organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5,8-di­bromo-2-di­bromo­methyl-6,7-dimeth­oxyquinoline-3-carb­­oxy­late

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yuhualong68@hotmail.com

(Received 12 July 2010; accepted 23 July 2010; online 31 July 2010)

The title compound, C15H13Br4NO4, was obtained via radical bromination reaction of ethyl 6,7-dimeth­oxy-2-methyl­quinoline-3-carboxyl­ate and N-bromo­succinimide (NBS) in the presence of benzoyl peroxide (BPO) under photocatalytic conditions. The quinoline ring system is approximately planar with a maximum deviation from the mean plane of 0.035 (1) Å. The dihedral angle between the six-membered rings is 2.33 (2)°. The meth­oxy O atoms of the two neighboring meth­oxy groups are in-plane while their methyl C atoms are located on either side of the quinolyl ring plane at distances of −1.207 (1) and 1.223 (1) Å.

Related literature

The quinoline nucleus is widely present in numerous natural compounds, see: Michael et al. (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-618.], 2002[Michael, J. P. (2002). Nat. Prod. Rep. 19, 742-760.]). For the biological activity of quinoline derivatives, see: Heath et al. (2004[Heath, J. A., Mehrotra, M. M., Chi, S., Yu, J. C., Hutchaleelaha, A., Hollenbach, S. J., Giese, N. A., Scarborough, R. M. & Pandey, A. (2004). Bioorg. Med. Chem. Lett. 14, 4867-4872.]); Keyaerts et al. (2004[Keyaerts, E., Vijgen, L., Mae, P., Neyts, J. & Ranst, M. V. (2004). Biochem. Biophys. Res. Commun. 323, 264-268.]); Ko et al. (2001[Ko, T. C., Hour, M. J., Lien, J. C., Teng, C. M., Lee, K. H., Kuo, S. C., Huang, L. J. (2001). Bioorg. Med. Chem. Lett. 11, 279-282.]). For our previous work on the preparation of quinoline derivatives, see: Yang et al. (2007[Yang, D. Q., Jiang, K. L., Li, J. N. & Xu, F. (2007). Tetrahedron, 63, 7654-7658.], 2008[Yang, D. Q., Guo, W., Cai, Y. P., Jiang, L. S., Jiang, K. L. & Wu, X. B. (2008). Heteroat. Chem. 19, 229-233.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13Br4NO4

  • Mr = 590.90

  • Triclinic, [P \overline 1]

  • a = 8.992 (2) Å

  • b = 9.632 (2) Å

  • c = 11.454 (3) Å

  • α = 84.868 (3)°

  • β = 71.948 (3)°

  • γ = 77.552 (3)°

  • V = 920.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.76 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]) Tmin = 0.218, Tmax = 0.302

  • 4750 measured reflections

  • 3257 independent reflections

  • 2373 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.105

  • S = 0.97

  • 3257 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison. Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison. Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The quinoline ring system is widely present in numerous natural compounds (Michael et al., 1997, 2002). Quinoline derivatives are pharmacologically active compounds displaying a wide range of biological activity (Heath et al., 2004; Keyaerts et al., 2004; Ko et al., 2001)).

In previous works, we have reported the synthesis of some new quinoline derivatives (Yang et al., 2007, 2008). Herein, we report the synthesis and structure determination of a new Bromine-containing quinoline derivative, resulting from the radical bromination of ethyl 6,7-dimethoxy-2-methylquinoline-3-carboxylate under photocatalytic conditions. Our attempt to brominate the methyl group linked at C-2 position of quinoline ring, which has an acetal function at C-3, failed and led to 5,8-Dibromo-2-dibromomethyl-6,7- dimethoxy-quinoline-3-carboxylic acid, ethyl ester and other by-pruducts. This compound is the result of a unwanted reaction.

The molecular geometry of the title compound is illustrated in Fig 1. The title molecule contains an approximate planar quinolyl moiety with a maximum deviation from the mean plane of 0.035 (1)Å. The dihedral angle between the six-membered rings is 2.33 (2)°. The methoxy O atoms of the two neighboring methoxy groups are in-plane and their methyl C atoms locate on both sides of the quinolyl ring plane with maximun out-of-plane deviations of -1.207 (1) and 1.223 (1)Å, respectively.

Related literature top

The quinoline nucleus is widely present in numerous natural compounds, see: Michael et al. (1997, 2002). For the biological activity of quinoline derivatives, see: Heath et al. (2004); Keyaerts et al. (2004); Ko et al. (2001). For our previous work on the preparation of quinoline derivatives, see: Yang et al. (2007, 2008).

Experimental top

The title compoud was syntheized by treating 1mmol of ethyl 6,7-dimethoxy-2-methylquinoline-3-carboxylate with 1.5mmol of N-bromosuccinimide (NBS) in presence of 0.5mmol of Benzoyl Peroxide (BPO) in CCl3 under photocatalytic conditions. The mixture was then cooled and filtered off and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate (v : v = 30 : 1) to afford the white product. Crystals suitable for X-ray analysis were obtained by slow evaporation of the mixted solution of petroleum ether and ethyl acetate of the title compound.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å, with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

The quinoline ring system is widely present in numerous natural compounds (Michael et al., 1997, 2002). Quinoline derivatives are pharmacologically active compounds displaying a wide range of biological activity (Heath et al., 2004; Keyaerts et al., 2004; Ko et al., 2001)).

In previous works, we have reported the synthesis of some new quinoline derivatives (Yang et al., 2007, 2008). Herein, we report the synthesis and structure determination of a new Bromine-containing quinoline derivative, resulting from the radical bromination of ethyl 6,7-dimethoxy-2-methylquinoline-3-carboxylate under photocatalytic conditions. Our attempt to brominate the methyl group linked at C-2 position of quinoline ring, which has an acetal function at C-3, failed and led to 5,8-Dibromo-2-dibromomethyl-6,7- dimethoxy-quinoline-3-carboxylic acid, ethyl ester and other by-pruducts. This compound is the result of a unwanted reaction.

The molecular geometry of the title compound is illustrated in Fig 1. The title molecule contains an approximate planar quinolyl moiety with a maximum deviation from the mean plane of 0.035 (1)Å. The dihedral angle between the six-membered rings is 2.33 (2)°. The methoxy O atoms of the two neighboring methoxy groups are in-plane and their methyl C atoms locate on both sides of the quinolyl ring plane with maximun out-of-plane deviations of -1.207 (1) and 1.223 (1)Å, respectively.

The quinoline nucleus is widely present in numerous natural compounds, see: Michael et al. (1997, 2002). For the biological activity of quinoline derivatives, see: Heath et al. (2004); Keyaerts et al. (2004); Ko et al. (2001). For our previous work on the preparation of quinoline derivatives, see: Yang et al. (2007, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Synthesis of the title compound.
Ethyl 5,8-dibromo-2-dibromomethyl-6,7-dimethoxyquinoline-3-carboxylate top
Crystal data top
C15H13Br4NO4Z = 2
Mr = 590.90F(000) = 564
Triclinic, P1Dx = 2.131 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.992 (2) ÅCell parameters from 3257 reflections
b = 9.632 (2) Åθ = 1.9–25.2°
c = 11.454 (3) ŵ = 8.76 mm1
α = 84.868 (3)°T = 298 K
β = 71.948 (3)°Block, colourless
γ = 77.552 (3)°0.25 × 0.20 × 0.18 mm
V = 920.8 (4) Å3
Data collection top
Bruker APEXII CCD area detector
diffractometer
3257 independent reflections
Radiation source: fine-focus sealed tube2373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.218, Tmax = 0.302k = 811
4750 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0511P)2]
where P = (Fo2 + 2Fc2)/3
3257 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C15H13Br4NO4γ = 77.552 (3)°
Mr = 590.90V = 920.8 (4) Å3
Triclinic, P1Z = 2
a = 8.992 (2) ÅMo Kα radiation
b = 9.632 (2) ŵ = 8.76 mm1
c = 11.454 (3) ÅT = 298 K
α = 84.868 (3)°0.25 × 0.20 × 0.18 mm
β = 71.948 (3)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
3257 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2373 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.302Rint = 0.035
4750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.97Δρmax = 0.97 e Å3
3257 reflectionsΔρmin = 0.74 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.57694 (8)1.26070 (8)0.23987 (7)0.0629 (2)
Br20.89932 (9)1.37644 (7)0.12167 (7)0.0596 (2)
Br31.17101 (7)1.17543 (6)0.39139 (6)0.04485 (19)
Br41.13760 (9)0.53496 (6)0.26742 (6)0.0561 (2)
C11.2668 (10)0.5760 (8)0.5327 (7)0.075 (2)
H18A1.24220.65360.58700.112*
H18B1.34240.49980.55470.112*
H18C1.17100.54300.53930.112*
C21.5111 (8)0.8569 (7)0.4025 (6)0.0580 (18)
H15A1.53510.77020.35920.087*
H15B1.56880.84490.46180.087*
H15C1.54190.93230.34540.087*
C31.2399 (6)0.7379 (5)0.3697 (5)0.0342 (12)
C41.1433 (6)0.7213 (5)0.3041 (5)0.0336 (12)
C51.2496 (6)0.8762 (5)0.3958 (5)0.0314 (12)
C61.1574 (6)0.9927 (5)0.3568 (5)0.0298 (11)
C71.0550 (6)0.9772 (5)0.2876 (4)0.0283 (11)
C81.0484 (6)0.8386 (5)0.2603 (5)0.0304 (12)
C90.9471 (6)0.8295 (5)0.1901 (5)0.0345 (12)
H190.93630.74050.17230.041*
C100.8643 (6)0.9490 (5)0.1478 (5)0.0333 (12)
C110.8822 (6)1.0830 (5)0.1777 (5)0.0321 (12)
C120.7951 (6)1.2193 (5)0.1337 (5)0.0364 (13)
H140.79171.20350.05130.044*
C130.7654 (7)0.9337 (6)0.0670 (5)0.0397 (13)
C140.6348 (9)0.7820 (7)0.0037 (6)0.072 (2)
H16A0.70740.75160.07600.086*
H16B0.56010.86730.00790.086*
C150.5464 (10)0.6653 (8)0.0669 (7)0.082 (3)
H17A0.62130.58370.08200.123*
H17B0.49100.63960.01520.123*
H17C0.47090.69880.14350.123*
N10.9716 (5)1.0961 (4)0.2468 (4)0.0330 (10)
O10.7234 (5)0.8094 (4)0.0843 (4)0.0535 (12)
O20.7315 (5)1.0223 (5)0.0062 (4)0.0556 (12)
O31.3345 (5)0.6235 (4)0.4075 (4)0.0436 (10)
O41.3441 (5)0.8917 (4)0.4638 (3)0.0429 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0304 (4)0.0793 (5)0.0675 (5)0.0064 (3)0.0113 (3)0.0034 (4)
Br20.0622 (5)0.0435 (4)0.0804 (5)0.0165 (3)0.0315 (4)0.0111 (3)
Br30.0409 (4)0.0368 (3)0.0633 (4)0.0074 (3)0.0231 (3)0.0080 (3)
Br40.0643 (5)0.0319 (3)0.0826 (5)0.0068 (3)0.0370 (4)0.0071 (3)
C10.069 (6)0.070 (5)0.076 (6)0.002 (4)0.027 (5)0.025 (4)
C20.038 (4)0.073 (5)0.072 (5)0.013 (3)0.023 (4)0.016 (3)
C30.030 (3)0.031 (3)0.038 (3)0.000 (2)0.009 (3)0.003 (2)
C40.027 (3)0.028 (3)0.048 (3)0.003 (2)0.013 (3)0.005 (2)
C50.025 (3)0.033 (3)0.036 (3)0.002 (2)0.011 (2)0.003 (2)
C60.020 (3)0.029 (3)0.040 (3)0.005 (2)0.007 (2)0.006 (2)
C70.018 (3)0.033 (3)0.032 (3)0.003 (2)0.006 (2)0.003 (2)
C80.023 (3)0.032 (3)0.036 (3)0.005 (2)0.008 (2)0.003 (2)
C90.030 (3)0.033 (3)0.042 (3)0.007 (2)0.012 (3)0.001 (2)
C100.022 (3)0.044 (3)0.037 (3)0.009 (2)0.010 (2)0.002 (2)
C110.021 (3)0.032 (3)0.039 (3)0.000 (2)0.006 (2)0.002 (2)
C120.030 (3)0.037 (3)0.043 (3)0.004 (2)0.015 (3)0.001 (2)
C130.023 (3)0.053 (4)0.043 (3)0.006 (3)0.010 (3)0.005 (3)
C140.079 (6)0.084 (5)0.083 (5)0.030 (5)0.057 (5)0.003 (4)
C150.089 (7)0.104 (6)0.091 (6)0.060 (5)0.060 (5)0.021 (5)
N10.028 (3)0.033 (2)0.038 (3)0.004 (2)0.013 (2)0.0012 (19)
O10.064 (3)0.051 (2)0.068 (3)0.021 (2)0.045 (3)0.004 (2)
O20.060 (3)0.063 (3)0.061 (3)0.017 (2)0.042 (3)0.008 (2)
O30.033 (2)0.036 (2)0.060 (3)0.0060 (18)0.021 (2)0.0009 (18)
O40.037 (3)0.051 (2)0.049 (2)0.0027 (19)0.026 (2)0.0097 (18)
Geometric parameters (Å, º) top
Br1—C121.939 (6)C7—N11.358 (6)
Br2—C121.919 (5)C7—C81.415 (6)
Br3—C61.876 (4)C8—C91.409 (6)
Br4—C41.894 (5)C9—C101.367 (7)
C1—O31.449 (8)C9—H190.9300
C1—H18A0.9600C10—C111.418 (7)
C1—H18B0.9600C10—C131.504 (7)
C1—H18C0.9600C11—N11.322 (6)
C2—O41.426 (7)C11—C121.507 (7)
C2—H15A0.9600C12—H140.9800
C2—H15B0.9600C13—O21.200 (6)
C2—H15C0.9600C13—O11.313 (6)
C3—C41.353 (7)C14—O11.465 (6)
C3—O31.365 (6)C14—C151.517 (11)
C3—C51.417 (7)C14—H16A0.9700
C4—C81.415 (7)C14—H16B0.9700
C5—O41.355 (5)C15—H17A0.9600
C5—C61.373 (7)C15—H17B0.9600
C6—C71.425 (6)C15—H17C0.9600
O3—C1—H18A109.5C8—C9—H19119.4
O3—C1—H18B109.5C9—C10—C11118.0 (4)
H18A—C1—H18B109.5C9—C10—C13119.2 (5)
O3—C1—H18C109.5C11—C10—C13122.8 (5)
H18A—C1—H18C109.5N1—C11—C10122.7 (5)
H18B—C1—H18C109.5N1—C11—C12116.4 (4)
O4—C2—H15A109.5C10—C11—C12120.9 (4)
O4—C2—H15B109.5C11—C12—Br2113.1 (3)
H15A—C2—H15B109.5C11—C12—Br1109.2 (4)
O4—C2—H15C109.5Br2—C12—Br1111.5 (3)
H15A—C2—H15C109.5C11—C12—H14107.6
H15B—C2—H15C109.5Br2—C12—H14107.6
C4—C3—O3121.2 (4)Br1—C12—H14107.6
C4—C3—C5120.0 (5)O2—C13—O1123.9 (5)
O3—C3—C5118.7 (4)O2—C13—C10124.7 (5)
C3—C4—C8122.2 (4)O1—C13—C10111.4 (5)
C3—C4—Br4118.8 (4)O1—C14—C15106.3 (4)
C8—C4—Br4119.0 (3)O1—C14—H16A110.5
O4—C5—C6120.8 (4)C15—C14—H16A110.5
O4—C5—C3119.6 (4)O1—C14—H16B110.5
C6—C5—C3119.6 (4)C15—C14—H16B110.5
C5—C6—C7121.1 (4)H16A—C14—H16B108.7
C5—C6—Br3119.4 (3)C14—C15—H17A109.5
C7—C6—Br3119.5 (4)C14—C15—H17B109.5
N1—C7—C8122.5 (4)H17A—C15—H17B109.5
N1—C7—C6118.7 (4)C14—C15—H17C109.5
C8—C7—C6118.7 (4)H17A—C15—H17C109.5
C9—C8—C4125.3 (4)H17B—C15—H17C109.5
C9—C8—C7116.4 (4)C11—N1—C7119.2 (4)
C4—C8—C7118.3 (4)C13—O1—C14115.0 (4)
C10—C9—C8121.2 (5)C3—O3—C1114.0 (5)
C10—C9—H19119.4C5—O4—C2114.8 (4)
O3—C3—C4—C8177.7 (5)C8—C9—C10—C110.6 (8)
C5—C3—C4—C80.5 (8)C8—C9—C10—C13176.4 (5)
O3—C3—C4—Br41.2 (7)C9—C10—C11—N11.7 (8)
C5—C3—C4—Br4178.4 (4)C13—C10—C11—N1178.7 (5)
C4—C3—C5—O4178.6 (5)C9—C10—C11—C12179.8 (5)
O3—C3—C5—O44.1 (7)C13—C10—C11—C122.8 (8)
C4—C3—C5—C61.6 (8)N1—C11—C12—Br226.6 (6)
O3—C3—C5—C6178.9 (5)C10—C11—C12—Br2154.9 (4)
O4—C5—C6—C7178.5 (5)N1—C11—C12—Br198.2 (5)
C3—C5—C6—C71.6 (8)C10—C11—C12—Br180.3 (5)
O4—C5—C6—Br33.2 (7)C9—C10—C13—O2154.5 (6)
C3—C5—C6—Br3179.9 (4)C11—C10—C13—O222.4 (9)
C5—C6—C7—N1177.2 (5)C9—C10—C13—O124.0 (7)
Br3—C6—C7—N11.1 (7)C11—C10—C13—O1159.1 (5)
C5—C6—C7—C80.5 (7)C10—C11—N1—C72.5 (8)
Br3—C6—C7—C8178.8 (4)C12—C11—N1—C7179.0 (5)
C3—C4—C8—C9179.0 (5)C8—C7—N1—C110.8 (8)
Br4—C4—C8—C90.1 (7)C6—C7—N1—C11176.8 (5)
C3—C4—C8—C70.6 (8)O2—C13—O1—C142.1 (9)
Br4—C4—C8—C7179.5 (4)C10—C13—O1—C14176.4 (5)
N1—C7—C8—C91.4 (7)C15—C14—O1—C13159.2 (6)
C6—C7—C8—C9179.0 (5)C4—C3—O3—C197.1 (6)
N1—C7—C8—C4178.2 (5)C5—C3—O3—C185.7 (6)
C6—C7—C8—C40.5 (7)C6—C5—O4—C2111.0 (6)
C4—C8—C9—C10177.5 (5)C3—C5—O4—C272.0 (6)
C7—C8—C9—C102.1 (8)

Experimental details

Crystal data
Chemical formulaC15H13Br4NO4
Mr590.90
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.992 (2), 9.632 (2), 11.454 (3)
α, β, γ (°)84.868 (3), 71.948 (3), 77.552 (3)
V3)920.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)8.76
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.218, 0.302
No. of measured, independent and
observed [I > 2σ(I)] reflections
4750, 3257, 2373
Rint0.035
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.105, 0.97
No. of reflections3257
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.74

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (grant No. 20802021) and the Natural Science Foundation of Guangdong Province, China (grant No. 8251063101000002).

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationHeath, J. A., Mehrotra, M. M., Chi, S., Yu, J. C., Hutchaleelaha, A., Hollenbach, S. J., Giese, N. A., Scarborough, R. M. & Pandey, A. (2004). Bioorg. Med. Chem. Lett. 14, 4867–4872.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKeyaerts, E., Vijgen, L., Mae, P., Neyts, J. & Ranst, M. V. (2004). Biochem. Biophys. Res. Commun. 323, 264–268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKo, T. C., Hour, M. J., Lien, J. C., Teng, C. M., Lee, K. H., Kuo, S. C., Huang, L. J. (2001). Bioorg. Med. Chem. Lett. 11, 279–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–618.  CrossRef CAS Web of Science Google Scholar
First citationMichael, J. P. (2002). Nat. Prod. Rep. 19, 742–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D. Q., Guo, W., Cai, Y. P., Jiang, L. S., Jiang, K. L. & Wu, X. B. (2008). Heteroat. Chem. 19, 229–233.  Web of Science CrossRef CAS Google Scholar
First citationYang, D. Q., Jiang, K. L., Li, J. N. & Xu, F. (2007). Tetrahedron, 63, 7654–7658.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds