0.9312 (5) | 0.1636 (3) | 0.8413 (3) | 0.0466 (10) | |
C11 | 0.7901 (5) | 0.1997 (3) | 0.7979 (3) | 0.0461 (10) | |
H11 | 0.7041 | 0.1842 | 0.8220 | 0.055* | |
C12 | 0.7759 (5) | 0.2590 (3) | 0.7186 (3) | 0.0423 (9) | |
C13 | 0.9054 (5) | 0.2850 (3) | 0.6891 (3) | 0.0447 (10) | |
C14 | 1.0460 (5) | 0.2476 (3) | 0.7292 (3) | 0.0480 (10) | |
H14 | 1.1321 | 0.2642 | 0.7061 | 0.058* | |
C15 | 0.6193 (5) | 0.2917 (3) | 0.6623 (4) | 0.0519 (11) | |
H15A | 0.6279 | 0.3141 | 0.5948 | 0.062* | |
H15B | 0.5928 | 0.3368 | 0.7035 | 0.062* | |
C16 | 0.4926 (5) | 0.1575 (3) | 0.5276 (4) | 0.0531 (11) | |
H16A | 0.4179 | 0.1132 | 0.5143 | 0.064* | |
H16B | 0.4745 | 0.1922 | 0.4654 | 0.064* | |
C17 | 0.8336 (7) | 0.0803 (4) | 0.9594 (4) | 0.0767 (16) | |
H17A | 0.7924 | 0.1276 | 0.9874 | 0.115* | |
H17B | 0.8688 | 0.0411 | 1.0149 | 0.115* | |
H17C | 0.7553 | 0.0555 | 0.9054 | 0.115* | |
C18 | 1.0126 (6) | 0.3817 (3) | 0.5888 (4) | 0.0703 (14) | |
H18A | 1.0703 | 0.4095 | 0.6503 | 0.106* | |
H18B | 0.9807 | 0.4208 | 0.5328 | 0.106* | |
H18C | 1.0756 | 0.3402 | 0.5673 | 0.106* | |
O1 | 0.9536 (4) | 0.1039 (2) | 0.9173 (2) | 0.0666 (9) | |
O2 | 0.8860 (4) | 0.34533 (19) | 0.6119 (2) | 0.0584 (8) | |
S1 | 1.19297 (14) | 0.03433 (8) | 0.77929 (9) | 0.0601 (3) | |
S2 | 0.46307 (13) | 0.21831 (8) | 0.63885 (10) | 0.0559 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0566 (3) | 0.0782 (4) | 0.0670 (4) | −0.0235 (2) | 0.0142 (3) | 0.0087 (2) |
Br2 | 0.0558 (3) | 0.0679 (3) | 0.0542 (3) | −0.0029 (2) | 0.0209 (2) | 0.0073 (2) |
C1 | 0.038 (2) | 0.041 (2) | 0.0332 (19) | 0.0023 (16) | 0.0015 (15) | −0.0064 (16) |
C2 | 0.046 (2) | 0.039 (2) | 0.036 (2) | −0.0006 (18) | 0.0028 (17) | 0.0016 (17) |
C3 | 0.043 (2) | 0.046 (2) | 0.036 (2) | −0.0103 (18) | 0.0058 (17) | −0.0035 (17) |
C4 | 0.039 (2) | 0.048 (2) | 0.035 (2) | −0.0046 (18) | −0.0025 (16) | −0.0061 (17) |
C5 | 0.045 (2) | 0.050 (2) | 0.0287 (19) | −0.0017 (18) | 0.0036 (16) | 0.0002 (17) |
C6 | 0.041 (2) | 0.045 (2) | 0.0292 (18) | −0.0044 (17) | 0.0055 (16) | −0.0023 (16) |
C7 | 0.043 (2) | 0.059 (3) | 0.040 (2) | 0.005 (2) | 0.0048 (18) | −0.0066 (19) |
C8 | 0.041 (3) | 0.097 (4) | 0.036 (2) | 0.002 (2) | −0.0063 (18) | −0.010 (2) |
C9 | 0.036 (2) | 0.072 (3) | 0.032 (2) | −0.005 (2) | −0.0033 (17) | −0.018 (2) |
C10 | 0.049 (3) | 0.064 (3) | 0.0253 (19) | 0.000 (2) | 0.0041 (17) | −0.0072 (18) |
C11 | 0.037 (2) | 0.064 (3) | 0.039 (2) | −0.0033 (19) | 0.0114 (17) | −0.0076 (19) |
C12 | 0.036 (2) | 0.051 (2) | 0.038 (2) | −0.0044 (18) | 0.0059 (16) | −0.0099 (18) |
C13 | 0.043 (2) | 0.054 (2) | 0.034 (2) | −0.0112 (19) | 0.0024 (17) | −0.0136 (18) |
C14 | 0.037 (2) | 0.068 (3) | 0.037 (2) | −0.011 (2) | 0.0034 (16) | −0.018 (2) |
C15 | 0.040 (2) | 0.059 (3) | 0.056 (3) | −0.003 (2) | 0.010 (2) | 0.002 (2) |
C16 | 0.032 (2) | 0.072 (3) | 0.050 (2) | −0.003 (2) | −0.0010 (18) | −0.001 (2) |
C17 | 0.077 (4) | 0.100 (4) | 0.054 (3) | 0.002 (3) | 0.017 (3) | 0.027 (3) |
C18 | 0.068 (3) | 0.069 (3) | 0.072 (3) | −0.023 (3) | 0.014 (3) | −0.004 (3) |
O1 | 0.055 (2) | 0.102 (3) | 0.0419 (17) | 0.0117 (19) | 0.0104 (15) | 0.0129 (17) |
O2 | 0.056 (2) | 0.0589 (18) | 0.058 (2) | −0.0108 (16) | 0.0077 (15) | 0.0047 (15) |
S1 | 0.0459 (7) | 0.0797 (8) | 0.0499 (7) | 0.0193 (6) | 0.0010 (5) | 0.0161 (6) |
S2 | 0.0312 (6) | 0.0714 (8) | 0.0654 (8) | −0.0008 (5) | 0.0113 (5) | −0.0028 (6) |
Br1—C3 | 1.889 (4) | C10—C11 | 1.390 (6) |
Br2—C6 | 1.898 (4) | C11—C12 | 1.397 (6) |
C1—C2 | 1.372 (6) | C11—H11 | 0.9300 |
C1—C6 | 1.408 (5) | C12—C13 | 1.369 (6) |
C1—C7 | 1.518 (6) | C12—C15 | 1.521 (6) |
C2—C3 | 1.371 (6) | C13—O2 | 1.386 (5) |
C2—H2 | 0.9300 | C13—C14 | 1.388 (6) |
C3—C4 | 1.407 (5) | C14—H14 | 0.9300 |
C4—C5 | 1.382 (6) | C15—S2 | 1.809 (4) |
C4—C16 | 1.506 (6) | C15—H15A | 0.9700 |
C5—C6 | 1.390 (6) | C15—H15B | 0.9700 |
C5—H5 | 0.9300 | C16—S2 | 1.822 (5) |
C7—S1 | 1.792 (4) | C16—H16A | 0.9700 |
C7—H7A | 0.9700 | C16—H16B | 0.9700 |
C7—H7B | 0.9700 | C17—O1 | 1.369 (6) |
C8—C9 | 1.508 (6) | C17—H17A | 0.9600 |
C8—S1 | 1.812 (5) | C17—H17B | 0.9600 |
C8—H8A | 0.9700 | C17—H17C | 0.9600 |
C8—H8B | 0.9700 | C18—O2 | 1.372 (6) |
C9—C10 | 1.384 (6) | C18—H18A | 0.9600 |
C9—C14 | 1.389 (6) | C18—H18B | 0.9600 |
C10—O1 | 1.368 (5) | C18—H18C | 0.9600 |
C2—C1—C6 | 115.5 (4) | C12—C11—H11 | 119.6 |
C2—C1—C7 | 122.2 (4) | C13—C12—C11 | 118.7 (4) |
C6—C1—C7 | 122.2 (4) | C13—C12—C15 | 120.3 (4) |
C3—C2—C1 | 123.3 (4) | C11—C12—C15 | 120.9 (4) |
C3—C2—H2 | 118.4 | C12—C13—O2 | 116.6 (4) |
C1—C2—H2 | 118.4 | C12—C13—C14 | 120.9 (4) |
C2—C3—C4 | 121.2 (4) | O2—C13—C14 | 122.3 (4) |
C2—C3—Br1 | 119.0 (3) | C13—C14—C9 | 120.1 (4) |
C4—C3—Br1 | 119.8 (3) | C13—C14—H14 | 119.9 |
C5—C4—C3 | 116.1 (4) | C9—C14—H14 | 119.9 |
C5—C4—C16 | 120.4 (4) | C12—C15—S2 | 116.4 (3) |
C3—C4—C16 | 123.4 (4) | C12—C15—H15A | 108.2 |
C4—C5—C6 | 121.7 (4) | S2—C15—H15A | 108.2 |
C4—C5—H5 | 119.1 | C12—C15—H15B | 108.2 |
C6—C5—H5 | 119.1 | S2—C15—H15B | 108.2 |
C5—C6—C1 | 121.5 (4) | H15A—C15—H15B | 107.3 |
C5—C6—Br2 | 117.6 (3) | C4—C16—S2 | 113.5 (3) |
C1—C6—Br2 | 120.9 (3) | C4—C16—H16A | 108.9 |
C1—C7—S1 | 114.9 (3) | S2—C16—H16A | 108.9 |
C1—C7—H7A | 108.5 | C4—C16—H16B | 108.9 |
S1—C7—H7A | 108.5 | S2—C16—H16B | 108.9 |
C1—C7—H7B | 108.5 | H16A—C16—H16B | 107.7 |
S1—C7—H7B | 108.5 | O1—C17—H17A | 109.5 |
H7A—C7—H7B | 107.5 | O1—C17—H17B | 109.5 |
C9—C8—S1 | 113.5 (3) | H17A—C17—H17B | 109.5 |
C9—C8—H8A | 108.9 | O1—C17—H17C | 109.5 |
S1—C8—H8A | 108.9 | H17A—C17—H17C | 109.5 |
C9—C8—H8B | 108.9 | H17B—C17—H17C | 109.5 |
S1—C8—H8B | 108.9 | O2—C18—H18A | 109.5 |
H8A—C8—H8B | 107.7 | O2—C18—H18B | 109.5 |
C10—C9—C14 | 119.4 (4) | H18A—C18—H18B | 109.5 |
C10—C9—C8 | 120.5 (4) | O2—C18—H18C | 109.5 |
C14—C9—C8 | 119.8 (4) | H18A—C18—H18C | 109.5 |
O1—C10—C9 | 116.0 (4) | H18B—C18—H18C | 109.5 |
O1—C10—C11 | 124.2 (4) | C10—O1—C17 | 119.3 (4) |
C9—C10—C11 | 119.7 (4) | C18—O2—C13 | 119.4 (4) |
C10—C11—C12 | 120.7 (4) | C7—S1—C8 | 102.2 (2) |
C10—C11—H11 | 119.6 | C15—S2—C16 | 104.1 (2) |
C6—C1—C2—C3 | −5.6 (6) | O1—C10—C11—C12 | −178.4 (4) |
C7—C1—C2—C3 | 171.5 (4) | C9—C10—C11—C12 | −1.5 (6) |
C1—C2—C3—C4 | −1.6 (6) | C10—C11—C12—C13 | −4.2 (6) |
C1—C2—C3—Br1 | −179.0 (3) | C10—C11—C12—C15 | 173.1 (4) |
C2—C3—C4—C5 | 7.4 (6) | C11—C12—C13—O2 | −178.4 (4) |
Br1—C3—C4—C5 | −175.2 (3) | C15—C12—C13—O2 | 4.2 (5) |
C2—C3—C4—C16 | −168.8 (4) | C11—C12—C13—C14 | 6.4 (6) |
Br1—C3—C4—C16 | 8.6 (5) | C15—C12—C13—C14 | −171.0 (4) |
C3—C4—C5—C6 | −6.0 (6) | C12—C13—C14—C9 | −2.8 (6) |
C16—C4—C5—C6 | 170.4 (4) | O2—C13—C14—C9 | −177.7 (3) |
C4—C5—C6—C1 | −1.2 (6) | C10—C9—C14—C13 | −3.0 (6) |
C4—C5—C6—Br2 | 179.7 (3) | C8—C9—C14—C13 | 171.4 (4) |
C2—C1—C6—C5 | 7.0 (5) | C13—C12—C15—S2 | 141.2 (3) |
C7—C1—C6—C5 | −170.2 (4) | C11—C12—C15—S2 | −36.0 (5) |
C2—C1—C6—Br2 | −174.0 (3) | C5—C4—C16—S2 | −105.9 (4) |
C7—C1—C6—Br2 | 8.8 (5) | C3—C4—C16—S2 | 70.2 (5) |
C2—C1—C7—S1 | −32.5 (5) | C9—C10—O1—C17 | 178.9 (4) |
C6—C1—C7—S1 | 144.4 (3) | C11—C10—O1—C17 | −4.1 (7) |
S1—C8—C9—C10 | 69.9 (5) | C12—C13—O2—C18 | 171.4 (4) |
S1—C8—C9—C14 | −104.4 (4) | C14—C13—O2—C18 | −13.5 (6) |
C14—C9—C10—O1 | −177.8 (4) | C1—C7—S1—C8 | −80.3 (4) |
C8—C9—C10—O1 | 7.9 (6) | C9—C8—S1—C7 | 56.6 (4) |
C14—C9—C10—C11 | 5.1 (6) | C12—C15—S2—C16 | −76.7 (4) |
C8—C9—C10—C11 | −169.2 (4) | C4—C16—S2—C15 | 53.5 (4) |
Experimental details
Crystal data | |
Chemical formula | C18H18Br2O2S2 |
Mr | 490.26 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 8.9576 (8), 16.2291 (14), 13.0251 (11) |
β (°) | 103.240 (1) |
V (Å3) | 1843.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.63 |
Crystal size (mm) | 0.16 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12800, 4475, 2812 |
Rint | 0.126 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.151, 0.95 |
No. of reflections | 4475 |
No. of parameters | 219 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.00, −1.27 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors thank Professor Sheng-Hua Liu for technical assistance with the structure analysis and Dr Xiang-Gao Meng for the data collection.
References
Ball, P. J., Shtoyko, T. R., Bauer, J. A. K., Oldham, W. J. & Connick, W. B. (2004). Inorg. Chem. 43, 622–632. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (1997). SMART. Bruker AXS Inc., Madison, Wiskonsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wiskonsin, USA. Google Scholar
Clément, S., Guyard, L., Knorr, M., Däschlein, C. & Strohmann, C. (2009). Acta Cryst. E65, o528. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dahmen, S. & Bräse, S. (2002). J. Am. Chem. Soc. 124, 5940–5941. Web of Science CrossRef PubMed CAS Google Scholar
Kay, K. Y. & Baek, Y. G. (1997). Chem. Ber. Rec. 130, 581–584. CrossRef CAS Web of Science Google Scholar
Rowlands, G. J. (2008). Org. Biomol. Chem. 6, 1527–1534. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Valentini, L., Marrocchi, A., Seri, M., Mengoni, F., Meloni, F., Taticchi, A. & Kenny, J. M. (2008). Thin Solid Films. 516, 7193–7198. Web of Science CrossRef CAS Google Scholar
Wang, W., Xu, J., Lai, Y. H. & Wang, F. (2004). Macromolecules, 37, 3546–3553. Web of Science CrossRef CAS Google Scholar
Wang, W., Xu, J., Sun, Z., Zhang, X., Lu, Y. & Lai, Y. H. (2006). Macromolecules, 39, 7277–7285. Web of Science CrossRef CAS Google Scholar
Xu, J. W., Wang, W. L., Lin, T. T., Sun, Z.& Lai, Y. H. (2008). Supramol. Chem. 20, 723–730. Web of Science CSD CrossRef CAS Google Scholar
Yamamoto, M., Wu, L. P., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Munakata, M. (1997). Inorg. Chim. Acta, 258, 87–91. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Various studies on the benzene dimer of [2.2]paracyclophane have focused on the face-to-face stacking (Rowlands, 2008),it is known to play a significant role in chiral catalysis (Dahmen & Bräse, 2002), molecular electronics (Ball et al.,2004), and organic solar cells (Valentini et al.,2008). However, the [3.3]paracyclophane have received less attention (Wang et al.2004). In our research, we have synthetized a series of novel dithia[3.3]paracyclophane. The inter plane distance of the two benzene rings of 3.251Å is less than the normal packing distance of aromatic rings in organic aromatic molecules(3.4°), thus suggesting probable transannular π-π interaction.
For the preparation of the title compound, see: Kay & Baek (1997); Xu et al. (2008); for the paracyclophanes and its derivatives, see: Clément et al. (2009); Wang et al. (2006); Yamamoto et al. (1997).