organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzoyl-2H-1,4-benzo­thia­zin-3(4H)-one

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 20 July 2010; accepted 25 July 2010; online 31 July 2010)

In the title compound, C15H11NO2S, the dihedral angle between the aromatic rings is 80.35 (7)°. The heterocyclic six-membered ring is not planar: the puckering parameters of this ring are Q = 0.5308 (15) Å, θ = 63.11 (18) and φ = 23.5 (2)°. The mol­ecules are linked into inversion dimers with R22(8) ring motifs by pairs of N—H⋯O hydrogen bonds. The dimers are inter­linked into polymeric sheets extending parallel to the bc plane by C—H⋯O hydrogen bonds, generating R21(7) ring motifs. ππ inter­actions occur between the benzoyl phenyl rings with centroid–centroid separations of 3.9187 (15) Å.

Related literature

For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis and anti­microbial activity of benzimidazole derivatives, see: Güven et al. (2007[Güven, Ö. Ö., Erdoğan, T., Göeker, H. & Yildiz, S. (2007). Bioorg. Med. Chem. Lett. 17, 2233-2236.]): Nofal et al. (2002[Nofal, Z. M., Fahmy, H. H. & Mohamed, H. S. (2002). Arch. Pharm. Res. 25, 28-38.]). For related structures, see: Beryozkina et al. (2004[Beryozkina, T. V., Kolos, N. N., Orlov, V. D., Zubatyuk, R. I. & Shishkin, O. V. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 2153-2162.]): Kumaradhas & Nirmala (1997[Kumaradhas, P. & Nirmala, K. A. (1997). Acta Cryst. C53, 313-315.]): Zhang et al. (2008[Zhang, P., Du, N., Wang, L.-Z. & Li, Y. (2008). Acta Cryst. E64, o746.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NO2S

  • Mr = 269.31

  • Monoclinic, P 21 /n

  • a = 9.1323 (3) Å

  • b = 15.2893 (4) Å

  • c = 10.5214 (4) Å

  • β = 114.669 (1)°

  • V = 1334.99 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.950

  • 10387 measured reflections

  • 2399 independent reflections

  • 2064 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.04

  • 2399 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.98 2.8383 (19) 179
C2—H2⋯O1ii 0.93 2.55 3.453 (2) 165
C8—H8⋯O1ii 0.98 2.36 3.170 (2) 140
Symmetry codes: (i) -x, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Benzothiazin molecules exhibit a broad spectrum of biological activity such as antifungal (Güven et al., 2007) and antibacterial (Nofal et al., 2002) properties. Our group is engaged in preparation and evaluation of biological activities of such type of compounds.

The crystal structures of (II) i.e., 2-(2-(4-bromophenyl)-2-oxoethyl)-4H-benzo-1,4-thiazin-3-one (Beryozkina et al., 2004), (III) 2-(4-chlorobenzoylmethyl)-2H-1,4-benzothiazin-3(4H)-one (Zhang et al., 2008) and (IV) (±)-2-(hydroxy(4-methoxyphenyl)methyl)-2H-1,4-benzothiazin- 3(4H)-one monohydrate (Kumaradhas & Nirmala et al., 1997) have been published which are related to title compound (I), (Fig. 1).

In (I), the benzene rings A (C1—C6) and B (C10—C15) are planar with r. m. s. deviations of 0.0045 and 0.0084 Å, respectively. The dihedral angle between A/B is 80.35 (7)°. The heterocyclic six membered ring C (C8/C9/N1/C10/C11/S1) fused with phenyl ring group B is not planar. The confirmation of this ring may be described by the puckering parameters (Cremer & Pople, 1975): Q = 0.5308 (15) Å, θ = 63.11 (18)°, φ = 23.5 (2)°. The molecules are stabilized in the form of dimers (Fig. 2) due to N—H···O type of H-bondings (Table 1) with R22(8) ring motifs (Bernstein et al., 1995). The dimers are interlinked in the form of polymeric sheets extending parallel to bc-plane due to C—H···O type of H-bondings (Table 1, Fig. 2) and complete R21(7) ring motifs. There exist ππ interaction between the centroids of carbonyl containing phenyl rings at a separation of 3.9187 (15) Å [symmetry code: -x, 1 - y, 1 - z].

Related literature top

For puckering parameters, see: Cremer & Pople (1975). For the synthesis and antimicrobial activity of benzimidazole derivatives, see: Güven et al. (2007): Nofal et al. (2002). For related structures, see: Beryozkina et al. (2004): Kumaradhas & Nirmala (1997): Zhang et al. (2008). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

2-Aminothiophenol (0.01 M, 1.08 ml) and ethyl benzoyl acetate (0.01 M, 1.73) were added to 5 ml dimethylsulfoxide. Resulting mixture was refluxed for 1 h and left overnight at room temperature. The separated solid was filtered, washed with petroleum ether and recrystallized with methanol to affoard light yellow plates.

Refinement top

All H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Structure description top

Benzothiazin molecules exhibit a broad spectrum of biological activity such as antifungal (Güven et al., 2007) and antibacterial (Nofal et al., 2002) properties. Our group is engaged in preparation and evaluation of biological activities of such type of compounds.

The crystal structures of (II) i.e., 2-(2-(4-bromophenyl)-2-oxoethyl)-4H-benzo-1,4-thiazin-3-one (Beryozkina et al., 2004), (III) 2-(4-chlorobenzoylmethyl)-2H-1,4-benzothiazin-3(4H)-one (Zhang et al., 2008) and (IV) (±)-2-(hydroxy(4-methoxyphenyl)methyl)-2H-1,4-benzothiazin- 3(4H)-one monohydrate (Kumaradhas & Nirmala et al., 1997) have been published which are related to title compound (I), (Fig. 1).

In (I), the benzene rings A (C1—C6) and B (C10—C15) are planar with r. m. s. deviations of 0.0045 and 0.0084 Å, respectively. The dihedral angle between A/B is 80.35 (7)°. The heterocyclic six membered ring C (C8/C9/N1/C10/C11/S1) fused with phenyl ring group B is not planar. The confirmation of this ring may be described by the puckering parameters (Cremer & Pople, 1975): Q = 0.5308 (15) Å, θ = 63.11 (18)°, φ = 23.5 (2)°. The molecules are stabilized in the form of dimers (Fig. 2) due to N—H···O type of H-bondings (Table 1) with R22(8) ring motifs (Bernstein et al., 1995). The dimers are interlinked in the form of polymeric sheets extending parallel to bc-plane due to C—H···O type of H-bondings (Table 1, Fig. 2) and complete R21(7) ring motifs. There exist ππ interaction between the centroids of carbonyl containing phenyl rings at a separation of 3.9187 (15) Å [symmetry code: -x, 1 - y, 1 - z].

For puckering parameters, see: Cremer & Pople (1975). For the synthesis and antimicrobial activity of benzimidazole derivatives, see: Güven et al. (2007): Nofal et al. (2002). For related structures, see: Beryozkina et al. (2004): Kumaradhas & Nirmala (1997): Zhang et al. (2008). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers which are interlinked in the form of polymeric sheets. The H-atoms not involved in H-bodings are omitted for clarity.
2-Benzoyl-2H-1,4-benzothiazin-3(4H)-one top
Crystal data top
C15H11NO2SF(000) = 560
Mr = 269.31Dx = 1.340 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2064 reflections
a = 9.1323 (3) Åθ = 3.4–25.3°
b = 15.2893 (4) ŵ = 0.24 mm1
c = 10.5214 (4) ÅT = 296 K
β = 114.669 (1)°Plate, light yellow
V = 1334.99 (8) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2399 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1818
Tmin = 0.939, Tmax = 0.950l = 1212
10387 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.046P)2 + 0.5415P]
where P = (Fo2 + 2Fc2)/3
2399 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C15H11NO2SV = 1334.99 (8) Å3
Mr = 269.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1323 (3) ŵ = 0.24 mm1
b = 15.2893 (4) ÅT = 296 K
c = 10.5214 (4) Å0.25 × 0.20 × 0.10 mm
β = 114.669 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2399 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2064 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.950Rint = 0.023
10387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2399 reflectionsΔρmin = 0.41 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02233 (6)0.25059 (3)0.25961 (5)0.0528 (2)
O10.07429 (16)0.26350 (9)0.61431 (13)0.0569 (4)
O20.15131 (15)0.08259 (8)0.46234 (17)0.0603 (5)
N10.08715 (16)0.09439 (9)0.45062 (15)0.0419 (4)
C10.1244 (2)0.36835 (10)0.49255 (17)0.0399 (5)
C20.2555 (2)0.39269 (12)0.3713 (2)0.0508 (6)
C30.3331 (3)0.47100 (14)0.3657 (3)0.0720 (8)
C40.2798 (3)0.52592 (15)0.4793 (3)0.0827 (10)
C50.1488 (3)0.50307 (15)0.5989 (3)0.0795 (9)
C60.0712 (3)0.42488 (13)0.6065 (2)0.0584 (7)
C70.04028 (19)0.28361 (10)0.50775 (16)0.0372 (5)
C80.09851 (19)0.21947 (10)0.38628 (16)0.0365 (5)
C90.05515 (19)0.12647 (10)0.43619 (18)0.0401 (5)
C100.2099 (2)0.13817 (11)0.42926 (18)0.0402 (5)
C110.1776 (2)0.21359 (12)0.34898 (19)0.0470 (6)
C120.3019 (3)0.25556 (14)0.3316 (3)0.0678 (9)
C130.4547 (3)0.22130 (18)0.3895 (3)0.0782 (10)
C140.4862 (3)0.14499 (16)0.4662 (3)0.0672 (8)
C150.3646 (2)0.10353 (13)0.4873 (2)0.0505 (6)
H10.105550.040560.476000.0503*
H20.291160.356140.293590.0609*
H30.421860.486630.284660.0864*
H40.332520.578600.475070.0992*
H50.112110.540720.675290.0952*
H60.017090.409710.688260.0701*
H80.216320.223310.340390.0439*
H120.281950.307240.280490.0813*
H130.537680.249770.376890.0939*
H140.589650.121590.503660.0807*
H150.385780.052520.540100.0606*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0689 (4)0.0489 (3)0.0425 (3)0.0067 (2)0.0251 (2)0.0100 (2)
O10.0513 (8)0.0588 (8)0.0406 (7)0.0149 (6)0.0005 (6)0.0002 (6)
O20.0459 (7)0.0373 (7)0.1062 (12)0.0049 (6)0.0402 (8)0.0184 (7)
N10.0378 (7)0.0277 (7)0.0595 (9)0.0014 (6)0.0196 (7)0.0057 (6)
C10.0436 (9)0.0314 (8)0.0425 (9)0.0020 (7)0.0157 (7)0.0031 (7)
C20.0540 (11)0.0365 (9)0.0502 (10)0.0051 (8)0.0103 (9)0.0046 (8)
C30.0762 (15)0.0488 (12)0.0743 (14)0.0220 (11)0.0149 (12)0.0147 (11)
C40.112 (2)0.0438 (12)0.0907 (18)0.0277 (13)0.0407 (16)0.0041 (12)
C50.114 (2)0.0478 (12)0.0713 (15)0.0101 (13)0.0334 (14)0.0125 (11)
C60.0721 (13)0.0466 (11)0.0477 (10)0.0033 (10)0.0163 (10)0.0022 (8)
C70.0359 (9)0.0358 (9)0.0365 (8)0.0010 (7)0.0119 (7)0.0046 (7)
C80.0334 (8)0.0314 (8)0.0388 (8)0.0014 (6)0.0092 (7)0.0035 (6)
C90.0354 (9)0.0310 (8)0.0513 (10)0.0004 (7)0.0154 (7)0.0032 (7)
C100.0412 (9)0.0362 (9)0.0468 (9)0.0054 (7)0.0220 (7)0.0101 (7)
C110.0581 (11)0.0420 (10)0.0508 (10)0.0057 (8)0.0326 (9)0.0062 (8)
C120.0860 (17)0.0564 (13)0.0891 (16)0.0114 (11)0.0645 (14)0.0042 (11)
C130.0770 (16)0.0757 (16)0.113 (2)0.0253 (13)0.0704 (16)0.0254 (15)
C140.0474 (11)0.0784 (16)0.0876 (16)0.0081 (10)0.0398 (11)0.0316 (13)
C150.0437 (10)0.0492 (10)0.0607 (11)0.0002 (8)0.0239 (9)0.0144 (9)
Geometric parameters (Å, º) top
S1—C81.8057 (18)C10—C151.389 (3)
S1—C111.762 (2)C10—C111.386 (2)
O1—C71.211 (2)C11—C121.381 (3)
O2—C91.224 (2)C12—C131.372 (4)
N1—C91.337 (2)C13—C141.379 (4)
N1—C101.402 (2)C14—C151.375 (4)
N1—H10.8600C2—H20.9300
C1—C61.391 (3)C3—H30.9300
C1—C71.481 (2)C4—H40.9300
C1—C21.387 (3)C5—H50.9300
C2—C31.380 (3)C6—H60.9300
C3—C41.373 (4)C8—H80.9800
C4—C51.371 (4)C12—H120.9300
C5—C61.375 (3)C13—H130.9300
C7—C81.520 (2)C14—H140.9300
C8—C91.510 (2)C15—H150.9300
S1···O13.4635 (14)C11···O13.386 (2)
S1···N13.0108 (15)C14···S1ii3.505 (3)
S1···C23.567 (2)C15···S1ii3.432 (2)
S1···C15i3.432 (2)C2···H82.6500
S1···O1i3.3545 (16)C2···H13iv2.9000
S1···C14i3.505 (3)C8···H22.6400
S1···H23.0800C9···H1iii2.8200
O1···S13.4635 (14)C9···H3v3.1000
O1···N13.136 (2)H1···H152.3700
O1···C103.318 (2)H1···O2iii1.9800
O1···C113.386 (2)H1···C9iii2.8200
O1···S1ii3.3545 (16)H1···H1iii2.5100
O1···C8ii3.170 (2)H2···S13.0800
O2···N1iii2.8383 (19)H2···C82.6400
O1···H62.4900H2···H82.1300
O1···H8ii2.3600H2···O1i2.5500
O1···H2ii2.5500H3···N1vi2.8300
O2···H14iv2.6500H3···C9vi3.1000
O2···H1iii1.9800H6···O12.4900
N1···S13.0108 (15)H8···C22.6500
N1···O13.136 (2)H8···H22.1300
N1···O2iii2.8383 (19)H8···H13iv2.4700
N1···H3v2.8300H8···O1i2.3600
C2···S13.567 (2)H13···C2vii2.9000
C7···C103.524 (3)H13···H8vii2.4700
C8···O1i3.170 (2)H14···O2vii2.6500
C10···O13.318 (2)H15···H12.3700
C10···C73.524 (3)
C8—S1—C1198.87 (9)S1—C11—C12120.40 (16)
C9—N1—C10127.66 (14)C11—C12—C13120.2 (2)
C10—N1—H1116.00C12—C13—C14120.5 (3)
C9—N1—H1116.00C13—C14—C15120.0 (3)
C2—C1—C7122.95 (15)C10—C15—C14119.7 (2)
C2—C1—C6118.88 (17)C1—C2—H2120.00
C6—C1—C7118.16 (16)C3—C2—H2120.00
C1—C2—C3120.18 (19)C2—C3—H3120.00
C2—C3—C4120.3 (2)C4—C3—H3120.00
C3—C4—C5120.0 (2)C3—C4—H4120.00
C4—C5—C6120.4 (2)C5—C4—H4120.00
C1—C6—C5120.3 (2)C4—C5—H5120.00
O1—C7—C1122.07 (15)C6—C5—H5120.00
O1—C7—C8118.58 (15)C1—C6—H6120.00
C1—C7—C8119.35 (14)C5—C6—H6120.00
S1—C8—C7110.07 (12)S1—C8—H8108.00
C7—C8—C9111.48 (13)C7—C8—H8108.00
S1—C8—C9112.26 (12)C9—C8—H8108.00
O2—C9—C8119.05 (16)C11—C12—H12120.00
N1—C9—C8119.09 (15)C13—C12—H12120.00
O2—C9—N1121.86 (15)C12—C13—H13120.00
C11—C10—C15120.25 (18)C14—C13—H13120.00
N1—C10—C11120.91 (17)C13—C14—H14120.00
N1—C10—C15118.82 (16)C15—C14—H14120.00
C10—C11—C12119.31 (19)C10—C15—H15120.00
S1—C11—C10120.12 (15)C14—C15—H15120.00
C11—S1—C8—C776.58 (13)O1—C7—C8—S199.48 (17)
C11—S1—C8—C948.23 (14)O1—C7—C8—C925.8 (2)
C8—S1—C11—C1035.41 (16)C1—C7—C8—S180.43 (18)
C8—S1—C11—C12149.38 (18)C1—C7—C8—C9154.32 (16)
C10—N1—C9—O2177.54 (17)S1—C8—C9—O2144.64 (15)
C10—N1—C9—C82.4 (3)S1—C8—C9—N135.38 (19)
C9—N1—C10—C1120.1 (3)C7—C8—C9—O291.3 (2)
C9—N1—C10—C15161.39 (17)C7—C8—C9—N188.65 (19)
C6—C1—C2—C31.3 (3)N1—C10—C11—S15.5 (2)
C7—C1—C2—C3177.2 (2)N1—C10—C11—C12179.22 (19)
C2—C1—C6—C50.7 (3)C15—C10—C11—S1172.94 (14)
C7—C1—C6—C5177.9 (2)C15—C10—C11—C122.3 (3)
C2—C1—C7—O1179.82 (18)N1—C10—C15—C14179.28 (19)
C2—C1—C7—C80.1 (3)C11—C10—C15—C140.8 (3)
C6—C1—C7—O11.7 (3)S1—C11—C12—C13173.2 (2)
C6—C1—C7—C8178.41 (19)C10—C11—C12—C132.1 (3)
C1—C2—C3—C40.9 (4)C11—C12—C13—C140.4 (4)
C2—C3—C4—C50.1 (4)C12—C13—C14—C151.2 (4)
C3—C4—C5—C60.7 (4)C13—C14—C15—C101.0 (4)
C4—C5—C6—C10.3 (4)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x1, y, z; (v) x1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z+1/2; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2iii0.861.982.8383 (19)179
C2—H2···O1i0.932.553.453 (2)165
C8—H8···O1i0.982.363.170 (2)140
Symmetry codes: (i) x1/2, y+1/2, z1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H11NO2S
Mr269.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.1323 (3), 15.2893 (4), 10.5214 (4)
β (°) 114.669 (1)
V3)1334.99 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.939, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
10387, 2399, 2064
Rint0.023
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.04
No. of reflections2399
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.982.8383 (19)179
C2—H2···O1ii0.932.553.453 (2)165
C8—H8···O1ii0.982.363.170 (2)140
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

DS is grateful to the Higher Education Commission (Pakistan) for funding of this project and Professor Dr Islam Ullah Khan for providing research facilities at Government College University, Lahore, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBeryozkina, T. V., Kolos, N. N., Orlov, V. D., Zubatyuk, R. I. & Shishkin, O. V. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 2153–2162.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGüven, Ö. Ö., Erdoğan, T., Göeker, H. & Yildiz, S. (2007). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationKumaradhas, P. & Nirmala, K. A. (1997). Acta Cryst. C53, 313–315.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNofal, Z. M., Fahmy, H. H. & Mohamed, H. S. (2002). Arch. Pharm. Res. 25, 28–38.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, P., Du, N., Wang, L.-Z. & Li, Y. (2008). Acta Cryst. E64, o746.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds