organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,5-Di­methyl-3-thien­yl)-3-(2,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 12 July 2010; accepted 18 July 2010; online 24 July 2010)

In the title compound, C18H20O4S, the thio­phene and benzene rings are oriented at a dihedral angle of 10.83 (11)°. The central chain makes dihedral angles of 1.86 (13) and 9.25 (12)° with the benzene and thio­phene rings, respectively. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O inter­actions. ππ inter­actions are also observed between the benzene rings with a centroid–centroid distance of 3.6832 (12) Å. The slippage between the benzene rings is 0.956 Å.

Related literature

For the biological activity of 1,3-diphenyl-2-propene-1-ones, see: Gökhan-Kelekçi et al. (2007[Gökhan-Kelekçi, N., Yabanoglu, S., Küpeli, E., Salgin, U., Özgen, Ö., Uçar, G., Yesilada, E., Kendi, E., Yesilada, A. & Bilgin, A. A. (2007). Bioorg. Med. Chem. 15, 5775-5786.]); Ducki et al. (2009[Ducki, S., Rennison, D., Woo, M., Kendall, A., Chabert, J. F. D., McGown, A. T. & Lawrence, N. J. (2009). Bioorg. Med. Chem. 17, 7698-7710.]); dos Santos et al. (2008[Santos, L. dos, Lima, L. A., Cechinel-Filho, V., Corréa, R., Buzzi, F. C. & Nunes, R. J. (2008). Bioorg. Med. Chem. 16, 8526-8534.]); Hussain et al. (2009[Hussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Yasinzai, M. M. & Parvez, M. (2009). Eur. J. Med. Chem. 44, 4654-4660.]); Dandia et al. (2006[Dandia, A., Singh, R. & Khaturia, S. (2006). Bioorg. Med. Chem. 14, 1303-1308.]); Valla et al. (2006[Valla, A., Valla, B., Cartier, D., Guillou, R. L., Labia, R., Florent, L., Charneau, S., Schrevel, J. & Potier, P. (2006). Eur. J. Med. Chem. 41, 142-146.]); Ye et al. (2004[Ye, C., Liu, J., Wei, D., Lu, Y. & Qian, F. (2004). Pharmacol. Res. 50, 505-510.]). For related structures, see: Asiri et al. (2009[Asiri, A. M., Khan, S. A. & Ng, S. W. (2009). Acta Cryst. E65, o1726.]): Hussain et al. (2010[Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953.]): Fun et al. (2010[Fun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010). Acta Cryst. E66, o1656-o1657.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O4S

  • Mr = 332.40

  • Tetragonal, I 41 /a

  • a = 19.5263 (5) Å

  • c = 17.9952 (4) Å

  • V = 6861.2 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.26 × 0.18 × 0.16 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.975

  • 25995 measured reflections

  • 3106 independent reflections

  • 2225 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.05

  • 3106 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9C⋯O3i 0.96 2.55 3.209 (3) 126
C14—H14⋯O4ii 0.93 2.57 3.483 (3) 168
Symmetry codes: (i) [y+{\script{1\over 4}}, -x-{\script{1\over 4}}, -z+{\script{3\over 4}}]; (ii) [-y+{\script{1\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

1,3-Diphenyl-2-propene-1-one, are considered to be precursors of flavonoids when found as naturally occurring compounds, but it could be considered that their true importance is extended in two branches: The biological activity associated with them, including anti-inflammatory (Gökhan-Kelekçi et al., 2007), antimitotic (Ducki, et al., 2009), anti-leishmanial (dos Santos, et al., 2008), anti-invasive (Hussain, et al., 2009), anti-fungal (Dandia et al., 2006) antimalarial (Valla et al., 2006) and anti-tumor (Ye et al., 2004) properties; as well as their recognized synthetic utility in the preparation of pharmacologically interesting heterocyclic systems. On the bases of these aspects in this paper we are reporting the synthesis and crystal structure of the title compound (I), (Fig. 1).

The crystal structures of (II) i.e., (2E,2'E)-1,1'-bis(2,5-dimethyl-3-thienyl)-3,3'-(p-phenylene) diprop-2-en-1-one (Asiri et al., 2009) has been published which contain the 2,5-dimethylthiophen-3-yl moiety. Similarly, the crystal structures of (III) 2,3-dimethyl-N-[(E)-2,4,5-trimethoxybenzylidene]aniline (Hussain et al., 2010) and (IV) 4-[(E)-(2,4,5-trimethoxybenzylidene)amino]-1,5-dimethyl-2- phenyl-1H-pyrazol-3(2H)-one (Fun et al., 2010) have been published which contain the 2,4,5-trimethoxyphenyl moiety.

In (I), the group A (C1—C6/O1/O2/O3) of 2,4,5-trimethoxyphenyl moiety, the central chain B (C10—C12/O4) and 2,5-dimethylthiophen-3-yl C (C13—C18/S1) are planar with r. m. s. deviation of 0.0033, 0.0160 and 0.0031 Å, respectively. The dihedral angle between A/B, A/C and B/C is 1.80 (10), 10.65 (9) and 9.23 (12)°, respectively. Overall 2,4,5-trimethoxyphenyl group has a maximum deviation 0.0338 Å and in it the C9 deviates at maximum 0.0834 (20) Å. The molecules are interlinked through H-bondings of C—H···O type (Table 1, Fig. 2). There exist ππ interaction between the centroids of phenyl rings at a distance of 3.6832 (12) Å [symmetry: - x, - y, 1 - z].

Related literature top

For the biological activity of 1,3-diphenyl-2-propene-1-ones, see: Gökhan-Kelekçi et al. (2007); Ducki et al. (2009); dos Santos et al. (2008); Hussain et al. (2009); Dandia et al. (2006); Valla et al. (2006); Ye et al. (2004). For related structures, see: Asiri et al. (2009): Hussain et al. (2010): Fun et al. (2010).

Experimental top

A solution of 3-acetyl-2,5-dimethythiophene (0.38 g, 0.0025 mol) and 2,4,5-trimethoxy benzaldehyde (0.49 g, 0.0025 mol) in ethanolic solution of NaOH (3.0 g in 10 ml of methanol) was stirred for 16 h at room temperature. The solution was poured into ice cold water of pH = 2 (pH adjusted by HCl). The solid was separated and dissolved in CH2Cl2, washed with saturated solution of NaHCO3 and evaporated to dryness. The residual was recrystallized from methanol/chloroform to affoard yellow prisms.

Yield: 72%; m. p. 380–381 K.

IR (KBr) vmax cm-1: 3016 (Ar—H), 2924 (C—H), 1642 (CO), 1572(C C). 1H NMR (DMSO-d6) (δ/p.p.m.): 8.01 (s, 1H, CHaromatic), 7.98 (s, CHaromatic), 7.20 (d, CCH, J = 15.6 Hz), 7.08 (d, CCH, J=15.0 Hz), 6.51 (s, 1H, C3, CHthiophene), 3.94 (s, OCH3), 3.73 (s, OCH3), 3.62 (s, OCH3),2.44 (s, 3H, –CH3), 2.17 (s, 3H, CH3).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Structure description top

1,3-Diphenyl-2-propene-1-one, are considered to be precursors of flavonoids when found as naturally occurring compounds, but it could be considered that their true importance is extended in two branches: The biological activity associated with them, including anti-inflammatory (Gökhan-Kelekçi et al., 2007), antimitotic (Ducki, et al., 2009), anti-leishmanial (dos Santos, et al., 2008), anti-invasive (Hussain, et al., 2009), anti-fungal (Dandia et al., 2006) antimalarial (Valla et al., 2006) and anti-tumor (Ye et al., 2004) properties; as well as their recognized synthetic utility in the preparation of pharmacologically interesting heterocyclic systems. On the bases of these aspects in this paper we are reporting the synthesis and crystal structure of the title compound (I), (Fig. 1).

The crystal structures of (II) i.e., (2E,2'E)-1,1'-bis(2,5-dimethyl-3-thienyl)-3,3'-(p-phenylene) diprop-2-en-1-one (Asiri et al., 2009) has been published which contain the 2,5-dimethylthiophen-3-yl moiety. Similarly, the crystal structures of (III) 2,3-dimethyl-N-[(E)-2,4,5-trimethoxybenzylidene]aniline (Hussain et al., 2010) and (IV) 4-[(E)-(2,4,5-trimethoxybenzylidene)amino]-1,5-dimethyl-2- phenyl-1H-pyrazol-3(2H)-one (Fun et al., 2010) have been published which contain the 2,4,5-trimethoxyphenyl moiety.

In (I), the group A (C1—C6/O1/O2/O3) of 2,4,5-trimethoxyphenyl moiety, the central chain B (C10—C12/O4) and 2,5-dimethylthiophen-3-yl C (C13—C18/S1) are planar with r. m. s. deviation of 0.0033, 0.0160 and 0.0031 Å, respectively. The dihedral angle between A/B, A/C and B/C is 1.80 (10), 10.65 (9) and 9.23 (12)°, respectively. Overall 2,4,5-trimethoxyphenyl group has a maximum deviation 0.0338 Å and in it the C9 deviates at maximum 0.0834 (20) Å. The molecules are interlinked through H-bondings of C—H···O type (Table 1, Fig. 2). There exist ππ interaction between the centroids of phenyl rings at a distance of 3.6832 (12) Å [symmetry: - x, - y, 1 - z].

For the biological activity of 1,3-diphenyl-2-propene-1-ones, see: Gökhan-Kelekçi et al. (2007); Ducki et al. (2009); dos Santos et al. (2008); Hussain et al. (2009); Dandia et al. (2006); Valla et al. (2006); Ye et al. (2004). For related structures, see: Asiri et al. (2009): Hussain et al. (2010): Fun et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules are interlinked through H-bondings.
(E)-1-(2,5-Dimethyl-3-thienyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H20O4SDx = 1.287 Mg m3
Mr = 332.40Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 2225 reflections
Hall symbol: -I 4adθ = 2.1–25.2°
a = 19.5263 (5) ŵ = 0.21 mm1
c = 17.9952 (4) ÅT = 296 K
V = 6861.2 (3) Å3Prism, yellow
Z = 160.26 × 0.18 × 0.16 mm
F(000) = 2816
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3106 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.10 pixels mm-1θmax = 25.2°, θmin = 2.1°
ω scansh = 2023
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2323
Tmin = 0.966, Tmax = 0.975l = 2121
25995 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0466P)2 + 4.0141P]
where P = (Fo2 + 2Fc2)/3
3106 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H20O4SZ = 16
Mr = 332.40Mo Kα radiation
Tetragonal, I41/aµ = 0.21 mm1
a = 19.5263 (5) ÅT = 296 K
c = 17.9952 (4) Å0.26 × 0.18 × 0.16 mm
V = 6861.2 (3) Å3
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3106 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2225 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.975Rint = 0.038
25995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
3106 reflectionsΔρmin = 0.15 e Å3
213 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35094 (3)0.20431 (3)0.27680 (3)0.0714 (2)
O10.12845 (9)0.01126 (9)0.64860 (7)0.0807 (6)
O20.03254 (9)0.15317 (9)0.54859 (9)0.0813 (6)
O30.00824 (9)0.12701 (10)0.41648 (8)0.0862 (7)
O40.27754 (9)0.14060 (9)0.50556 (8)0.0818 (6)
C10.12078 (10)0.00807 (10)0.52048 (10)0.0514 (7)
C20.09748 (11)0.02371 (11)0.59198 (10)0.0556 (7)
C30.04661 (11)0.07194 (11)0.60327 (11)0.0600 (7)
C40.01787 (11)0.10560 (11)0.54363 (12)0.0600 (8)
C50.04047 (11)0.09097 (12)0.47106 (11)0.0604 (8)
C60.09028 (11)0.04341 (11)0.46095 (11)0.0569 (7)
C70.10721 (14)0.00049 (14)0.72270 (11)0.0754 (9)
C80.05983 (14)0.16834 (16)0.61946 (14)0.0904 (11)
C90.03306 (14)0.12099 (15)0.34337 (12)0.0829 (10)
C100.17351 (10)0.04257 (11)0.51010 (10)0.0553 (7)
C110.20201 (11)0.06423 (11)0.44711 (11)0.0581 (7)
C120.25438 (11)0.11732 (11)0.44709 (11)0.0579 (7)
C130.28009 (11)0.14298 (11)0.37456 (10)0.0536 (7)
C140.25098 (12)0.12648 (12)0.30381 (11)0.0622 (8)
C150.28342 (12)0.15590 (12)0.24581 (11)0.0636 (8)
C160.26802 (14)0.14998 (15)0.16401 (12)0.0857 (10)
C170.33529 (11)0.18552 (11)0.36833 (11)0.0577 (7)
C180.38074 (14)0.21495 (14)0.42741 (13)0.0810 (10)
H30.031780.081650.651230.0720*
H60.104800.033820.412850.0683*
H7A0.058900.007830.726820.1132*
H7B0.131480.029830.755420.1132*
H7C0.116840.047080.736130.1132*
H8A0.024600.187520.650310.1355*
H8B0.096540.200700.614370.1355*
H8C0.076880.127090.641830.1355*
H9A0.029610.074180.327510.1242*
H9B0.006400.149500.310930.1242*
H9C0.080100.135200.341780.1242*
H100.189920.062930.553290.0664*
H110.188190.045070.402240.0697*
H140.213110.098050.298300.0747*
H16A0.305120.126920.139550.1286*
H16B0.262570.194910.143190.1286*
H16C0.226550.124330.157190.1286*
H18A0.355310.247380.456500.1215*
H18B0.419020.237510.404580.1215*
H18C0.396980.178800.458980.1215*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0843 (4)0.0798 (4)0.0502 (3)0.0019 (3)0.0108 (3)0.0054 (3)
O10.1053 (13)0.0996 (12)0.0372 (7)0.0388 (10)0.0040 (8)0.0007 (8)
O20.0825 (11)0.0952 (12)0.0662 (10)0.0260 (10)0.0093 (8)0.0140 (9)
O30.0853 (12)0.1182 (14)0.0552 (9)0.0282 (10)0.0079 (8)0.0337 (9)
O40.0953 (12)0.1074 (13)0.0426 (8)0.0294 (10)0.0032 (8)0.0034 (8)
C10.0545 (12)0.0567 (12)0.0430 (10)0.0055 (10)0.0006 (8)0.0037 (9)
C20.0648 (13)0.0599 (12)0.0421 (10)0.0002 (11)0.0039 (9)0.0020 (9)
C30.0685 (14)0.0697 (14)0.0417 (10)0.0026 (12)0.0018 (9)0.0004 (10)
C40.0582 (13)0.0642 (14)0.0575 (12)0.0024 (11)0.0040 (10)0.0072 (10)
C50.0594 (13)0.0720 (14)0.0497 (12)0.0016 (12)0.0015 (10)0.0171 (10)
C60.0582 (12)0.0691 (14)0.0434 (10)0.0050 (11)0.0060 (9)0.0084 (9)
C70.0982 (18)0.0905 (17)0.0376 (11)0.0146 (14)0.0026 (11)0.0011 (10)
C80.093 (2)0.104 (2)0.0743 (16)0.0267 (17)0.0136 (14)0.0047 (14)
C90.0979 (19)0.100 (2)0.0507 (13)0.0002 (16)0.0021 (12)0.0240 (12)
C100.0624 (13)0.0620 (13)0.0416 (10)0.0028 (10)0.0034 (9)0.0044 (9)
C110.0659 (13)0.0673 (14)0.0411 (10)0.0020 (11)0.0016 (9)0.0048 (9)
C120.0644 (13)0.0685 (14)0.0408 (10)0.0026 (11)0.0012 (9)0.0016 (9)
C130.0584 (12)0.0586 (12)0.0439 (10)0.0069 (10)0.0009 (9)0.0003 (9)
C140.0656 (14)0.0786 (15)0.0425 (11)0.0027 (11)0.0005 (10)0.0003 (10)
C150.0700 (14)0.0767 (15)0.0440 (11)0.0121 (12)0.0002 (10)0.0011 (10)
C160.0957 (19)0.120 (2)0.0414 (12)0.0123 (16)0.0012 (12)0.0040 (12)
C170.0666 (14)0.0611 (13)0.0454 (11)0.0065 (11)0.0041 (9)0.0021 (9)
C180.0866 (18)0.0967 (19)0.0597 (14)0.0225 (15)0.0038 (12)0.0086 (13)
Geometric parameters (Å, º) top
S1—C151.715 (2)C15—C161.507 (3)
S1—C171.715 (2)C17—C181.499 (3)
O1—C21.368 (2)C3—H30.9300
O1—C71.415 (2)C6—H60.9300
O2—C41.356 (3)C7—H7A0.9600
O2—C81.414 (3)C7—H7B0.9600
O3—C51.362 (3)C7—H7C0.9600
O3—C91.407 (3)C8—H8A0.9600
O4—C121.232 (3)C8—H8B0.9600
C1—C21.399 (3)C8—H8C0.9600
C1—C61.407 (3)C9—H9A0.9600
C1—C101.440 (3)C9—H9B0.9600
C2—C31.384 (3)C9—H9C0.9600
C3—C41.378 (3)C10—H100.9300
C4—C51.408 (3)C11—H110.9300
C5—C61.357 (3)C14—H140.9300
C10—C111.332 (3)C16—H16A0.9600
C11—C121.456 (3)C16—H16B0.9600
C12—C131.486 (3)C16—H16C0.9600
C13—C141.431 (3)C18—H18A0.9600
C13—C171.365 (3)C18—H18B0.9600
C14—C151.349 (3)C18—H18C0.9600
O2···O32.559 (2)H6···C92.5300
O2···C9i3.410 (3)H6···C112.7700
O3···O22.559 (2)H6···H9A2.2700
O3···C9i3.209 (3)H6···H9C2.4100
O4···C182.854 (3)H6···H112.2500
O1···H102.3200H6···H10viii2.5900
O3···H9Ci2.5500H7A···C32.7300
O4···H102.4400H7A···H32.2800
O4···H18A2.7300H7A···H9Aiv2.3700
O4···H18C2.5900H7B···C16v2.9300
O4···H8Cii2.7600H7B···H16Av2.4700
O4···H9Aiii2.8400H7B···C1iii2.9100
O4···H14iii2.5700H7B···C6iii3.0400
C4···C6iv3.596 (3)H7C···C32.8000
C6···C4iv3.596 (3)H7C···H32.3600
C7···C16v3.464 (3)H7C···C15ix2.8900
C9···O3vi3.209 (3)H8A···C32.7800
C9···O2vi3.410 (3)H8A···H32.3400
C16···C7vii3.464 (3)H8C···C32.7300
C18···O42.854 (3)H8C···H32.3100
C1···H7Bviii2.9100H8C···O4xiii2.7600
C2···H16Aix2.9000H9A···C62.7400
C3···H8C2.7300H9A···H62.2700
C3···H8A2.7800H9A···H7Aiv2.3700
C3···H7A2.7300H9A···O4viii2.8400
C3···H7C2.8000H9C···C62.8000
C6···H7Bviii3.0400H9C···H62.4100
C6···H9C2.8000H9C···O3vi2.5500
C6···H112.7800H10···O12.3200
C6···H9A2.7400H10···O42.4400
C7···H32.5200H10···H6iii2.5900
C8···H32.5300H11···C62.7800
C9···H62.5300H11···C142.6800
C11···H62.7700H11···H62.2500
C11···H142.7700H11···H142.1900
C12···H14iii3.0200H14···C112.7700
C12···H18C3.0400H14···H112.1900
C12···H16Ciii3.0600H14···O4viii2.5700
C13···H16Ciii3.0300H14···C12viii3.0200
C14···H112.6800H16A···C2x2.9000
C15···H7Cx2.8900H16A···H7Bvii2.4700
C16···H7Bvii2.9300H16B···C17xi3.0200
C17···H16Bxi3.0200H16C···C12viii3.0600
C18···H18Bxii3.1000H16C···C13viii3.0300
H3···C72.5200H18A···O42.7300
H3···C82.5300H18B···C18xiv3.1000
H3···H7A2.2800H18B···H18Bxiv2.5000
H3···H7C2.3600H18B···H18Bxii2.5000
H3···H8A2.3400H18C···O42.5900
H3···H8C2.3100H18C···C123.0400
C15—S1—C1793.29 (10)O1—C7—H7A109.00
C2—O1—C7119.44 (18)O1—C7—H7B109.00
C4—O2—C8118.45 (19)O1—C7—H7C109.00
C5—O3—C9118.16 (19)H7A—C7—H7B109.00
C2—C1—C6117.12 (18)H7A—C7—H7C109.00
C2—C1—C10120.13 (17)H7B—C7—H7C109.00
C6—C1—C10122.75 (17)O2—C8—H8A109.00
O1—C2—C1115.63 (18)O2—C8—H8B109.00
O1—C2—C3123.22 (17)O2—C8—H8C109.00
C1—C2—C3121.15 (18)H8A—C8—H8B109.00
C2—C3—C4120.17 (19)H8A—C8—H8C109.00
O2—C4—C3124.82 (19)H8B—C8—H8C109.00
O2—C4—C5115.31 (19)O3—C9—H9A109.00
C3—C4—C5119.9 (2)O3—C9—H9B109.00
O3—C5—C4114.78 (19)O3—C9—H9C109.00
O3—C5—C6126.01 (19)H9A—C9—H9B109.00
C4—C5—C6119.20 (19)H9A—C9—H9C109.00
C1—C6—C5122.49 (18)H9B—C9—H9C109.00
C1—C10—C11128.86 (18)C1—C10—H10116.00
C10—C11—C12121.32 (19)C11—C10—H10116.00
O4—C12—C11121.34 (19)C10—C11—H11119.00
O4—C12—C13120.12 (19)C12—C11—H11119.00
C11—C12—C13118.53 (18)C13—C14—H14123.00
C12—C13—C14124.86 (19)C15—C14—H14123.00
C12—C13—C17122.97 (18)C15—C16—H16A109.00
C14—C13—C17112.18 (18)C15—C16—H16B109.00
C13—C14—C15114.0 (2)C15—C16—H16C109.00
S1—C15—C14110.12 (16)H16A—C16—H16B109.00
S1—C15—C16120.88 (17)H16A—C16—H16C109.00
C14—C15—C16129.0 (2)H16B—C16—H16C109.00
S1—C17—C13110.47 (15)C17—C18—H18A109.00
S1—C17—C18119.58 (17)C17—C18—H18B109.00
C13—C17—C18129.96 (19)C17—C18—H18C109.00
C2—C3—H3120.00H18A—C18—H18B109.00
C4—C3—H3120.00H18A—C18—H18C109.00
C1—C6—H6119.00H18B—C18—H18C109.00
C5—C6—H6119.00
C17—S1—C15—C140.40 (19)O2—C4—C5—O30.1 (3)
C17—S1—C15—C16179.6 (2)O2—C4—C5—C6179.3 (2)
C15—S1—C17—C130.38 (18)C3—C4—C5—O3179.7 (2)
C15—S1—C17—C18179.9 (2)C3—C4—C5—C60.3 (3)
C7—O1—C2—C1178.9 (2)O3—C5—C6—C1179.6 (2)
C7—O1—C2—C31.5 (3)C4—C5—C6—C10.3 (3)
C8—O2—C4—C32.2 (3)C1—C10—C11—C12178.9 (2)
C8—O2—C4—C5177.3 (2)C10—C11—C12—O45.2 (3)
C9—O3—C5—C4173.0 (2)C10—C11—C12—C13175.2 (2)
C9—O3—C5—C67.6 (3)O4—C12—C13—C14171.4 (2)
C6—C1—C2—O1179.65 (19)O4—C12—C13—C178.8 (3)
C6—C1—C2—C30.0 (3)C11—C12—C13—C149.0 (3)
C10—C1—C2—O10.7 (3)C11—C12—C13—C17170.8 (2)
C10—C1—C2—C3179.7 (2)C12—C13—C14—C15179.9 (2)
C2—C1—C6—C50.2 (3)C17—C13—C14—C150.0 (3)
C10—C1—C6—C5179.8 (2)C12—C13—C17—S1179.55 (17)
C2—C1—C10—C11180.0 (2)C12—C13—C17—C180.2 (4)
C6—C1—C10—C110.3 (3)C14—C13—C17—S10.3 (2)
O1—C2—C3—C4179.6 (2)C14—C13—C17—C18179.7 (2)
C1—C2—C3—C40.0 (3)C13—C14—C15—S10.3 (3)
C2—C3—C4—O2179.4 (2)C13—C14—C15—C16179.4 (2)
C2—C3—C4—C50.2 (3)
Symmetry codes: (i) y1/4, x1/4, z+3/4; (ii) y+1/4, x+1/4, z+5/4; (iii) y+1/4, x+1/4, z+1/4; (iv) x, y, z+1; (v) y+1/4, x1/4, z+3/4; (vi) y+1/4, x1/4, z+3/4; (vii) y+1/4, x+1/4, z3/4; (viii) y+1/4, x1/4, z1/4; (ix) x+1/2, y, z+1/2; (x) x+1/2, y, z1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) y+3/4, x1/4, z+3/4; (xiii) y1/4, x+1/4, z+5/4; (xiv) y+1/4, x+3/4, z+3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O3vi0.962.553.209 (3)126
C14—H14···O4viii0.932.573.483 (3)168
Symmetry codes: (vi) y+1/4, x1/4, z+3/4; (viii) y+1/4, x1/4, z1/4.

Experimental details

Crystal data
Chemical formulaC18H20O4S
Mr332.40
Crystal system, space groupTetragonal, I41/a
Temperature (K)296
a, c (Å)19.5263 (5), 17.9952 (4)
V3)6861.2 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.26 × 0.18 × 0.16
Data collection
DiffractometerBruker KAPPA APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.966, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
25995, 3106, 2225
Rint0.038
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.05
No. of reflections3106
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O3i0.962.553.209 (3)126
C14—H14···O4ii0.932.573.483 (3)168
Symmetry codes: (i) y+1/4, x1/4, z+3/4; (ii) y+1/4, x1/4, z1/4.
 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and the Deanship of Scientific Research for the financial support of this work via grant No. (3–045/430).

References

First citationAsiri, A. M., Khan, S. A. & Ng, S. W. (2009). Acta Cryst. E65, o1726.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDandia, A., Singh, R. & Khaturia, S. (2006). Bioorg. Med. Chem. 14, 1303–1308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDucki, S., Rennison, D., Woo, M., Kendall, A., Chabert, J. F. D., McGown, A. T. & Lawrence, N. J. (2009). Bioorg. Med. Chem. 17, 7698–7710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010). Acta Cryst. E66, o1656–o1657.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGökhan-Kelekçi, N., Yabanoglu, S., Küpeli, E., Salgin, U., Özgen, Ö., Uçar, G., Yesilada, E., Kendi, E., Yesilada, A. & Bilgin, A. A. (2007). Bioorg. Med. Chem. 15, 5775–5786.  Web of Science PubMed Google Scholar
First citationHussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Yasinzai, M. M. & Parvez, M. (2009). Eur. J. Med. Chem. 44, 4654–4660.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantos, L. dos, Lima, L. A., Cechinel-Filho, V., Corréa, R., Buzzi, F. C. & Nunes, R. J. (2008). Bioorg. Med. Chem. 16, 8526–8534.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValla, A., Valla, B., Cartier, D., Guillou, R. L., Labia, R., Florent, L., Charneau, S., Schrevel, J. & Potier, P. (2006). Eur. J. Med. Chem. 41, 142–146.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYe, C., Liu, J., Wei, D., Lu, Y. & Qian, F. (2004). Pharmacol. Res. 50, 505–510.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds