organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trichodermin (12,13-ep­­oxy­trichethec-9-en-4β-yl 4-fluoro­benzoate)

aInstitute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, People's Republic of China, and bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
*Correspondence e-mail: jinhaozhao@zju.edu.cn

(Received 6 July 2010; accepted 16 July 2010; online 24 July 2010)

In the title trichodermin compound (systematic name: 12,13-ep­oxy­trichothec-9-en-4β-yl 4-fluoro­benzoate), C22H25FO4, the five-membered ring displays an envelope conformation, whereas the two six-membered rings show the different conformations, viz. chair and half-chair. As for the seven-membered ring, the dihedral angle between the mean planes formed by the four C atoms of the envelope unit and the three C and one O atoms of the six-membered chair is 68.67 (2)°; these two mean planes are nearly perpendicular to the ep­oxy ring with angles of 87.97 (2)and 88.14 (2)°, respectively.

Related literature

The endophytic fungi Trichoderma taxi sp. nov. can produce a compound with fungicidal activity, Trichodermin (Zhang et al., 2007[Zhang, C., Liu, S., Lin, F., Kubicek, C. P. & Druzhinina, I. S. (2007). Microbiol. Lett. 270, 90-96.]), which is a member of the 4β-acet­oxy-12,13-ep­oxy­trichothecene family (Nielsen et al., 2005[Nielsen, K. F., Grafenhan, T., Zafari, D. & Thrane, U. (2005). J. Agric. Food Chem. 53, 8190-8196.]). For a related Trichodermin structure, see: Chen et al. (2008[Chen, S.-Y., Zhang, C.-L., Chen, Y.-Z. & Lin, F.-C. (2008). Acta Cryst. E64, o702.]). For the structures of Trichodermin derivatives, see: Cheng et al. (2009[Cheng, J.-L., Zhou, Y., Lin, F.-C., Zhao, J.-H. & Zhu, G.-N. (2009). Acta Cryst. E65, o2879.]); Zhao et al. (2010[Zhao, J.-H., Zhou, Y., Zhang, J.-G., Cheng, J.-L. & Lin, F.-C. (2010). Acta Cryst. E66, o210.]). For the extinction correction, see: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25FO4

  • Mr = 372.42

  • Orthorhombic, P 21 21 21

  • a = 8.1643 (4) Å

  • b = 9.9979 (4) Å

  • c = 23.6503 (9) Å

  • V = 1930.48 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.49 × 0.38 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.974

  • 16756 measured reflections

  • 2183 independent reflections

  • 1760 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.00

  • 2183 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The endophytic fungi Trichoderma taxi sp. nov. from Taxus mairei S.Y.Hu can produce a compound with fungicidal activity-Trichodermin (Zhang et al., 2007), which is a member of the 4β-acetoxy-12,13-epoxytrichothecene family (Nielsen et al., 2005). Bioassays showed Trichodermin strongly inhibited Rhizoctonia solani and Botrytis cinere. Furthermore, addition of bromine at the C9=C10 double bond led to the absolutely loss in antifungal activity (Zhao et al., 2010). 4β Conformation and its acetate are key moieties for its bioactivities (Zhang et al., 2007; Cheng et al., 2009). Therefore, in order to develop novel, safe and potential microbial pesticides, the 4β substituted phenyl esters such as the title compound were designed and synthesized. Its molecular structure is shown in Fig. 1. In the molecule, the five membered ring displays an envelope conformation with C11 atom at the flap position 0.695 (3) Å out of the mean plane formed by the other four atoms. The two six-membered rings display different conformations. The O1-containing ring displays a chair conformation. Whereas the C6-containing six-membered ring displays a half-chair conformation. As for the seven-membered ring, the dihedral angle between the mean planes formed by C1,C2,C3,C10 and C3,O1,C9,C10 is 68.67 (2) °, which are nearly perpendicular to the epoxy ring with angles of 87.97 (2) and 88.14 (2) °, respectively.

Related literature top

The endophytic fungi Trichoderma taxi sp. nov. from Taxus mairei S.Y.Hu can produce a compound with fungicidal activity-Trichodermin (Zhang et al., 2007), which is a member of the 4β-acetoxy-12,13-epoxytrichothecene family (Nielsen et al., 2005). For the related Trichodermin structure, see: Chen et al. (2008). For the structures of Trichodermin derivatives, see: Cheng et al. (2009); Zhao et al. (2010). For the extinction correction, see: Larson (1970).

Experimental top

In a flask, 4β-hydroxy-12,13-epoxytrichethec-9-ene 2.50 g (10 mmol) were introduced with 40 ml of absolute methylene chloride, and then 1.34 g (11 mmol) of triethylamine was added. After the mixture was dissolved, a solution of 1.73 g (11 mmol) of 4-fluorobenzoyl chloride in 10 ml of absolute methylene chloride was added dropwise in 20 min at 273–278 K. After stirring for 2 h, the reaction solution was washed with 1% HCl solution, sat. NaHCO3, and sat. NaCl solution respectively. After dried with sodium sulfate, the solution was concentrated. The residue was crystallized and purified with 95% ethanol to colourless blocks. The 1H NMR,ESI-MS data testified the title compound's structure. 1H-NMR (500 MHz, CDCl3, ppm): 8.09–7.09 (4H, m, H-4), 5.80–5.77 (1H, m, H-4), 5.44–5.43 (1H, m, H-10), 3.89 (1H, d, J=5.5 Hz, H-2), 3.68 (1H, d, J=5.5 Hz, H-11), 3.17 (1H, d, J=4.0 Hz, H-13), 2.87 (1H, d, J=4.0 Hz, H-13), 2.67–2.63 (1H, m, H-3), 2.15–2.11 (1H, m, H-3), 2.03 (2H, s, H-8), 2.01–1.95 (1H, m, H-7), 1.73 (3H, s, H-16), 1.46–1.43 (1H, m, H-7), 0.98 (3H, s, H-14), 0.792 (3H, s, H-15); ESI-MS: 372 (M+H)+, (100%).

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration was not determined. The H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

The endophytic fungi Trichoderma taxi sp. nov. from Taxus mairei S.Y.Hu can produce a compound with fungicidal activity-Trichodermin (Zhang et al., 2007), which is a member of the 4β-acetoxy-12,13-epoxytrichothecene family (Nielsen et al., 2005). Bioassays showed Trichodermin strongly inhibited Rhizoctonia solani and Botrytis cinere. Furthermore, addition of bromine at the C9=C10 double bond led to the absolutely loss in antifungal activity (Zhao et al., 2010). 4β Conformation and its acetate are key moieties for its bioactivities (Zhang et al., 2007; Cheng et al., 2009). Therefore, in order to develop novel, safe and potential microbial pesticides, the 4β substituted phenyl esters such as the title compound were designed and synthesized. Its molecular structure is shown in Fig. 1. In the molecule, the five membered ring displays an envelope conformation with C11 atom at the flap position 0.695 (3) Å out of the mean plane formed by the other four atoms. The two six-membered rings display different conformations. The O1-containing ring displays a chair conformation. Whereas the C6-containing six-membered ring displays a half-chair conformation. As for the seven-membered ring, the dihedral angle between the mean planes formed by C1,C2,C3,C10 and C3,O1,C9,C10 is 68.67 (2) °, which are nearly perpendicular to the epoxy ring with angles of 87.97 (2) and 88.14 (2) °, respectively.

The endophytic fungi Trichoderma taxi sp. nov. from Taxus mairei S.Y.Hu can produce a compound with fungicidal activity-Trichodermin (Zhang et al., 2007), which is a member of the 4β-acetoxy-12,13-epoxytrichothecene family (Nielsen et al., 2005). For the related Trichodermin structure, see: Chen et al. (2008). For the structures of Trichodermin derivatives, see: Cheng et al. (2009); Zhao et al. (2010). For the extinction correction, see: Larson (1970).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
12,13-epoxytrichothec-9-en-4β-yl 4-fluorobenzoate top
Crystal data top
C22H25FO4F(000) = 792
Mr = 372.42Dx = 1.281 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 13225 reflections
a = 8.1643 (4) Åθ = 3.0–27.4°
b = 9.9979 (4) ŵ = 0.09 mm1
c = 23.6503 (9) ÅT = 296 K
V = 1930.48 (14) Å3Chunk, colorless
Z = 40.49 × 0.38 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
2183 independent reflections
Radiation source: rolling anode1760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.00 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1112
Tmin = 0.956, Tmax = 0.974l = 2929
16756 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.6417P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2183 reflectionsΔρmax = 0.16 e Å3
248 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0158 (10)
Crystal data top
C22H25FO4V = 1930.48 (14) Å3
Mr = 372.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1643 (4) ŵ = 0.09 mm1
b = 9.9979 (4) ÅT = 296 K
c = 23.6503 (9) Å0.49 × 0.38 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
2183 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1760 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.974Rint = 0.030
16756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
2183 reflectionsΔρmin = 0.16 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.5928 (2)0.17729 (19)0.38572 (8)0.0590 (5)
O10.3925 (2)0.58802 (17)0.41271 (7)0.0552 (5)
C90.3220 (3)0.4541 (3)0.32881 (10)0.0448 (6)
C100.3644 (3)0.3262 (2)0.36490 (10)0.0452 (6)
C40.4116 (3)0.5769 (2)0.35259 (9)0.0467 (6)
H40.52860.56830.34400.056*
O40.8524 (3)0.2138 (2)0.35947 (10)0.0769 (7)
C170.7821 (3)0.0043 (3)0.40042 (10)0.0481 (6)
C60.2105 (4)0.7223 (3)0.30230 (11)0.0516 (7)
C80.1381 (3)0.4869 (3)0.33098 (11)0.0529 (7)
H8A0.07630.41000.31790.063*
H8B0.10660.50440.36980.063*
C50.3514 (4)0.7072 (3)0.32885 (11)0.0514 (7)
H50.41770.78210.33310.062*
C180.6592 (4)0.0777 (3)0.42095 (12)0.0576 (7)
H180.55130.04800.42100.069*
O20.2982 (3)0.2494 (2)0.46425 (8)0.0710 (6)
C70.0950 (4)0.6076 (3)0.29473 (12)0.0607 (7)
H7A0.09520.58100.25530.073*
H7B0.01490.63690.30410.073*
C160.7495 (3)0.1413 (3)0.37958 (11)0.0521 (7)
C220.9427 (4)0.0412 (3)0.40068 (11)0.0565 (7)
H221.02570.01370.38690.068*
F10.8929 (3)0.36743 (17)0.46149 (10)0.1008 (7)
C200.8560 (4)0.2447 (3)0.44071 (14)0.0665 (8)
C20.5964 (4)0.4062 (3)0.42280 (13)0.0663 (9)
H2A0.67250.47580.41170.080*
H2B0.64510.35410.45300.080*
C130.1585 (4)0.8535 (3)0.27722 (11)0.0645 (8)
H13A0.23450.92200.28820.097*
H13B0.05110.87620.29070.097*
H13C0.15640.84630.23670.097*
C110.3138 (3)0.3591 (3)0.42485 (11)0.0518 (7)
C150.2899 (4)0.1980 (3)0.34125 (13)0.0591 (7)
H15A0.29960.12770.36870.089*
H15B0.34690.17280.30740.089*
H15C0.17640.21260.33270.089*
C140.3756 (4)0.4322 (3)0.26721 (11)0.0636 (8)
H14A0.37110.51560.24720.095*
H14B0.30350.36900.24950.095*
H14C0.48550.39830.26650.095*
C10.5533 (3)0.3168 (3)0.37240 (12)0.0549 (7)
H10.61030.34630.33810.066*
C30.4327 (4)0.4666 (3)0.44166 (11)0.0614 (8)
H30.43120.48020.48270.074*
C120.1571 (4)0.3327 (3)0.45174 (12)0.0694 (8)
H12A0.12040.39450.48070.083*
H12B0.07060.29460.42870.083*
C190.6964 (4)0.2039 (3)0.44136 (14)0.0680 (9)
H190.61450.25960.45520.082*
C210.9811 (4)0.1672 (3)0.42114 (13)0.0651 (8)
H211.08870.19790.42150.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0414 (10)0.0521 (10)0.0836 (13)0.0025 (9)0.0026 (10)0.0180 (10)
O10.0717 (13)0.0486 (9)0.0453 (9)0.0096 (10)0.0136 (9)0.0011 (8)
C90.0439 (15)0.0497 (14)0.0408 (12)0.0047 (12)0.0050 (11)0.0007 (11)
C100.0418 (14)0.0432 (13)0.0505 (13)0.0070 (12)0.0056 (11)0.0035 (11)
C40.0462 (15)0.0498 (13)0.0441 (12)0.0082 (13)0.0059 (11)0.0058 (11)
O40.0477 (12)0.0872 (16)0.0958 (15)0.0058 (12)0.0064 (11)0.0384 (13)
C170.0456 (15)0.0544 (15)0.0443 (12)0.0032 (13)0.0004 (11)0.0004 (12)
C60.0571 (17)0.0521 (16)0.0457 (13)0.0041 (14)0.0044 (13)0.0033 (12)
C80.0462 (15)0.0538 (15)0.0587 (15)0.0060 (13)0.0093 (13)0.0004 (13)
C50.0588 (17)0.0450 (14)0.0505 (13)0.0086 (13)0.0078 (13)0.0083 (11)
C180.0453 (16)0.0545 (16)0.0729 (17)0.0071 (14)0.0045 (14)0.0025 (14)
O20.0814 (15)0.0665 (12)0.0651 (12)0.0101 (12)0.0039 (11)0.0243 (11)
C70.0522 (17)0.0653 (17)0.0647 (16)0.0015 (15)0.0151 (14)0.0030 (14)
C160.0431 (15)0.0613 (16)0.0518 (14)0.0041 (13)0.0025 (12)0.0086 (13)
C220.0476 (16)0.0649 (18)0.0568 (15)0.0010 (14)0.0076 (13)0.0007 (14)
F10.0951 (15)0.0492 (9)0.1582 (19)0.0028 (11)0.0263 (15)0.0116 (11)
C200.068 (2)0.0427 (14)0.089 (2)0.0002 (15)0.0128 (17)0.0025 (15)
C20.066 (2)0.0576 (16)0.0751 (18)0.0158 (16)0.0304 (16)0.0173 (15)
C130.075 (2)0.0609 (17)0.0571 (15)0.0136 (17)0.0039 (15)0.0045 (14)
C110.0595 (17)0.0507 (15)0.0453 (13)0.0089 (14)0.0027 (12)0.0101 (12)
C150.0565 (17)0.0485 (15)0.0723 (18)0.0081 (14)0.0036 (15)0.0055 (14)
C140.0688 (19)0.0741 (19)0.0481 (14)0.0076 (18)0.0015 (14)0.0008 (14)
C10.0460 (15)0.0491 (14)0.0697 (16)0.0067 (13)0.0063 (14)0.0159 (14)
C30.085 (2)0.0547 (15)0.0449 (13)0.0137 (17)0.0199 (15)0.0086 (12)
C120.072 (2)0.073 (2)0.0625 (17)0.0079 (19)0.0111 (16)0.0079 (16)
C190.062 (2)0.0494 (16)0.093 (2)0.0131 (15)0.0047 (17)0.0045 (15)
C210.0585 (18)0.0628 (18)0.0739 (18)0.0097 (16)0.0012 (15)0.0068 (16)
Geometric parameters (Å, º) top
O3—C161.337 (3)C7—H7A0.9700
O3—C11.466 (3)C7—H7B0.9700
O1—C31.432 (3)C22—C211.386 (4)
O1—C41.435 (3)C22—H220.9300
C9—C141.537 (4)F1—C201.356 (3)
C9—C41.536 (3)C20—C211.364 (4)
C9—C81.537 (4)C20—C191.365 (5)
C9—C101.576 (3)C2—C11.531 (4)
C10—C111.513 (4)C2—C31.533 (5)
C10—C151.525 (3)C2—H2A0.9700
C10—C11.555 (4)C2—H2B0.9700
C4—C51.501 (3)C13—H13A0.9600
C4—H40.9800C13—H13B0.9600
O4—C161.207 (3)C13—H13C0.9600
C17—C181.384 (4)C11—C121.452 (4)
C17—C221.388 (4)C11—C31.502 (4)
C17—C161.480 (4)C15—H15A0.9600
C6—C51.319 (4)C15—H15B0.9600
C6—C71.496 (4)C15—H15C0.9600
C6—C131.501 (4)C14—H14A0.9600
C8—C71.522 (4)C14—H14B0.9600
C8—H8A0.9700C14—H14C0.9600
C8—H8B0.9700C1—H10.9800
C5—H50.9300C3—H30.9800
C18—C191.384 (4)C12—H12A0.9700
C18—H180.9300C12—H12B0.9700
O2—C111.445 (3)C19—H190.9300
O2—C121.452 (4)C21—H210.9300
C16—O3—C1116.3 (2)C1—C2—C3104.8 (2)
C3—O1—C4112.6 (2)C1—C2—H2A110.8
C14—C9—C4109.0 (2)C3—C2—H2A110.8
C14—C9—C8109.9 (2)C1—C2—H2B110.8
C4—C9—C8106.4 (2)C3—C2—H2B110.8
C14—C9—C10109.6 (2)H2A—C2—H2B108.9
C4—C9—C10110.21 (18)C6—C13—H13A109.5
C8—C9—C10111.7 (2)C6—C13—H13B109.5
C11—C10—C15114.7 (2)H13A—C13—H13B109.5
C11—C10—C1100.2 (2)C6—C13—H13C109.5
C15—C10—C1112.7 (2)H13A—C13—H13C109.5
C11—C10—C9105.7 (2)H13B—C13—H13C109.5
C15—C10—C9113.3 (2)O2—C11—C1260.15 (17)
C1—C10—C9109.2 (2)O2—C11—C3115.4 (2)
O1—C4—C5105.6 (2)C12—C11—C3125.7 (3)
O1—C4—C9111.87 (19)O2—C11—C10117.6 (2)
C5—C4—C9113.6 (2)C12—C11—C10127.7 (2)
O1—C4—H4108.6C3—C11—C10103.1 (2)
C5—C4—H4108.6C10—C15—H15A109.5
C9—C4—H4108.6C10—C15—H15B109.5
C18—C17—C22119.3 (3)H15A—C15—H15B109.5
C18—C17—C16122.4 (3)C10—C15—H15C109.5
C22—C17—C16118.3 (2)H15A—C15—H15C109.5
C5—C6—C7121.2 (2)H15B—C15—H15C109.5
C5—C6—C13122.4 (3)C9—C14—H14A109.5
C7—C6—C13116.4 (2)C9—C14—H14B109.5
C7—C8—C9112.1 (2)H14A—C14—H14B109.5
C7—C8—H8A109.2C9—C14—H14C109.5
C9—C8—H8A109.2H14A—C14—H14C109.5
C7—C8—H8B109.2H14B—C14—H14C109.5
C9—C8—H8B109.2O3—C1—C2109.7 (2)
H8A—C8—H8B107.9O3—C1—C10107.5 (2)
C6—C5—C4124.3 (2)C2—C1—C10106.4 (2)
C6—C5—H5117.9O3—C1—H1111.0
C4—C5—H5117.9C2—C1—H1111.0
C19—C18—C17120.2 (3)C10—C1—H1111.0
C19—C18—H18119.9O1—C3—C11109.4 (2)
C17—C18—H18119.9O1—C3—C2113.3 (2)
C11—O2—C1260.18 (17)C11—C3—C2101.8 (2)
C6—C7—C8113.3 (2)O1—C3—H3110.7
C6—C7—H7A108.9C11—C3—H3110.7
C8—C7—H7A108.9C2—C3—H3110.7
C6—C7—H7B108.9O2—C12—C1159.67 (18)
C8—C7—H7B108.9O2—C12—H12A117.8
H7A—C7—H7B107.7C11—C12—H12A117.8
O4—C16—O3123.2 (3)O2—C12—H12B117.8
O4—C16—C17124.2 (3)C11—C12—H12B117.8
O3—C16—C17112.6 (2)H12A—C12—H12B114.9
C21—C22—C17120.9 (3)C20—C19—C18118.5 (3)
C21—C22—H22119.6C20—C19—H19120.7
C17—C22—H22119.6C18—C19—H19120.7
F1—C20—C21118.1 (3)C20—C21—C22117.8 (3)
F1—C20—C19118.6 (3)C20—C21—H21121.1
C21—C20—C19123.3 (3)C22—C21—H21121.1
C14—C9—C10—C11177.8 (2)C12—O2—C11—C10119.7 (3)
C4—C9—C10—C1157.9 (3)C15—C10—C11—O238.5 (3)
C8—C9—C10—C1160.2 (3)C1—C10—C11—O282.5 (3)
C14—C9—C10—C1555.8 (3)C9—C10—C11—O2164.1 (2)
C4—C9—C10—C15175.7 (2)C15—C10—C11—C1233.7 (4)
C8—C9—C10—C1566.2 (3)C1—C10—C11—C12154.7 (3)
C14—C9—C10—C170.8 (3)C9—C10—C11—C1291.9 (3)
C4—C9—C10—C149.2 (3)C15—C10—C11—C3166.8 (2)
C8—C9—C10—C1167.2 (2)C1—C10—C11—C345.8 (2)
C3—O1—C4—C5175.3 (2)C9—C10—C11—C367.6 (2)
C3—O1—C4—C951.3 (3)C16—O3—C1—C281.3 (3)
C14—C9—C4—O1168.6 (2)C16—O3—C1—C10163.5 (2)
C8—C9—C4—O172.9 (3)C3—C2—C1—O3117.3 (2)
C10—C9—C4—O148.3 (3)C3—C2—C1—C101.4 (3)
C14—C9—C4—C572.0 (3)C11—C10—C1—O390.8 (2)
C8—C9—C4—C546.5 (3)C15—C10—C1—O331.6 (3)
C10—C9—C4—C5167.7 (2)C9—C10—C1—O3158.49 (19)
C14—C9—C8—C756.3 (3)C11—C10—C1—C226.7 (3)
C4—C9—C8—C761.5 (3)C15—C10—C1—C2149.1 (2)
C10—C9—C8—C7178.2 (2)C9—C10—C1—C284.0 (2)
C7—C6—C5—C41.4 (4)C4—O1—C3—C1164.5 (3)
C13—C6—C5—C4177.5 (3)C4—O1—C3—C248.2 (3)
O1—C4—C5—C6105.8 (3)O2—C11—C3—O1157.9 (2)
C9—C4—C5—C617.1 (4)C12—C11—C3—O187.6 (3)
C22—C17—C18—C190.2 (4)C10—C11—C3—O172.5 (3)
C16—C17—C18—C19178.3 (3)O2—C11—C3—C282.0 (3)
C5—C6—C7—C812.8 (4)C12—C11—C3—C2152.3 (3)
C13—C6—C7—C8168.2 (2)C10—C11—C3—C247.6 (2)
C9—C8—C7—C645.5 (3)C1—C2—C3—O188.0 (2)
C1—O3—C16—O46.6 (4)C1—C2—C3—C1129.3 (3)
C1—O3—C16—C17173.1 (2)C3—C11—C12—O2101.4 (3)
C18—C17—C16—O4177.1 (3)C10—C11—C12—O2103.4 (3)
C22—C17—C16—O44.7 (4)F1—C20—C19—C18179.0 (3)
C18—C17—C16—O33.3 (4)C21—C20—C19—C180.3 (5)
C22—C17—C16—O3174.9 (2)C17—C18—C19—C200.0 (5)
C18—C17—C22—C210.0 (4)F1—C20—C21—C22179.1 (3)
C16—C17—C22—C21178.2 (2)C19—C20—C21—C220.4 (5)
C12—O2—C11—C3118.1 (3)C17—C22—C21—C200.3 (4)

Experimental details

Crystal data
Chemical formulaC22H25FO4
Mr372.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.1643 (4), 9.9979 (4), 23.6503 (9)
V3)1930.48 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.38 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.956, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
16756, 2183, 1760
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.00
No. of reflections2183
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Professor Jian-Ming Gu for help with the analysis of the crystal data. The work was supported by the National Natural Science Foundation of China (No. 30700532) and the Science and Technology Project of Zhejiang Province (No. 2008 C02007–3).

References

First citationChen, S.-Y., Zhang, C.-L., Chen, Y.-Z. & Lin, F.-C. (2008). Acta Cryst. E64, o702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCheng, J.-L., Zhou, Y., Lin, F.-C., Zhao, J.-H. & Zhu, G.-N. (2009). Acta Cryst. E65, o2879.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNielsen, K. F., Grafenhan, T., Zafari, D. & Thrane, U. (2005). J. Agric. Food Chem. 53, 8190–8196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C., Liu, S., Lin, F., Kubicek, C. P. & Druzhinina, I. S. (2007). Microbiol. Lett. 270, 90–96.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J.-H., Zhou, Y., Zhang, J.-G., Cheng, J.-L. & Lin, F.-C. (2010). Acta Cryst. E66, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds