metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[3-(di­ethyl­ammonio)­propyl­imino­meth­yl]naphthalen-2-olato}nickel(II) dinitrate

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 26 June 2010; accepted 30 June 2010; online 3 July 2010)

The asymmetric unit of the title compound, [Ni(C18H24N2O)2](NO3)2, consists of one half of the centrosymmetric nickel(II) complex cation and a nitrate anion. The NiII atom, lying on an inversion center, is four-coordinated by the phenolate O atoms and imine N atoms of two Schiff base ligands, forming a square-planar geometry. The O- and N-donor atoms are mutually trans. In the crystal structure, the nitrate anions are linked to the complex cations by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For background to complexes with Schiff bases, see: Hamaker et al. (2010[Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34-39.]); Wang et al. (2010[Wang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33-36.]); Mirkhani et al. (2010[Mirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81-87.]); Liu & Yang (2009[Liu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080-5089.]); Keypour et al. (2009[Keypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem. 34, 835-839.]); Adhikary et al. (2009[Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573-3582.]); Peng et al. (2009[Peng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 39, 462-466.]). For similar nickel complexes, see: Bhatia et al. (1983[Bhatia, S. C., Syal, V. K., Kashyap, R. P., Jain, P. C. & Brown, C. J. (1983). Acta Cryst. C39, 199-200.]); Kamenar et al. (1990[Kamenar, B., Kaitner, B., Stefanović, A. & Waters, T. N. (1990). Acta Cryst. C46, 1627-1631.]); Connor et al. (2003[Connor, E. F., Younkin, T. R., Henderson, J. I., Waltman, A. W. & Grubbs, R. H. (2003). Chem. Commun. pp. 2272-2273.]); Lacroix et al. (2004[Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825-3835.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C18H24N2O)2](NO3)2

  • Mr = 751.51

  • Monoclinic, P 21 /c

  • a = 11.096 (2) Å

  • b = 12.773 (3) Å

  • c = 12.743 (3) Å

  • β = 107.66 (3)°

  • V = 1720.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 298 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.885

  • 14203 measured reflections

  • 3689 independent reflections

  • 2616 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.209

  • S = 1.05

  • 3689 reflections

  • 237 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 1.743 (3)
Ni1—O1 1.888 (3)
N1i—Ni1—N1 180.0 (3)
N1i—Ni1—O1 88.51 (14)
N1—Ni1—O1 91.49 (14)
Symmetry code: (i) -x+2, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3ii 0.89 (6) 2.05 (4) 2.836 (8) 146 (6)
N2—H2⋯O2ii 0.89 (6) 2.17 (5) 3.033 (9) 162 (6)
Symmetry code: (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are known to be versatile ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A large number of complexes with Schiff bases have been reported because of their interesting structures and potential applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title new nickel complex with the Schiff base ligand 1-[(3-diethylaminopropylimino)methyl]naphthalen-2-ol.

The compound consists of a centrosymmetric mononuclear nickel complex cation and two nitrate anions (Fig. 1). The Ni atom, lying on the inversion center, is four-coordinated by two phenolate O atoms and two imine N atoms from two Schiff base ligands, forming a square planar geometry. The bond lengths (Table 1) around the Ni atom are comparable to those observed in similar nickel complexes (Bhatia et al., 1983; Kamenar et al., 1990; Connor et al., 2003; Lacroix et al., 2004).

In the crystal structure, the nitrate anions are linked to the complex cations by intermolecular N2—H2···O2 and N2—H2···O3 hydrogen bonds.

Related literature top

For background to complexes with Schiff bases, see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009); Keypour et al. (2009); Adhikary et al. (2009); Peng et al. (2009). For similar nickel complexes, see: Bhatia et al. (1983); Kamenar et al. (1990); Connor et al. (2003); Lacroix et al. (2004).

Experimental top

2-Hydroxy-1-naphthaldehyde (0.1 mmol, 17.2 mg) and N,N-diethylpropane-1,3-diamine (0.1 mmol, 13.0 mg) were mixed and stirred in methanol (10 ml) for 30 min. Then a methanol solution (5 ml) of nickel nitrate (0.1 mmol, 29.1 mg) was added to the mixture. The final mixture was stirred for another 30 min to give a red solution. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution at room temperature.

Refinement top

H2 atom was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with Uiso(H) fixed at 0.08 Å2. The remaining H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmetyl). Rotating group models were used for the methyl groups.

Structure description top

Schiff bases are known to be versatile ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A large number of complexes with Schiff bases have been reported because of their interesting structures and potential applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title new nickel complex with the Schiff base ligand 1-[(3-diethylaminopropylimino)methyl]naphthalen-2-ol.

The compound consists of a centrosymmetric mononuclear nickel complex cation and two nitrate anions (Fig. 1). The Ni atom, lying on the inversion center, is four-coordinated by two phenolate O atoms and two imine N atoms from two Schiff base ligands, forming a square planar geometry. The bond lengths (Table 1) around the Ni atom are comparable to those observed in similar nickel complexes (Bhatia et al., 1983; Kamenar et al., 1990; Connor et al., 2003; Lacroix et al., 2004).

In the crystal structure, the nitrate anions are linked to the complex cations by intermolecular N2—H2···O2 and N2—H2···O3 hydrogen bonds.

For background to complexes with Schiff bases, see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009); Keypour et al. (2009); Adhikary et al. (2009); Peng et al. (2009). For similar nickel complexes, see: Bhatia et al. (1983); Kamenar et al. (1990); Connor et al. (2003); Lacroix et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabeled atoms are related to labeled atoms by the symmetry operation 2 - x, - y, - z.
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonds drawn as dashed lines.
Bis{1-[3-(diethylammonio)propyliminomethyl]naphthalen-2-olato}nickel(II) dinitrate top
Crystal data top
[Ni(C18H24N2O)2](NO3)2F(000) = 796
Mr = 751.51Dx = 1.450 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1931 reflections
a = 11.096 (2) Åθ = 2.3–24.5°
b = 12.773 (3) ŵ = 0.63 mm1
c = 12.743 (3) ÅT = 298 K
β = 107.66 (3)°Block, red
V = 1720.9 (6) Å30.22 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3689 independent reflections
Radiation source: fine-focus sealed tube2616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1414
Tmin = 0.875, Tmax = 0.885k = 1616
14203 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1045P)2 + 2.3396P]
where P = (Fo2 + 2Fc2)/3
3689 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 1.12 e Å3
10 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Ni(C18H24N2O)2](NO3)2V = 1720.9 (6) Å3
Mr = 751.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.096 (2) ŵ = 0.63 mm1
b = 12.773 (3) ÅT = 298 K
c = 12.743 (3) Å0.22 × 0.20 × 0.20 mm
β = 107.66 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3689 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2616 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.885Rint = 0.055
14203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06910 restraints
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.12 e Å3
3689 reflectionsΔρmin = 0.56 e Å3
237 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.00000.0311 (3)
O10.9986 (3)0.1074 (2)0.1014 (3)0.0408 (7)
O20.5354 (7)0.2034 (9)0.9557 (8)0.225 (5)
O30.4032 (8)0.1988 (7)0.8277 (7)0.192 (4)
O40.3971 (5)0.2888 (5)0.9549 (6)0.136 (3)
N10.8796 (3)0.0671 (3)0.0330 (3)0.0345 (8)
N20.5785 (3)0.0578 (3)0.2176 (4)0.0545 (11)
N30.4423 (5)0.2296 (4)0.9150 (5)0.0721 (14)
C10.9022 (4)0.0217 (3)0.2196 (4)0.0352 (9)
C20.9667 (4)0.1028 (3)0.1957 (4)0.0359 (9)
C30.9970 (4)0.1886 (4)0.2757 (4)0.0441 (11)
H31.03840.24660.25890.053*
C40.9685 (4)0.1902 (4)0.3755 (4)0.0473 (11)
H40.99010.24840.42120.057*
C50.9090 (4)0.1069 (4)0.4066 (4)0.0421 (10)
C60.8845 (4)0.1068 (5)0.5149 (4)0.0547 (13)
H60.90790.16430.56140.066*
C70.8303 (5)0.0261 (5)0.5452 (5)0.0591 (15)
H70.81410.02440.61260.071*
C80.7973 (4)0.0588 (5)0.4694 (4)0.0562 (14)
H80.75900.11690.48980.067*
C90.8189 (4)0.0615 (4)0.3639 (4)0.0491 (12)
H90.79430.11970.31870.059*
C100.8757 (4)0.0217 (3)0.3293 (4)0.0394 (10)
C110.8539 (4)0.0524 (3)0.1298 (4)0.0371 (10)
H110.79390.09850.14070.045*
C120.8045 (4)0.1365 (3)0.0545 (4)0.0413 (10)
H12A0.74420.17460.02760.050*
H12B0.86010.18710.07270.050*
C130.7332 (4)0.0759 (4)0.1585 (4)0.0456 (11)
H13A0.79170.04250.19110.055*
H13B0.67790.12200.21250.055*
C140.6604 (4)0.0017 (4)0.1200 (5)0.0541 (13)
H14A0.71680.05060.07060.065*
H14B0.60900.03230.08050.065*
C150.4901 (5)0.0100 (5)0.2939 (8)0.095 (3)
H15A0.53350.05660.33060.114*
H15B0.42800.03040.34910.114*
C160.4293 (7)0.0697 (6)0.2234 (11)0.162 (5)
H16A0.48110.12880.19180.243*
H16B0.34760.09370.26730.243*
H16C0.42010.02520.16560.243*
C170.6274 (5)0.1202 (5)0.2952 (6)0.083 (2)
H17A0.66330.07430.33850.100*
H17B0.55940.16020.34490.100*
C180.7222 (6)0.1889 (6)0.2297 (10)0.135 (4)
H18A0.69790.21240.16740.203*
H18B0.73110.24820.27310.203*
H18C0.80140.15230.20450.203*
H20.548 (6)0.100 (4)0.176 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0217 (4)0.0292 (4)0.0426 (5)0.0016 (3)0.0100 (3)0.0006 (3)
O10.0354 (15)0.0351 (16)0.056 (2)0.0065 (12)0.0206 (14)0.0047 (14)
O20.122 (6)0.287 (12)0.234 (9)0.107 (7)0.006 (6)0.103 (9)
O30.162 (6)0.188 (7)0.191 (6)0.051 (5)0.001 (5)0.087 (6)
O40.086 (4)0.132 (5)0.223 (7)0.024 (4)0.093 (4)0.033 (5)
N10.0218 (15)0.0313 (18)0.047 (2)0.0011 (12)0.0060 (14)0.0014 (15)
N20.0246 (17)0.055 (3)0.080 (3)0.0071 (17)0.0115 (18)0.009 (2)
N30.046 (3)0.081 (4)0.096 (4)0.009 (3)0.032 (3)0.010 (3)
C10.0223 (17)0.036 (2)0.046 (2)0.0032 (15)0.0096 (16)0.0034 (17)
C20.0235 (17)0.038 (2)0.046 (2)0.0045 (15)0.0097 (17)0.0011 (18)
C30.035 (2)0.041 (3)0.056 (3)0.0073 (18)0.013 (2)0.004 (2)
C40.033 (2)0.052 (3)0.053 (3)0.0012 (19)0.007 (2)0.014 (2)
C50.0236 (18)0.054 (3)0.048 (3)0.0068 (18)0.0093 (18)0.000 (2)
C60.039 (2)0.072 (4)0.053 (3)0.010 (2)0.015 (2)0.007 (3)
C70.041 (3)0.093 (4)0.051 (3)0.017 (3)0.025 (2)0.008 (3)
C80.030 (2)0.078 (4)0.065 (3)0.006 (2)0.020 (2)0.021 (3)
C90.029 (2)0.057 (3)0.063 (3)0.003 (2)0.018 (2)0.008 (2)
C100.0194 (17)0.049 (3)0.049 (3)0.0084 (16)0.0103 (17)0.0050 (19)
C110.0235 (18)0.035 (2)0.052 (3)0.0008 (16)0.0106 (17)0.0072 (19)
C120.0222 (18)0.038 (2)0.062 (3)0.0043 (16)0.0096 (18)0.011 (2)
C130.0254 (19)0.049 (3)0.058 (3)0.0024 (18)0.0058 (19)0.011 (2)
C140.030 (2)0.067 (3)0.065 (3)0.014 (2)0.013 (2)0.004 (3)
C150.031 (3)0.070 (4)0.156 (8)0.007 (3)0.015 (4)0.016 (4)
C160.043 (4)0.079 (5)0.338 (16)0.010 (4)0.019 (6)0.054 (8)
C170.045 (3)0.081 (4)0.126 (6)0.018 (3)0.029 (3)0.032 (4)
C180.044 (4)0.083 (5)0.270 (13)0.003 (3)0.035 (5)0.015 (7)
Geometric parameters (Å, º) top
Ni1—N1i1.743 (3)C7—H70.9300
Ni1—N11.743 (3)C8—C91.437 (7)
Ni1—O11.888 (3)C8—H80.9300
Ni1—O1i1.888 (3)C9—C101.374 (6)
O1—C21.353 (5)C9—H90.9300
O2—N31.059 (7)C11—H110.9300
O3—N31.135 (8)C12—C131.531 (6)
O4—N31.111 (6)C12—H12A0.9700
N1—C111.360 (5)C12—H12B0.9700
N1—C121.469 (5)C13—C141.454 (6)
N2—C151.442 (7)C13—H13A0.9700
N2—C141.483 (7)C13—H13B0.9700
N2—C171.495 (8)C14—H14A0.9700
N2—H20.89 (6)C14—H14B0.9700
C1—C21.345 (6)C15—C161.487 (12)
C1—C111.457 (6)C15—H15A0.9700
C1—C101.513 (6)C15—H15B0.9700
C2—C31.465 (6)C16—H16A0.9600
C3—C41.400 (7)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C4—C51.373 (7)C17—C181.428 (10)
C4—H40.9300C17—H17A0.9700
C5—C101.439 (6)C17—H17B0.9700
C5—C61.484 (7)C18—H18A0.9600
C6—C71.310 (8)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C7—C81.424 (8)
N1i—Ni1—N1180.0 (3)C9—C10—C1122.2 (4)
N1i—Ni1—O188.51 (14)C5—C10—C1123.4 (4)
N1—Ni1—O191.49 (14)N1—C11—C1132.3 (4)
N1i—Ni1—O1i91.49 (14)N1—C11—H11113.8
N1—Ni1—O1i88.51 (14)C1—C11—H11113.8
O1—Ni1—O1i180.0 (2)N1—C12—C13112.1 (4)
C2—O1—Ni1129.4 (3)N1—C12—H12A109.2
C11—N1—C12123.0 (3)C13—C12—H12A109.2
C11—N1—Ni1122.5 (3)N1—C12—H12B109.2
C12—N1—Ni1114.4 (3)C13—C12—H12B109.2
C15—N2—C14113.2 (5)H12A—C12—H12B107.9
C15—N2—C17100.5 (6)C14—C13—C12104.3 (4)
C14—N2—C17124.0 (4)C14—C13—H13A110.9
C15—N2—H2117 (4)C12—C13—H13A110.9
C14—N2—H293 (4)C14—C13—H13B110.9
C17—N2—H2110 (4)C12—C13—H13B110.9
O2—N3—O4120.0 (8)H13A—C13—H13B108.9
O2—N3—O3113.3 (7)C13—C14—N2108.0 (4)
O4—N3—O3126.3 (7)C13—C14—H14A110.1
C2—C1—C11114.7 (4)N2—C14—H14A110.1
C2—C1—C10118.4 (4)C13—C14—H14B110.1
C11—C1—C10126.7 (4)N2—C14—H14B110.1
C1—C2—O1122.3 (4)H14A—C14—H14B108.4
C1—C2—C3116.4 (4)N2—C15—C16103.9 (7)
O1—C2—C3121.3 (4)N2—C15—H15A111.0
C4—C3—C2125.2 (4)C16—C15—H15A111.0
C4—C3—H3117.4N2—C15—H15B111.0
C2—C3—H3117.4C16—C15—H15B111.0
C5—C4—C3120.8 (4)H15A—C15—H15B109.0
C5—C4—H4119.6C15—C16—H16A109.5
C3—C4—H4119.6C15—C16—H16B109.5
C4—C5—C10115.7 (4)H16A—C16—H16B109.5
C4—C5—C6120.6 (5)C15—C16—H16C109.5
C10—C5—C6123.7 (4)H16A—C16—H16C109.5
C7—C6—C5120.3 (5)H16B—C16—H16C109.5
C7—C6—H6119.8C18—C17—N2107.0 (7)
C5—C6—H6119.8C18—C17—H17A110.3
C6—C7—C8116.5 (5)N2—C17—H17A110.3
C6—C7—H7121.8C18—C17—H17B110.3
C8—C7—H7121.8N2—C17—H17B110.3
C7—C8—C9124.8 (5)H17A—C17—H17B108.6
C7—C8—H8117.6C17—C18—H18A109.5
C9—C8—H8117.6C17—C18—H18B109.5
C10—C9—C8120.4 (5)H18A—C18—H18B109.5
C10—C9—H9119.8C17—C18—H18C109.5
C8—C9—H9119.8H18A—C18—H18C109.5
C9—C10—C5114.3 (4)H18B—C18—H18C109.5
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3ii0.89 (6)2.05 (4)2.836 (8)146 (6)
N2—H2···O2ii0.89 (6)2.17 (5)3.033 (9)162 (6)
Symmetry code: (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C18H24N2O)2](NO3)2
Mr751.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.096 (2), 12.773 (3), 12.743 (3)
β (°) 107.66 (3)
V3)1720.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.875, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
14203, 3689, 2616
Rint0.055
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.209, 1.05
No. of reflections3689
No. of parameters237
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 0.56

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N11.743 (3)Ni1—O11.888 (3)
N1i—Ni1—N1180.0 (3)N1—Ni1—O191.49 (14)
N1i—Ni1—O188.51 (14)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3ii0.89 (6)2.05 (4)2.836 (8)146 (6)
N2—H2···O2ii0.89 (6)2.17 (5)3.033 (9)162 (6)
Symmetry code: (ii) x, y, z1.
 

Acknowledgements

The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.

References

First citationAdhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573–3582.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhatia, S. C., Syal, V. K., Kashyap, R. P., Jain, P. C. & Brown, C. J. (1983). Acta Cryst. C39, 199–200.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnor, E. F., Younkin, T. R., Henderson, J. I., Waltman, A. W. & Grubbs, R. H. (2003). Chem. Commun. pp. 2272–2273.  Web of Science CSD CrossRef Google Scholar
First citationHamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationKamenar, B., Kaitner, B., Stefanović, A. & Waters, T. N. (1990). Acta Cryst. C46, 1627–1631.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKeypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem. 34, 835–839.  Web of Science CSD CrossRef CAS Google Scholar
First citationLacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080–5089.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 39, 462–466.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33–36.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds