organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pirimicarb: 2-di­methylamino-5,6-di­methylpyrimidin-4-yl di­methyl­carbamate

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea, and bTest & Analytical Laboratory, Korea Food & Drug Administration, 123-7 Yongdang-dong, Busan 608-829, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

(Received 28 June 2010; accepted 7 July 2010; online 14 July 2010)

In the title compound, C11H18N4O2 (systematic name: 2-dimethyl­amino-5,6-dimethyl­pyrimidin-4-yl N,N-dimethyl­carb­amate), the pyrimidine ring and dimethyl­amino group are almost in the same plane, making a dihedral angle of 1.6 (1)°. The dihedral angle between the mean plane of the pyrimidine ring and that of the dimethyl­carbamate group is 83.42 (5)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds contribute to the stabilization of the packing.

Related literature

For the toxicity and insecticidal properties of the title compound, see: Pirisi et al. (1996[Pirisi, F. M., Cabras, P., Garau, V. L., Melis, M. & Secchi, E. (1996). J. Agric. Food Chem. 44, 2417-2422.]). For related structures, see: Dalpozzo et al. (2001[Dalpozzo, R., Nino, A. D., Maiuolo, L., Procopio, A., Munno, G. D. & Sindona, G. (2001). Tetrahedron, 57, 4035-4038.]); Madre et al. (2008[Madre, M., Petrova, M. & Belyakov, S. (2008). Synthesis, 19, 3053-3060.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18N4O2

  • Mr = 238.29

  • Monoclinic, P 21 /c

  • a = 13.5607 (7) Å

  • b = 7.7868 (4) Å

  • c = 13.1323 (7) Å

  • β = 114.907 (3)°

  • V = 1257.72 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.29 × 0.25 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.990

  • 11979 measured reflections

  • 3093 independent reflections

  • 2390 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.05

  • 3093 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5C⋯O2i 0.98 2.60 3.549 (2) 163
C10—H10C⋯O2ii 0.98 2.51 3.431 (2) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pirimicarb (systematic name: 2-dimethylamino-5,6-dimethylpyrimidin-4-yl dimethylcarbamate), is a well known insecticide used to control aphids on vegetable, cereal and orchard crops by inhibiting acetylcholinesterase activity (Pirisi et al., 1996). However it's crystal structure has not been reported yet.

In the title compound (Scheme 1, Fig.1), the pyrimidyl ring and dimethylamino group lie in the same plane with a dihedral angle of 1.6 (1)°. This coplanarity may be assisted by the conjugation of π-electrons between pyrimidyl group and nitrogen atom of dimethylamino group. The dihedral angle between the mean plane of the pyrimidyl ring(C1/N1/C2/N2/C3/C4) and the mean plane of the carbamate (O1/O2/C9/N4) is 83.42 (5)° (Fig.1). All bond lengths and bond angles are normal and comparable to those observed in similar structures (Dalpozzo et al., 2001; Madre et al., 2008).

In the crystal structure, weak C—H···O hydrogen bonds are observed [C5—H5C···O2; H5C···O2 = 2.60 Å; C5—H5C···O2 = 163°; C5···O2 = 3.549 (2) Å; -x + 1, -y + 1, -z + 1 and C10—H10C···O2; H10C···O2 = 2.51 Å; C10—H10C···O2 = 157°; C10···O2 = 3.431 (2) Å; x,-y + 3/2,z + 1/2] (Fig. 2).

Related literature top

For the toxicity and insecticidal properties of the title compound, see: Pirisi et al. (1996). For related structures, see: Dalpozzo et al. (2001); Madre et al. (2008).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for the H atoms of the methyl groups.

Structure description top

Pirimicarb (systematic name: 2-dimethylamino-5,6-dimethylpyrimidin-4-yl dimethylcarbamate), is a well known insecticide used to control aphids on vegetable, cereal and orchard crops by inhibiting acetylcholinesterase activity (Pirisi et al., 1996). However it's crystal structure has not been reported yet.

In the title compound (Scheme 1, Fig.1), the pyrimidyl ring and dimethylamino group lie in the same plane with a dihedral angle of 1.6 (1)°. This coplanarity may be assisted by the conjugation of π-electrons between pyrimidyl group and nitrogen atom of dimethylamino group. The dihedral angle between the mean plane of the pyrimidyl ring(C1/N1/C2/N2/C3/C4) and the mean plane of the carbamate (O1/O2/C9/N4) is 83.42 (5)° (Fig.1). All bond lengths and bond angles are normal and comparable to those observed in similar structures (Dalpozzo et al., 2001; Madre et al., 2008).

In the crystal structure, weak C—H···O hydrogen bonds are observed [C5—H5C···O2; H5C···O2 = 2.60 Å; C5—H5C···O2 = 163°; C5···O2 = 3.549 (2) Å; -x + 1, -y + 1, -z + 1 and C10—H10C···O2; H10C···O2 = 2.51 Å; C10—H10C···O2 = 157°; C10···O2 = 3.431 (2) Å; x,-y + 3/2,z + 1/2] (Fig. 2).

For the toxicity and insecticidal properties of the title compound, see: Pirisi et al. (1996). For related structures, see: Dalpozzo et al. (2001); Madre et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonds shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity.
2-dimethylamino-5,6-dimethylpyrimidin-4-yl N,N-dimethylcarbamate top
Crystal data top
C11H18N4O2F(000) = 512
Mr = 238.29Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3964 reflections
a = 13.5607 (7) Åθ = 3.1–28.1°
b = 7.7868 (4) ŵ = 0.09 mm1
c = 13.1323 (7) ÅT = 173 K
β = 114.907 (3)°Block, colorless
V = 1257.72 (11) Å30.29 × 0.25 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3093 independent reflections
Radiation source: fine-focus sealed tube2390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.7°
φ and ω scansh = 1718
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.975, Tmax = 0.990l = 1517
11979 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0757P)2 + 0.3375P]
where P = (Fo2 + 2Fc2)/3
3093 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H18N4O2V = 1257.72 (11) Å3
Mr = 238.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5607 (7) ŵ = 0.09 mm1
b = 7.7868 (4) ÅT = 173 K
c = 13.1323 (7) Å0.29 × 0.25 × 0.11 mm
β = 114.907 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3093 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2390 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.990Rint = 0.031
11979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
3093 reflectionsΔρmin = 0.26 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24024 (9)0.53521 (13)0.53519 (9)0.0354 (3)
O20.32335 (9)0.74531 (13)0.48118 (9)0.0370 (3)
N10.14628 (10)0.43992 (15)0.35622 (10)0.0312 (3)
N20.22281 (10)0.23436 (15)0.27478 (10)0.0294 (3)
N30.05012 (11)0.34353 (18)0.17468 (11)0.0402 (3)
N40.27470 (12)0.78741 (17)0.62525 (11)0.0385 (3)
C10.23902 (12)0.43542 (17)0.44613 (12)0.0293 (3)
C20.14204 (11)0.33785 (18)0.27129 (12)0.0296 (3)
C30.31494 (11)0.23573 (17)0.36835 (12)0.0287 (3)
C40.32953 (12)0.33878 (18)0.46103 (12)0.0302 (3)
C50.40316 (13)0.1190 (2)0.36877 (15)0.0417 (4)
H5A0.38720.08460.29160.063*
H5B0.40680.01660.41370.063*
H5C0.47300.17940.40130.063*
C60.43355 (14)0.3450 (2)0.56746 (13)0.0416 (4)
H6A0.42650.27070.62430.062*
H6B0.44740.46320.59550.062*
H6C0.49420.30490.55160.062*
C70.03605 (14)0.2330 (2)0.08023 (14)0.0444 (4)
H7A0.00650.13160.08110.067*
H7B0.10740.19670.08610.067*
H7C0.00230.29610.00990.067*
C80.04504 (14)0.4381 (3)0.16659 (16)0.0493 (4)
H8A0.02340.52480.22620.074*
H8B0.09720.35870.17490.074*
H8C0.07880.49480.09320.074*
C90.28291 (11)0.69672 (18)0.54274 (11)0.0292 (3)
C100.22081 (15)0.7283 (2)0.69413 (14)0.0451 (4)
H10A0.20930.60390.68510.068*
H10B0.15050.78630.67050.068*
H10C0.26640.75480.77310.068*
C110.31354 (17)0.9642 (2)0.64121 (17)0.0536 (5)
H11A0.35350.98570.59530.080*
H11B0.36180.98300.72050.080*
H11C0.25141.04270.61850.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0517 (7)0.0303 (5)0.0323 (6)0.0064 (4)0.0258 (5)0.0063 (4)
O20.0458 (6)0.0318 (5)0.0394 (6)0.0063 (4)0.0236 (5)0.0044 (4)
N10.0350 (6)0.0273 (6)0.0343 (7)0.0024 (5)0.0174 (5)0.0023 (5)
N20.0350 (6)0.0252 (6)0.0289 (6)0.0022 (5)0.0145 (5)0.0024 (5)
N30.0341 (7)0.0422 (7)0.0370 (7)0.0009 (6)0.0078 (6)0.0073 (6)
N40.0487 (8)0.0343 (7)0.0350 (7)0.0003 (6)0.0200 (6)0.0089 (5)
C10.0415 (8)0.0230 (6)0.0286 (7)0.0063 (5)0.0199 (6)0.0022 (5)
C20.0327 (7)0.0258 (6)0.0315 (7)0.0052 (5)0.0148 (6)0.0007 (5)
C30.0348 (7)0.0228 (6)0.0301 (7)0.0024 (5)0.0151 (6)0.0010 (5)
C40.0371 (7)0.0259 (7)0.0275 (7)0.0026 (5)0.0135 (6)0.0004 (5)
C50.0403 (8)0.0411 (9)0.0411 (9)0.0074 (7)0.0146 (7)0.0054 (7)
C60.0461 (9)0.0405 (8)0.0305 (8)0.0011 (7)0.0088 (7)0.0018 (7)
C70.0426 (9)0.0520 (10)0.0332 (8)0.0093 (8)0.0107 (7)0.0084 (7)
C80.0358 (9)0.0564 (11)0.0496 (10)0.0051 (7)0.0120 (8)0.0006 (8)
C90.0311 (7)0.0275 (7)0.0259 (7)0.0024 (5)0.0090 (6)0.0015 (5)
C100.0606 (11)0.0501 (10)0.0299 (8)0.0136 (8)0.0242 (8)0.0006 (7)
C110.0651 (12)0.0372 (9)0.0581 (11)0.0025 (8)0.0257 (10)0.0191 (8)
Geometric parameters (Å, º) top
O1—C91.3704 (18)C5—H5B0.9800
O1—C11.3985 (16)C5—H5C0.9800
O2—C91.2128 (18)C6—H6A0.9800
N1—C11.3138 (19)C6—H6B0.9800
N1—C21.3510 (18)C6—H6C0.9800
N2—C31.3333 (19)C7—H7A0.9800
N2—C21.3449 (19)C7—H7B0.9800
N3—C21.3540 (19)C7—H7C0.9800
N3—C81.450 (2)C8—H8A0.9800
N3—C71.455 (2)C8—H8B0.9800
N4—C91.3367 (19)C8—H8C0.9800
N4—C101.456 (2)C10—H10A0.9800
N4—C111.457 (2)C10—H10B0.9800
C1—C41.381 (2)C10—H10C0.9800
C3—C41.401 (2)C11—H11A0.9800
C3—C51.501 (2)C11—H11B0.9800
C4—C61.512 (2)C11—H11C0.9800
C5—H5A0.9800
C9—O1—C1115.24 (11)C4—C6—H6C109.5
C1—N1—C2114.71 (12)H6A—C6—H6C109.5
C3—N2—C2117.40 (12)H6B—C6—H6C109.5
C2—N3—C8121.66 (14)N3—C7—H7A109.5
C2—N3—C7121.19 (13)N3—C7—H7B109.5
C8—N3—C7116.42 (13)H7A—C7—H7B109.5
C9—N4—C10124.84 (14)N3—C7—H7C109.5
C9—N4—C11117.86 (14)H7A—C7—H7C109.5
C10—N4—C11117.05 (14)H7B—C7—H7C109.5
N1—C1—C4126.79 (13)N3—C8—H8A109.5
N1—C1—O1113.98 (13)N3—C8—H8B109.5
C4—C1—O1119.16 (13)H8A—C8—H8B109.5
N2—C2—N1124.99 (13)N3—C8—H8C109.5
N2—C2—N3117.82 (13)H8A—C8—H8C109.5
N1—C2—N3117.17 (13)H8B—C8—H8C109.5
N2—C3—C4122.69 (13)O2—C9—N4126.22 (14)
N2—C3—C5115.77 (13)O2—C9—O1122.26 (12)
C4—C3—C5121.55 (13)N4—C9—O1111.52 (13)
C1—C4—C3113.39 (13)N4—C10—H10A109.5
C1—C4—C6122.76 (13)N4—C10—H10B109.5
C3—C4—C6123.85 (14)H10A—C10—H10B109.5
C3—C5—H5A109.5N4—C10—H10C109.5
C3—C5—H5B109.5H10A—C10—H10C109.5
H5A—C5—H5B109.5H10B—C10—H10C109.5
C3—C5—H5C109.5N4—C11—H11A109.5
H5A—C5—H5C109.5N4—C11—H11B109.5
H5B—C5—H5C109.5H11A—C11—H11B109.5
C4—C6—H6A109.5N4—C11—H11C109.5
C4—C6—H6B109.5H11A—C11—H11C109.5
H6A—C6—H6B109.5H11B—C11—H11C109.5
C2—N1—C1—C40.0 (2)N1—C1—C4—C31.1 (2)
C2—N1—C1—O1177.02 (11)O1—C1—C4—C3175.74 (11)
C9—O1—C1—N195.73 (15)N1—C1—C4—C6178.91 (14)
C9—O1—C1—C487.02 (16)O1—C1—C4—C64.2 (2)
C3—N2—C2—N11.6 (2)N2—C3—C4—C11.0 (2)
C3—N2—C2—N3176.89 (13)C5—C3—C4—C1178.95 (13)
C1—N1—C2—N21.5 (2)N2—C3—C4—C6179.06 (14)
C1—N1—C2—N3177.02 (13)C5—C3—C4—C61.0 (2)
C8—N3—C2—N2173.88 (15)C10—N4—C9—O2176.80 (15)
C7—N3—C2—N24.0 (2)C11—N4—C9—O22.7 (2)
C8—N3—C2—N17.5 (2)C10—N4—C9—O13.9 (2)
C7—N3—C2—N1177.33 (13)C11—N4—C9—O1178.05 (14)
C2—N2—C3—C40.3 (2)C1—O1—C9—O24.7 (2)
C2—N2—C3—C5179.80 (13)C1—O1—C9—N4175.97 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5C···O2i0.982.603.549 (2)163
C10—H10C···O2ii0.982.513.431 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H18N4O2
Mr238.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.5607 (7), 7.7868 (4), 13.1323 (7)
β (°) 114.907 (3)
V3)1257.72 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.29 × 0.25 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
11979, 3093, 2390
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.05
No. of reflections3093
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5C···O2i0.982.603.549 (2)163.1
C10—H10C···O2ii0.982.513.431 (2)157.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0016386).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalpozzo, R., Nino, A. D., Maiuolo, L., Procopio, A., Munno, G. D. & Sindona, G. (2001). Tetrahedron, 57, 4035–4038.  Web of Science CSD CrossRef CAS Google Scholar
First citationMadre, M., Petrova, M. & Belyakov, S. (2008). Synthesis, 19, 3053–3060.  Web of Science CSD CrossRef Google Scholar
First citationPirisi, F. M., Cabras, P., Garau, V. L., Melis, M. & Secchi, E. (1996). J. Agric. Food Chem. 44, 2417–2422.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds