metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nona­carbonyl-1κ3C,2κ3C,3κ3C-μ-bis­­(di­phenyl­arsino)methane-1:2κ2As:As'-[tris­­(2-chloro­eth­yl) phosphite-3κP]-triangulo-triruthenium(0)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 25 June 2010; accepted 3 July 2010; online 14 July 2010)

In the title triangulo-triruthenium(0) compound, [Ru3(C25H22As2)(C6H12Cl3O3P)(CO)9], the bis­(diphenyl­arsino)methane ligand bridges an Ru—Ru bond and the monodentate phosphine ligand bonds to the third Ru atom. Both the arsine and phosphine ligands are equatorial with respect to the Ru3 triangle. In addition, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. In the crystal packing, the mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds into a three-dimensional framework. Weak inter­molecular C—H⋯π inter­actions further stabilize the crystal structure.

Related literature

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985[Bruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127-131.], 1988a[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181-205.],b[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207-235.]). For related structures, see: Shawkataly et al. (1998[Shawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211-1216.], 2004[Shawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A. & Razak, I. A. (2004). J. Cluster Sci. 15, 387-394.], 2010[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m90-m91.]). For the synthesis of μ-bis­(diphenyl­arsino)methane­deca­carbonyl­triruthenium(0), see: Bruce et al. (1983[Bruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321-343.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C25H22As2)(C6H12Cl3O3P)(CO)9]

  • Mr = 1297.04

  • Orthorhombic, P b c a

  • a = 14.9105 (5) Å

  • b = 21.3468 (7) Å

  • c = 28.7377 (9) Å

  • V = 9147.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.68 mm−1

  • T = 100 K

  • 0.47 × 0.18 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.365, Tmax = 0.798

  • 55092 measured reflections

  • 10492 independent reflections

  • 8686 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.184

  • S = 1.28

  • 10492 reflections

  • 532 parameters

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −2.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C20–C25 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O6i 0.93 2.57 3.275 (14) 133
C27—H27B⋯O9ii 0.97 2.47 3.231 (15) 135
C30—H30A⋯O5iii 0.97 2.56 3.297 (15) 133
C4—H4ACg1iv 0.93 2.77 3.468 (11) 133
C9—H9ACg2v 0.93 2.89 3.684 (12) 144
C18—H18ACg1vi 0.93 2.71 3.505 (12) 145
C24—H24ACg2vii 0.93 2.69 3.473 (11) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) -x, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{3\over 2}}, y, -z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y, -z-{\script{1\over 2}}]; (vii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L= group 15 ligand) have been reported (Bruce, et al., 1988a,b; Bruce et al., 1985). As part of our study of the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004, 2010). Herein we report the synthesis and structure of the title compound.

The bond lengths and angles of title compound (Fig. 1) are comparable to those found in a related structure (Shawkataly et al., 2010). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate phosphine ligand bonds to the Ru3 atom. Both the phosphine and arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 85.4 (5) and 87.3 (5)° for the two diphenylarsino groups respectively.

In the crystal packing (Fig. 2), the molecules are linked by intermolecular C19—H19A···O6, C27—H27B···O9 and C30—H30A···O5 hydrogen bonds into a three-dimensional framework. Weak intermolecular C—H···π interactions further stabilize the crystal structure (Table 1).

Related literature top

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2010). For the synthesis of µ-bis(diphenylarsino)methanedecacarbonyltriruthenium(0), see: Bruce et al. (1983). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

All manipulations were performed under a dry, oxygen-free dinitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium and distilled from sodium benzophenone ketyl under nitrogen. Tris(2-chloroethyl)phosphite (Aldrich) was used as received and µ-bis(diphenylarsino)methanedecacarbonyltriruthenium(0) (Bruce et al., 1983) was prepared by a reported procedure. The title compound was obtained by refluxing equimolar quantities of Ru3(CO)10(µ-Ph2AsCH2AsPh2) and tris(2-chloroethyl)phosphite in hexane under nitrogen atmosphere. Crystals suitable for X-ray diffraction were grown by slow solvent / solvent diffusion of CH3OH into CH2Cl2.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The same Uij parameters were used for the atoms C17/C1/C20/C7. The maximum and minimum residual electron density peaks of 1.40 and -2.28 e Å-3, respectively, were located 0.79 Å and 1.42 Å from the RU1 and C36 atoms, repectively.

Structure description top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L= group 15 ligand) have been reported (Bruce, et al., 1988a,b; Bruce et al., 1985). As part of our study of the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004, 2010). Herein we report the synthesis and structure of the title compound.

The bond lengths and angles of title compound (Fig. 1) are comparable to those found in a related structure (Shawkataly et al., 2010). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate phosphine ligand bonds to the Ru3 atom. Both the phosphine and arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 85.4 (5) and 87.3 (5)° for the two diphenylarsino groups respectively.

In the crystal packing (Fig. 2), the molecules are linked by intermolecular C19—H19A···O6, C27—H27B···O9 and C30—H30A···O5 hydrogen bonds into a three-dimensional framework. Weak intermolecular C—H···π interactions further stabilize the crystal structure (Table 1).

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2010). For the synthesis of µ-bis(diphenylarsino)methanedecacarbonyltriruthenium(0), see: Bruce et al. (1983). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into a 3-D framework. Hydrogen atoms not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity.
Nonacarbonyl-1κ3C,2κ3C,3κ3C-µ- bis(diphenylarsino)methane-1:2κ2As:As'-[tris(2- chloroethyl) phosphite-3κP]-triangulo-triruthenium(0) top
Crystal data top
[Ru3(C25H22As2)(C6H12Cl3O3P)(CO)9]F(000) = 5072
Mr = 1297.04Dx = 1.884 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9974 reflections
a = 14.9105 (5) Åθ = 2.2–30.0°
b = 21.3468 (7) ŵ = 2.68 mm1
c = 28.7377 (9) ÅT = 100 K
V = 9147.0 (5) Å3Block, red
Z = 80.47 × 0.18 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10492 independent reflections
Radiation source: fine-focus sealed tube8686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.365, Tmax = 0.798k = 2427
55092 measured reflectionsl = 3728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + 274.9171P]
where P = (Fo2 + 2Fc2)/3
10492 reflections(Δ/σ)max < 0.001
532 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 2.28 e Å3
Crystal data top
[Ru3(C25H22As2)(C6H12Cl3O3P)(CO)9]V = 9147.0 (5) Å3
Mr = 1297.04Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.9105 (5) ŵ = 2.68 mm1
b = 21.3468 (7) ÅT = 100 K
c = 28.7377 (9) Å0.47 × 0.18 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10492 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8686 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.798Rint = 0.047
55092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + 274.9171P]
where P = (Fo2 + 2Fc2)/3
10492 reflectionsΔρmax = 1.40 e Å3
532 parametersΔρmin = 2.28 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.21161 (5)0.32808 (4)0.36287 (3)0.01629 (17)
Ru20.24882 (5)0.45825 (4)0.37688 (3)0.01781 (17)
Ru30.13426 (6)0.39328 (4)0.43926 (3)0.01984 (18)
As10.29465 (6)0.32478 (4)0.29063 (3)0.0149 (2)
As20.36319 (6)0.46579 (4)0.31669 (3)0.0157 (2)
Cl10.1760 (2)0.20128 (17)0.38798 (12)0.0469 (8)
Cl20.1764 (3)0.1315 (2)0.51607 (17)0.0651 (11)
Cl30.0908 (3)0.33271 (19)0.58014 (12)0.0515 (9)
P10.03663 (18)0.31463 (13)0.45706 (10)0.0220 (5)
O10.0321 (5)0.3570 (3)0.3155 (3)0.0248 (16)
O20.1464 (6)0.1935 (4)0.3698 (3)0.0343 (19)
O30.3930 (6)0.3016 (5)0.4095 (3)0.042 (2)
O40.3881 (6)0.4318 (4)0.4543 (3)0.043 (2)
O50.2262 (6)0.5934 (4)0.4072 (3)0.042 (2)
O60.1079 (5)0.4855 (4)0.3018 (3)0.0314 (18)
O70.0137 (6)0.4633 (4)0.3861 (3)0.039 (2)
O80.1295 (7)0.4908 (4)0.5165 (3)0.047 (2)
O90.2772 (6)0.3235 (4)0.4958 (3)0.038 (2)
O100.0249 (5)0.2907 (4)0.4148 (3)0.0279 (17)
O110.0830 (5)0.2504 (4)0.4713 (3)0.0301 (18)
O120.0405 (5)0.3227 (4)0.4958 (3)0.0320 (18)
C10.3636 (7)0.2498 (5)0.2759 (4)0.0209 (10)
C20.3736 (7)0.2020 (5)0.3078 (4)0.023 (2)
H2A0.34650.20520.33690.028*
C30.4249 (7)0.1481 (5)0.2966 (4)0.026 (2)
H3A0.43260.11590.31810.032*
C40.4632 (7)0.1445 (5)0.2528 (4)0.025 (2)
H4A0.49640.10930.24490.030*
C50.4535 (7)0.1918 (5)0.2209 (4)0.024 (2)
H5A0.48070.18870.19180.028*
C60.4033 (7)0.2442 (5)0.2319 (4)0.022 (2)
H6A0.39580.27590.21000.026*
C70.2258 (6)0.3321 (5)0.2337 (4)0.0209 (10)
C80.1547 (7)0.2896 (5)0.2294 (4)0.024 (2)
H8A0.14130.26280.25390.028*
C90.1037 (7)0.2870 (5)0.1886 (4)0.029 (2)
H9A0.05710.25830.18560.035*
C100.1238 (7)0.3274 (6)0.1532 (4)0.029 (2)
H10A0.08960.32640.12620.035*
C110.1936 (8)0.3698 (5)0.1567 (4)0.030 (2)
H11A0.20590.39690.13230.036*
C120.2454 (8)0.3717 (5)0.1970 (4)0.024 (2)
H12A0.29310.39950.19930.029*
C130.3935 (6)0.3858 (4)0.2876 (4)0.0155 (18)
H13A0.44570.36830.30300.019*
H13B0.40900.39300.25520.019*
C140.4795 (7)0.4968 (5)0.3366 (4)0.021 (2)
C150.4857 (9)0.5300 (7)0.3778 (5)0.046 (4)
H15A0.43540.53590.39650.055*
C160.5688 (9)0.5547 (8)0.3910 (5)0.055 (5)
H16A0.57350.57700.41870.066*
C170.6439 (7)0.5466 (4)0.3639 (4)0.0209 (10)
H17A0.69890.56280.37320.025*
C180.6363 (8)0.5143 (5)0.3227 (4)0.031 (3)
H18A0.68650.50980.30380.037*
C190.5559 (7)0.4884 (5)0.3089 (4)0.024 (2)
H19A0.55240.46550.28140.029*
C200.3436 (7)0.5224 (4)0.2645 (4)0.0209 (10)
C210.3840 (6)0.5139 (5)0.2209 (4)0.019 (2)
H21A0.41810.47830.21510.023*
C220.3731 (6)0.5589 (5)0.1862 (4)0.022 (2)
H22A0.39780.55190.15700.026*
C230.3264 (7)0.6135 (4)0.1943 (4)0.022 (2)
H23A0.32190.64420.17150.026*
C240.2863 (7)0.6216 (5)0.2374 (4)0.022 (2)
H24A0.25300.65760.24310.027*
C250.2949 (7)0.5764 (5)0.2724 (4)0.027 (2)
H25A0.26770.58280.30110.033*
C260.1120 (8)0.3167 (6)0.4048 (4)0.034 (3)
H26A0.11720.32480.37170.041*
H26B0.11890.35630.42110.041*
C270.1841 (8)0.2726 (6)0.4197 (4)0.032 (3)
H27A0.24230.29150.41440.038*
H27B0.17840.26410.45280.038*
C280.0311 (9)0.1978 (6)0.4858 (5)0.042 (3)
H28A0.02340.19560.46740.050*
H28B0.01420.20290.51820.050*
C290.0825 (10)0.1385 (6)0.4802 (5)0.045 (3)
H29A0.10190.13520.44810.054*
H29B0.04260.10360.48640.054*
C300.0498 (8)0.3739 (6)0.5280 (4)0.032 (3)
H30A0.11130.38880.52790.039*
H30B0.01130.40820.51850.039*
C310.0249 (10)0.3533 (7)0.5760 (4)0.042 (3)
H31A0.06130.31740.58460.050*
H31B0.03780.38680.59780.050*
C320.0983 (7)0.3500 (4)0.3339 (4)0.021 (2)
C330.1725 (7)0.2440 (5)0.3684 (4)0.024 (2)
C340.3240 (8)0.3135 (5)0.3939 (4)0.027 (2)
C350.3336 (7)0.4384 (6)0.4253 (4)0.030 (3)
C360.2369 (7)0.5416 (5)0.3969 (4)0.029 (2)
C370.1579 (7)0.4715 (5)0.3307 (4)0.024 (2)
C380.0446 (8)0.4367 (5)0.4036 (4)0.027 (2)
C390.1298 (8)0.4546 (5)0.4874 (4)0.029 (2)
C400.2281 (7)0.3489 (6)0.4725 (4)0.029 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0141 (3)0.0125 (3)0.0223 (4)0.0005 (3)0.0010 (3)0.0020 (3)
Ru20.0153 (3)0.0145 (4)0.0236 (4)0.0007 (3)0.0036 (3)0.0003 (3)
Ru30.0196 (4)0.0174 (4)0.0225 (4)0.0016 (3)0.0041 (3)0.0026 (3)
As10.0125 (4)0.0089 (4)0.0231 (5)0.0008 (3)0.0007 (4)0.0007 (4)
As20.0133 (4)0.0085 (4)0.0251 (5)0.0000 (4)0.0029 (4)0.0003 (4)
Cl10.0447 (18)0.0480 (19)0.0480 (19)0.0177 (16)0.0021 (15)0.0110 (16)
Cl20.059 (2)0.050 (2)0.086 (3)0.0054 (19)0.023 (2)0.012 (2)
Cl30.060 (2)0.060 (2)0.0340 (16)0.0100 (19)0.0097 (15)0.0030 (16)
P10.0208 (13)0.0198 (13)0.0254 (13)0.0000 (10)0.0029 (10)0.0038 (10)
O10.017 (4)0.023 (4)0.034 (4)0.000 (3)0.004 (3)0.001 (3)
O20.033 (4)0.018 (4)0.052 (5)0.002 (3)0.003 (4)0.007 (4)
O30.027 (4)0.050 (6)0.049 (5)0.009 (4)0.017 (4)0.011 (4)
O40.031 (5)0.043 (5)0.054 (6)0.009 (4)0.021 (4)0.015 (4)
O50.041 (5)0.024 (5)0.062 (6)0.008 (4)0.023 (4)0.019 (4)
O60.024 (4)0.026 (4)0.044 (5)0.001 (3)0.007 (4)0.010 (4)
O70.031 (4)0.044 (5)0.043 (5)0.017 (4)0.006 (4)0.014 (4)
O80.060 (6)0.035 (5)0.045 (5)0.004 (5)0.011 (5)0.011 (4)
O90.041 (5)0.042 (5)0.033 (4)0.005 (4)0.006 (4)0.018 (4)
O100.020 (4)0.027 (4)0.036 (4)0.004 (3)0.001 (3)0.003 (3)
O110.024 (4)0.023 (4)0.043 (5)0.002 (3)0.007 (3)0.007 (4)
O120.028 (4)0.038 (5)0.030 (4)0.003 (4)0.010 (3)0.003 (4)
C10.017 (2)0.011 (2)0.035 (3)0.0042 (18)0.001 (2)0.002 (2)
C20.017 (5)0.027 (5)0.026 (5)0.004 (4)0.003 (4)0.003 (4)
C30.029 (6)0.020 (5)0.031 (6)0.003 (4)0.011 (5)0.003 (4)
C40.025 (5)0.016 (5)0.034 (6)0.002 (4)0.005 (4)0.008 (4)
C50.017 (5)0.021 (5)0.033 (6)0.004 (4)0.001 (4)0.005 (4)
C60.025 (5)0.010 (4)0.030 (5)0.002 (4)0.003 (4)0.001 (4)
C70.017 (2)0.011 (2)0.035 (3)0.0042 (18)0.001 (2)0.002 (2)
C80.023 (5)0.022 (5)0.027 (5)0.000 (4)0.001 (4)0.003 (4)
C90.016 (5)0.030 (6)0.040 (6)0.000 (4)0.001 (5)0.009 (5)
C100.023 (5)0.032 (6)0.033 (6)0.004 (5)0.009 (4)0.008 (5)
C110.037 (6)0.024 (6)0.029 (6)0.003 (5)0.003 (5)0.006 (5)
C120.025 (5)0.017 (5)0.031 (5)0.001 (4)0.002 (5)0.003 (4)
C130.007 (4)0.006 (4)0.034 (5)0.001 (3)0.003 (4)0.003 (4)
C140.018 (5)0.013 (5)0.031 (5)0.005 (4)0.001 (4)0.001 (4)
C150.028 (6)0.061 (9)0.049 (8)0.024 (6)0.012 (6)0.026 (7)
C160.038 (7)0.081 (11)0.047 (8)0.029 (8)0.012 (6)0.038 (8)
C170.017 (2)0.011 (2)0.035 (3)0.0042 (18)0.001 (2)0.002 (2)
C180.020 (5)0.023 (5)0.050 (7)0.005 (4)0.002 (5)0.007 (5)
C190.023 (5)0.014 (5)0.036 (6)0.005 (4)0.000 (4)0.004 (4)
C200.017 (2)0.011 (2)0.035 (3)0.0042 (18)0.001 (2)0.002 (2)
C210.009 (4)0.019 (5)0.031 (5)0.002 (4)0.002 (4)0.001 (4)
C220.012 (4)0.029 (5)0.024 (5)0.000 (4)0.002 (4)0.001 (4)
C230.022 (5)0.010 (4)0.034 (6)0.005 (4)0.003 (4)0.005 (4)
C240.021 (5)0.012 (5)0.035 (6)0.000 (4)0.009 (4)0.001 (4)
C250.017 (5)0.029 (6)0.036 (6)0.000 (4)0.009 (4)0.005 (5)
C260.032 (6)0.033 (7)0.037 (7)0.002 (5)0.005 (5)0.003 (5)
C270.027 (6)0.030 (6)0.038 (6)0.003 (5)0.001 (5)0.002 (5)
C280.044 (7)0.023 (6)0.057 (8)0.011 (6)0.003 (6)0.017 (6)
C290.054 (9)0.028 (7)0.053 (8)0.005 (6)0.005 (7)0.005 (6)
C300.028 (6)0.030 (6)0.039 (7)0.005 (5)0.009 (5)0.004 (5)
C310.052 (8)0.042 (7)0.031 (6)0.010 (6)0.016 (6)0.004 (6)
C320.029 (6)0.008 (4)0.026 (5)0.002 (4)0.004 (4)0.001 (4)
C330.021 (5)0.021 (5)0.031 (6)0.001 (4)0.002 (4)0.010 (4)
C340.032 (6)0.022 (5)0.026 (5)0.003 (5)0.003 (5)0.008 (4)
C350.016 (5)0.038 (6)0.036 (6)0.018 (5)0.003 (5)0.000 (5)
C360.024 (5)0.026 (6)0.036 (6)0.008 (5)0.007 (5)0.000 (5)
C370.019 (5)0.018 (5)0.036 (6)0.002 (4)0.007 (4)0.007 (4)
C380.027 (6)0.025 (6)0.031 (6)0.000 (5)0.013 (5)0.000 (5)
C390.037 (6)0.018 (5)0.031 (6)0.007 (5)0.010 (5)0.002 (5)
C400.026 (6)0.031 (6)0.029 (6)0.006 (5)0.000 (5)0.004 (5)
Geometric parameters (Å, º) top
Ru1—C331.894 (11)C7—C121.381 (14)
Ru1—C341.924 (11)C7—C81.400 (14)
Ru1—C321.941 (11)C8—C91.397 (15)
Ru1—As12.4182 (12)C8—H8A0.9300
Ru1—Ru32.8437 (11)C9—C101.367 (17)
Ru1—Ru22.8621 (11)C9—H9A0.9300
Ru2—C361.878 (12)C10—C111.383 (16)
Ru2—C371.917 (11)C10—H10A0.9300
Ru2—C351.928 (12)C11—C121.392 (15)
Ru2—As22.4341 (12)C11—H11A0.9300
Ru2—Ru32.8382 (11)C12—H12A0.9300
Ru3—C391.904 (11)C13—H13A0.9700
Ru3—C381.923 (12)C13—H13B0.9700
Ru3—C401.942 (12)C14—C151.383 (16)
Ru3—P12.280 (3)C14—C191.401 (15)
As1—C71.938 (11)C15—C161.399 (17)
As1—C11.948 (10)C15—H15A0.9300
As1—C131.969 (9)C16—C171.374 (16)
As2—C141.943 (10)C16—H16A0.9300
As2—C201.949 (11)C17—C181.374 (16)
As2—C131.955 (9)C17—H17A0.9300
Cl1—C271.779 (12)C18—C191.379 (15)
Cl2—C291.744 (15)C18—H18A0.9300
Cl3—C311.784 (15)C19—H19A0.9300
P1—O111.589 (8)C20—C251.383 (14)
P1—O101.605 (8)C20—C211.401 (14)
P1—O121.610 (8)C21—C221.394 (14)
O1—C321.130 (13)C21—H21A0.9300
O2—C331.147 (13)C22—C231.378 (14)
O3—C341.151 (14)C22—H22A0.9300
O4—C351.172 (14)C23—C241.385 (15)
O5—C361.157 (14)C23—H23A0.9300
O6—C371.155 (13)C24—C251.398 (15)
O7—C381.153 (14)C24—H24A0.9300
O8—C391.139 (14)C25—H25A0.9300
O9—C401.131 (14)C26—C271.492 (16)
O10—C261.442 (14)C26—H26A0.9700
O11—C281.427 (13)C26—H26B0.9700
O12—C301.440 (14)C27—H27A0.9700
C1—C21.378 (14)C27—H27B0.9700
C1—C61.402 (14)C28—C291.487 (18)
C2—C31.420 (15)C28—H28A0.9700
C2—H2A0.9300C28—H28B0.9700
C3—C41.382 (16)C29—H29A0.9700
C3—H3A0.9300C29—H29B0.9700
C4—C51.373 (15)C30—C311.493 (18)
C4—H4A0.9300C30—H30A0.9700
C5—C61.382 (14)C30—H30B0.9700
C5—H5A0.9300C31—H31A0.9700
C6—H6A0.9300C31—H31B0.9700
C33—Ru1—C3494.3 (5)C11—C10—H10A119.2
C33—Ru1—C3289.8 (4)C10—C11—C12119.8 (11)
C34—Ru1—C32175.0 (4)C10—C11—H11A120.1
C33—Ru1—As1101.7 (3)C12—C11—H11A120.1
C34—Ru1—As186.9 (3)C7—C12—C11120.0 (10)
C32—Ru1—As194.8 (3)C7—C12—H12A120.0
C33—Ru1—Ru3105.9 (3)C11—C12—H12A120.0
C34—Ru1—Ru394.3 (3)As2—C13—As1112.7 (4)
C32—Ru1—Ru381.9 (3)As2—C13—H13A109.1
As1—Ru1—Ru3152.20 (4)As1—C13—H13A109.1
C33—Ru1—Ru2165.5 (3)As2—C13—H13B109.1
C34—Ru1—Ru285.6 (3)As1—C13—H13B109.1
C32—Ru1—Ru289.7 (3)H13A—C13—H13B107.8
As1—Ru1—Ru292.85 (4)C15—C14—C19119.9 (10)
Ru3—Ru1—Ru259.66 (3)C15—C14—As2119.1 (8)
C36—Ru2—C3790.3 (5)C19—C14—As2120.9 (8)
C36—Ru2—C3592.9 (5)C14—C15—C16118.8 (11)
C37—Ru2—C35174.6 (4)C14—C15—H15A120.6
C36—Ru2—As2102.8 (3)C16—C15—H15A120.6
C37—Ru2—As289.7 (3)C17—C16—C15121.5 (12)
C35—Ru2—As293.9 (3)C17—C16—H16A119.3
C36—Ru2—Ru3102.3 (3)C15—C16—H16A119.3
C37—Ru2—Ru394.8 (3)C16—C17—C18119.0 (10)
C35—Ru2—Ru380.3 (3)C16—C17—H17A120.5
As2—Ru2—Ru3154.52 (4)C18—C17—H17A120.5
C36—Ru2—Ru1160.8 (3)C17—C18—C19121.4 (11)
C37—Ru2—Ru184.8 (3)C17—C18—H18A119.3
C35—Ru2—Ru190.9 (4)C19—C18—H18A119.3
As2—Ru2—Ru195.74 (4)C18—C19—C14119.4 (10)
Ru3—Ru2—Ru159.85 (3)C18—C19—H19A120.3
C39—Ru3—C3891.8 (5)C14—C19—H19A120.3
C39—Ru3—C4090.2 (5)C25—C20—C21118.7 (10)
C38—Ru3—C40177.2 (5)C25—C20—As2118.0 (8)
C39—Ru3—P1108.7 (4)C21—C20—As2122.9 (7)
C38—Ru3—P191.7 (3)C22—C21—C20120.0 (9)
C40—Ru3—P189.5 (3)C22—C21—H21A120.0
C39—Ru3—Ru298.3 (3)C20—C21—H21A120.0
C38—Ru3—Ru281.2 (3)C23—C22—C21121.4 (10)
C40—Ru3—Ru296.6 (3)C23—C22—H22A119.3
P1—Ru3—Ru2152.34 (8)C21—C22—H22A119.3
C39—Ru3—Ru1155.6 (4)C22—C23—C24118.3 (9)
C38—Ru3—Ru196.1 (3)C22—C23—H23A120.8
C40—Ru3—Ru181.3 (3)C24—C23—H23A120.8
P1—Ru3—Ru194.11 (8)C23—C24—C25121.2 (9)
Ru2—Ru3—Ru160.49 (3)C23—C24—H24A119.4
C7—As1—C199.3 (4)C25—C24—H24A119.4
C7—As1—C13107.8 (4)C20—C25—C24120.3 (10)
C1—As1—C1398.0 (4)C20—C25—H25A119.8
C7—As1—Ru1116.8 (3)C24—C25—H25A119.8
C1—As1—Ru1118.7 (3)O10—C26—C27110.4 (10)
C13—As1—Ru1113.7 (3)O10—C26—H26A109.6
C14—As2—C2098.6 (4)C27—C26—H26A109.6
C14—As2—C13102.5 (4)O10—C26—H26B109.6
C20—As2—C13104.3 (4)C27—C26—H26B109.6
C14—As2—Ru2116.0 (3)H26A—C26—H26B108.1
C20—As2—Ru2118.9 (3)C26—C27—Cl1110.2 (9)
C13—As2—Ru2114.1 (3)C26—C27—H27A109.6
O11—P1—O1099.7 (4)Cl1—C27—H27A109.6
O11—P1—O12103.0 (4)C26—C27—H27B109.6
O10—P1—O1298.6 (4)Cl1—C27—H27B109.6
O11—P1—Ru3114.5 (3)H27A—C27—H27B108.1
O10—P1—Ru3115.4 (3)O11—C28—C29111.0 (11)
O12—P1—Ru3122.2 (3)O11—C28—H28A109.4
C26—O10—P1122.8 (7)C29—C28—H28A109.4
C28—O11—P1121.2 (8)O11—C28—H28B109.4
C30—O12—P1126.5 (7)C29—C28—H28B109.4
C2—C1—C6119.3 (10)H28A—C28—H28B108.0
C2—C1—As1121.4 (8)C28—C29—Cl2115.1 (10)
C6—C1—As1119.3 (8)C28—C29—H29A108.5
C1—C2—C3120.5 (10)Cl2—C29—H29A108.5
C1—C2—H2A119.7C28—C29—H29B108.5
C3—C2—H2A119.7Cl2—C29—H29B108.5
C4—C3—C2118.2 (10)H29A—C29—H29B107.5
C4—C3—H3A120.9O12—C30—C31110.2 (10)
C2—C3—H3A120.9O12—C30—H30A109.6
C5—C4—C3121.6 (10)C31—C30—H30A109.6
C5—C4—H4A119.2O12—C30—H30B109.6
C3—C4—H4A119.2C31—C30—H30B109.6
C4—C5—C6119.9 (10)H30A—C30—H30B108.1
C4—C5—H5A120.1C30—C31—Cl3112.0 (9)
C6—C5—H5A120.1C30—C31—H31A109.2
C5—C6—C1120.3 (10)Cl3—C31—H31A109.2
C5—C6—H6A119.8C30—C31—H31B109.2
C1—C6—H6A119.8Cl3—C31—H31B109.2
C12—C7—C8119.3 (10)H31A—C31—H31B107.9
C12—C7—As1125.5 (8)O1—C32—Ru1173.4 (9)
C8—C7—As1115.1 (8)O2—C33—Ru1176.6 (10)
C9—C8—C7120.8 (10)O3—C34—Ru1174.5 (10)
C9—C8—H8A119.6O4—C35—Ru2173.8 (10)
C7—C8—H8A119.6O5—C36—Ru2176.3 (11)
C10—C9—C8118.6 (10)O6—C37—Ru2172.6 (9)
C10—C9—H9A120.7O7—C38—Ru3173.4 (10)
C8—C9—H9A120.7O8—C39—Ru3178.1 (12)
C9—C10—C11121.6 (10)O9—C40—Ru3172.9 (10)
C9—C10—H10A119.2
C33—Ru1—Ru2—C3630.3 (17)C36—Ru2—As2—C13179.9 (5)
C34—Ru1—Ru2—C36120.6 (12)C37—Ru2—As2—C1389.9 (4)
C32—Ru1—Ru2—C3657.8 (12)C35—Ru2—As2—C1386.1 (5)
As1—Ru1—Ru2—C36152.7 (11)Ru3—Ru2—As2—C1310.5 (3)
Ru3—Ru1—Ru2—C3623.0 (11)Ru1—Ru2—As2—C135.2 (3)
C33—Ru1—Ru2—C37105.9 (13)C39—Ru3—P1—O11109.6 (5)
C34—Ru1—Ru2—C37163.7 (5)C38—Ru3—P1—O11157.9 (5)
C32—Ru1—Ru2—C3717.8 (4)C40—Ru3—P1—O1119.6 (5)
As1—Ru1—Ru2—C3777.0 (3)Ru2—Ru3—P1—O1183.8 (4)
Ru3—Ru1—Ru2—C3798.6 (3)Ru1—Ru3—P1—O1161.7 (4)
C33—Ru1—Ru2—C3570.9 (13)C39—Ru3—P1—O10135.5 (5)
C34—Ru1—Ru2—C3519.4 (5)C38—Ru3—P1—O1043.0 (5)
C32—Ru1—Ru2—C35159.1 (4)C40—Ru3—P1—O10134.5 (5)
As1—Ru1—Ru2—C35106.1 (3)Ru2—Ru3—P1—O1031.1 (4)
Ru3—Ru1—Ru2—C3578.2 (3)Ru1—Ru3—P1—O1053.2 (3)
C33—Ru1—Ru2—As2164.9 (13)C39—Ru3—P1—O1215.9 (5)
C34—Ru1—Ru2—As274.6 (3)C38—Ru3—P1—O1276.6 (5)
C32—Ru1—Ru2—As2106.9 (3)C40—Ru3—P1—O12105.9 (5)
As1—Ru1—Ru2—As212.09 (4)Ru2—Ru3—P1—O12150.8 (4)
Ru3—Ru1—Ru2—As2172.24 (4)Ru1—Ru3—P1—O12172.9 (4)
C33—Ru1—Ru2—Ru37.3 (13)O11—P1—O10—C26145.8 (8)
C34—Ru1—Ru2—Ru397.6 (3)O12—P1—O10—C2640.9 (9)
C32—Ru1—Ru2—Ru380.8 (3)Ru3—P1—O10—C2691.0 (8)
As1—Ru1—Ru2—Ru3175.68 (4)O10—P1—O11—C2859.6 (10)
C36—Ru2—Ru3—C3920.3 (5)O12—P1—O11—C2841.7 (10)
C37—Ru2—Ru3—C39111.6 (5)Ru3—P1—O11—C28176.6 (9)
C35—Ru2—Ru3—C3970.5 (5)O11—P1—O12—C30120.5 (9)
As2—Ru2—Ru3—C39149.0 (4)O10—P1—O12—C30137.4 (9)
Ru1—Ru2—Ru3—C39167.2 (4)Ru3—P1—O12—C309.9 (11)
C36—Ru2—Ru3—C3870.2 (5)C7—As1—C1—C2134.8 (8)
C37—Ru2—Ru3—C3821.1 (5)C13—As1—C1—C2115.6 (9)
C35—Ru2—Ru3—C38161.1 (5)Ru1—As1—C1—C27.1 (10)
As2—Ru2—Ru3—C38120.4 (4)C7—As1—C1—C644.8 (9)
Ru1—Ru2—Ru3—C38102.2 (3)C13—As1—C1—C664.8 (9)
C36—Ru2—Ru3—C40111.5 (5)Ru1—As1—C1—C6172.5 (7)
C37—Ru2—Ru3—C40157.2 (5)C6—C1—C2—C31.1 (15)
C35—Ru2—Ru3—C4020.6 (5)As1—C1—C2—C3179.3 (8)
As2—Ru2—Ru3—C4057.9 (4)C1—C2—C3—C40.8 (15)
Ru1—Ru2—Ru3—C4076.1 (4)C2—C3—C4—C50.8 (16)
C36—Ru2—Ru3—P1146.9 (4)C3—C4—C5—C60.9 (16)
C37—Ru2—Ru3—P155.6 (4)C4—C5—C6—C11.2 (16)
C35—Ru2—Ru3—P1122.3 (4)C2—C1—C6—C51.3 (15)
As2—Ru2—Ru3—P143.8 (2)As1—C1—C6—C5179.1 (8)
Ru1—Ru2—Ru3—P125.54 (17)C1—As1—C7—C1299.4 (9)
C36—Ru2—Ru3—Ru1172.4 (4)C13—As1—C7—C122.1 (10)
C37—Ru2—Ru3—Ru181.1 (3)Ru1—As1—C7—C12131.7 (8)
C35—Ru2—Ru3—Ru196.7 (4)C1—As1—C7—C875.7 (8)
As2—Ru2—Ru3—Ru118.21 (10)C13—As1—C7—C8177.3 (7)
C33—Ru1—Ru3—C39146.1 (9)Ru1—As1—C7—C853.2 (8)
C34—Ru1—Ru3—C3950.3 (9)C12—C7—C8—C90.1 (16)
C32—Ru1—Ru3—C39126.4 (9)As1—C7—C8—C9175.5 (8)
As1—Ru1—Ru3—C3941.3 (8)C7—C8—C9—C101.0 (16)
Ru2—Ru1—Ru3—C3932.0 (8)C8—C9—C10—C110.9 (17)
C33—Ru1—Ru3—C38105.7 (5)C9—C10—C11—C120.2 (18)
C34—Ru1—Ru3—C38158.6 (5)C8—C7—C12—C111.2 (16)
C32—Ru1—Ru3—C3818.2 (4)As1—C7—C12—C11176.1 (8)
As1—Ru1—Ru3—C3866.9 (3)C10—C11—C12—C71.2 (17)
Ru2—Ru1—Ru3—C3876.2 (3)C14—As2—C13—As1152.2 (5)
C33—Ru1—Ru3—C4075.4 (5)C20—As2—C13—As1105.4 (5)
C34—Ru1—Ru3—C4020.4 (5)Ru2—As2—C13—As125.9 (6)
C32—Ru1—Ru3—C40162.9 (4)C7—As1—C13—As293.3 (6)
As1—Ru1—Ru3—C40112.0 (3)C1—As1—C13—As2164.1 (5)
Ru2—Ru1—Ru3—C40102.7 (3)Ru1—As1—C13—As237.9 (6)
C33—Ru1—Ru3—P113.5 (3)C20—As2—C14—C15108.7 (11)
C34—Ru1—Ru3—P1109.2 (4)C13—As2—C14—C15144.4 (10)
C32—Ru1—Ru3—P174.0 (3)Ru2—As2—C14—C1519.4 (11)
As1—Ru1—Ru3—P1159.13 (11)C20—As2—C14—C1968.2 (9)
Ru2—Ru1—Ru3—P1168.42 (8)C13—As2—C14—C1938.6 (9)
C33—Ru1—Ru3—Ru2178.1 (3)Ru2—As2—C14—C19163.6 (7)
C34—Ru1—Ru3—Ru282.3 (3)C19—C14—C15—C160 (2)
C32—Ru1—Ru3—Ru294.4 (3)As2—C14—C15—C16177.1 (12)
As1—Ru1—Ru3—Ru29.29 (9)C14—C15—C16—C170 (3)
C33—Ru1—As1—C783.0 (5)C15—C16—C17—C181 (2)
C34—Ru1—As1—C7176.8 (5)C16—C17—C18—C191.9 (18)
C32—Ru1—As1—C77.9 (4)C17—C18—C19—C142.0 (16)
Ru3—Ru1—As1—C789.8 (3)C15—C14—C19—C181.0 (17)
Ru2—Ru1—As1—C797.8 (3)As2—C14—C19—C18176.0 (8)
C33—Ru1—As1—C136.0 (5)C14—As2—C20—C2594.4 (9)
C34—Ru1—As1—C157.8 (5)C13—As2—C20—C25160.3 (8)
C32—Ru1—As1—C1126.8 (4)Ru2—As2—C20—C2531.8 (9)
Ru3—Ru1—As1—C1151.3 (3)C14—As2—C20—C2179.0 (9)
Ru2—Ru1—As1—C1143.2 (3)C13—As2—C20—C2126.3 (9)
C33—Ru1—As1—C13150.4 (4)Ru2—As2—C20—C21154.8 (7)
C34—Ru1—As1—C1356.6 (4)C25—C20—C21—C221.4 (14)
C32—Ru1—As1—C13118.8 (4)As2—C20—C21—C22174.7 (7)
Ru3—Ru1—As1—C1336.9 (3)C20—C21—C22—C233.0 (15)
Ru2—Ru1—As1—C1328.8 (3)C21—C22—C23—C243.2 (15)
C36—Ru2—As2—C1461.0 (5)C22—C23—C24—C251.8 (16)
C37—Ru2—As2—C14151.2 (5)C21—C20—C25—C240.1 (15)
C35—Ru2—As2—C1432.8 (5)As2—C20—C25—C24173.8 (8)
Ru3—Ru2—As2—C14108.3 (3)C23—C24—C25—C200.3 (17)
Ru1—Ru2—As2—C14124.1 (3)P1—O10—C26—C27105.3 (10)
C36—Ru2—As2—C2056.4 (5)O10—C26—C27—Cl162.3 (12)
C37—Ru2—As2—C2033.8 (5)P1—O11—C28—C29158.8 (9)
C35—Ru2—As2—C20150.2 (5)O11—C28—C29—Cl265.8 (15)
Ru3—Ru2—As2—C20134.3 (3)P1—O12—C30—C31107.2 (11)
Ru1—Ru2—As2—C20118.5 (3)O12—C30—C31—Cl365.1 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C20–C25 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19A···O6i0.932.573.275 (14)133
C27—H27B···O9ii0.972.473.231 (15)135
C30—H30A···O5iii0.972.563.297 (15)133
C4—H4A···Cg1iv0.932.773.468 (11)133
C9—H9A···Cg2v0.932.893.684 (12)144
C18—H18A···Cg1vi0.932.713.505 (12)145
C24—H24A···Cg2vii0.932.693.473 (11)142
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y+1/2, z+1; (iii) x, y+1, z+1; (iv) x+1, y1/2, z+1/2; (v) x3/2, y, z1/2; (vi) x1/2, y, z1/2; (vii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Ru3(C25H22As2)(C6H12Cl3O3P)(CO)9]
Mr1297.04
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)14.9105 (5), 21.3468 (7), 28.7377 (9)
V3)9147.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.68
Crystal size (mm)0.47 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.365, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
55092, 10492, 8686
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.184, 1.28
No. of reflections10492
No. of parameters532
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 274.9171P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.40, 2.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C20–C25 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19A···O6i0.93002.57003.275 (14)133.00
C27—H27B···O9ii0.97002.47003.231 (15)135.00
C30—H30A···O5iii0.97002.56003.297 (15)133.00
C4—H4A···Cg1iv0.93002.77003.468 (11)133.00
C9—H9A···Cg2v0.93002.89003.684 (12)144.00
C18—H18A···Cg1vi0.93002.71003.505 (12)145.00
C24—H24A···Cg2vii0.93002.69003.473 (11)142.00
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y+1/2, z+1; (iii) x, y+1, z+1; (iv) x+1, y1/2, z+1/2; (v) x3/2, y, z1/2; (vi) x1/2, y, z1/2; (vii) x1/2, y1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant 1001/PJJAUH/811115. SSS thanks USM for Research Officer position. IAK is grateful to USM for a Visiting Researcher position. HKF and CSY thank USM for the Research University Golden Goose grant 1001/PFIZIK/811012. CSY also thanks USM for the award of a USM Fellowship.

References

First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321–343.  CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127–131.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m90–m91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A. & Razak, I. A. (2004). J. Cluster Sci. 15, 387–394.  Web of Science CSD CrossRef Google Scholar
First citationShawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211–1216.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds