organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[4-(Di­methyl­amino)­styr­yl]-1-methyl­pyridinium 4-methyl­benzene­sulfonate monohydrate1

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 29 June 2010; accepted 4 July 2010; online 10 July 2010)

The cation of the title compound, C16H19N2+·C7H7O3S·H2O, exists in the E configuration with respect to the C=C double bond and is essentially planar, the dihedral angle between the pyridinium and benzene rings being 3.55 (13)°. In the crystal, π-conjugated planes of cations and anions are inclined to each other at 84.30 (11)°. The crystal structure is stabilized by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, which link the cations, anions and water mol­ecules into chains along the b axis. These chains are stacked along the a axis by ππ inter­actions with centroid–centroid distances of 3.6032 (16) and 3.6462 (16) Å.

Related literature

For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to and applications of quarternary ammonium compounds and sulfonamides, see: Barlow et al. (1937[Barlow, O. W. (1937). Proc. Soc. Exp. Biol. Med. 37, 315.]); Ohkura et al. (2003[Ohkura, K., Sukeno, A., Yamamoto, K., Nagamune, H., Maeda, T. & Kourai, H. (2003). Bioorg. Med. Chem. 11, 5035-5043.]); Pernak et al. (2001[Pernak, J., Kalewska, J., Ksycifiska, H. & &Cybulski, J. (2001). Eur. J. Med. Chem. 36, 899-907.]). For related structures, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. In the press. doi:10.1016/j.ejmech.2010.06.014.]); Kobkeatthawin et al. (2009[Kobkeatthawin, T., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o76-o77.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N2+·C7H7O3S·H2O

  • Mr = 428.53

  • Triclinic, [P \overline 1]

  • a = 7.3469 (9) Å

  • b = 9.8860 (12) Å

  • c = 15.5541 (19) Å

  • α = 75.801 (3)°

  • β = 79.438 (3)°

  • γ = 76.865 (2)°

  • V = 1056.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.47 × 0.13 × 0.06 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.989

  • 15705 measured reflections

  • 4122 independent reflections

  • 3307 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.156

  • S = 1.11

  • 4122 reflections

  • 282 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2 0.83 (5) 1.96 (5) 2.774 (3) 170 (4)
O1W—H2W1⋯O1i 0.94 (4) 1.99 (4) 2.906 (3) 167 (3)
C1—H1A⋯O1ii 0.93 2.55 3.424 (3) 157
C2—H2A⋯O1iii 0.93 2.54 3.382 (4) 150
C4—H4A⋯O1W 0.93 2.35 3.222 (4) 157
C6—H6A⋯O3iv 0.93 2.53 3.456 (4) 176
C9—H9A⋯O2 0.93 2.49 3.376 (3) 158
C13—H13A⋯O3iv 0.93 2.49 3.390 (4) 164
C14—H14B⋯O1ii 0.96 2.56 3.479 (4) 161
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y+1, z; (iii) -x+2, -y+1, -z; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quarternary ammonium compounds and sulfonamide drugs are the interesting antibacterial agents. They are widely used in industrial disinfection and hospital treatment (Barlow et al., 1937; Ohkura et al., 2003). Pyridinium derivatives represent a class of synthetic quarternary ammonium compounds that show significant antibacterial activity. (Pernak et al., 2001). The title compound was synthesized based on the combination of pyridinium and sulfonamide chemophores in order to yield a potent disinfectant. Our biological actvity results showed that the title compound was moderately active against Gram-positive bacteria ie Methicillin-Resistant Staphylococcus aureus with the MIC = 37.5 µg/ml. However it was inactive against the Gram-negative bacteria we tested which are Pseudomonas aeruginosa, Salmonella typhi and Shigella sonnei (Chanawanno et al., 2010). Herein its crystal structure is reported.

Fig. 1 shows the asymmetric unit of the title compound (I) which consists of the C16H19N2+ cation, C7H7O3S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C6C7 double bond [1.343 (4) Å]. The cation is essentially planar with the dihedral angle between the pyridinium and the dimethylaminophenyl rings being 3.55 (13)° and with the torsion angle C5–C6–C7–C8 = 176.3 (3)°. Both methyl groups of dimethylamino moiety are slightly twisted from the mean plane of the attached C8–C13 ring as indicated by the torsion angles C15—N2–C11–C10 = 9.3 (4)° and C16–N2–C11–C12 = 3.5 (4)°. The relative arrangement of cation and anion is shown by the interplanar angle between the mean plane of the π-conjugate system (C1–C13/N1) of the cation and the C17–C22 benzene ring of the anion being 84.30 (11)°. The bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable with a related structure (Kobkeatthawin et al., 2009).

In the crystal packing, all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cation is linked to both the anion and water molecule by weak C—H···O interactions, and the anion is linked to the water molecule by O—H···O hydrogen bond. These three molecules are linked into chains along the b axis (Table 1, Fig. 2). These chains are stacked along the a axis (Fig. 2) by ππ interactions with the distances Cg1···Cg1 = 3.6032 (16) Å (symmetry code: 2 - x, 2 - y, -z) and Cg1···Cg2 = 3.6462 (16) Å (symmetry code: 1 - x, y, z); Cg1 and Cg2 are the centroids of the N1/C1–C5 and C8–C13 rings, respectively.

Related literature top

For bond-length data, see Allen et al. (1987). For background to and applications of quarternary ammonium compounds and sulfonamides, see: Barlow et al. (1937); Ohkura et al. (2003); Pernak et al. (2001). For related structures, see: Chanawanno et al. (2010); Kobkeatthawin et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared by the reported procedure (Chanawanno et al., 2010). Orange needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature after a few weeks. Mp. 468–469 K.

Refinement top

Water H atoms were located in difference maps and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic and CH and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.08 Å from O1 and the deepest hole is located at 0.85 Å from S1.

Structure description top

Quarternary ammonium compounds and sulfonamide drugs are the interesting antibacterial agents. They are widely used in industrial disinfection and hospital treatment (Barlow et al., 1937; Ohkura et al., 2003). Pyridinium derivatives represent a class of synthetic quarternary ammonium compounds that show significant antibacterial activity. (Pernak et al., 2001). The title compound was synthesized based on the combination of pyridinium and sulfonamide chemophores in order to yield a potent disinfectant. Our biological actvity results showed that the title compound was moderately active against Gram-positive bacteria ie Methicillin-Resistant Staphylococcus aureus with the MIC = 37.5 µg/ml. However it was inactive against the Gram-negative bacteria we tested which are Pseudomonas aeruginosa, Salmonella typhi and Shigella sonnei (Chanawanno et al., 2010). Herein its crystal structure is reported.

Fig. 1 shows the asymmetric unit of the title compound (I) which consists of the C16H19N2+ cation, C7H7O3S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C6C7 double bond [1.343 (4) Å]. The cation is essentially planar with the dihedral angle between the pyridinium and the dimethylaminophenyl rings being 3.55 (13)° and with the torsion angle C5–C6–C7–C8 = 176.3 (3)°. Both methyl groups of dimethylamino moiety are slightly twisted from the mean plane of the attached C8–C13 ring as indicated by the torsion angles C15—N2–C11–C10 = 9.3 (4)° and C16–N2–C11–C12 = 3.5 (4)°. The relative arrangement of cation and anion is shown by the interplanar angle between the mean plane of the π-conjugate system (C1–C13/N1) of the cation and the C17–C22 benzene ring of the anion being 84.30 (11)°. The bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable with a related structure (Kobkeatthawin et al., 2009).

In the crystal packing, all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cation is linked to both the anion and water molecule by weak C—H···O interactions, and the anion is linked to the water molecule by O—H···O hydrogen bond. These three molecules are linked into chains along the b axis (Table 1, Fig. 2). These chains are stacked along the a axis (Fig. 2) by ππ interactions with the distances Cg1···Cg1 = 3.6032 (16) Å (symmetry code: 2 - x, 2 - y, -z) and Cg1···Cg2 = 3.6462 (16) Å (symmetry code: 1 - x, y, z); Cg1 and Cg2 are the centroids of the N1/C1–C5 and C8–C13 rings, respectively.

For bond-length data, see Allen et al. (1987). For background to and applications of quarternary ammonium compounds and sulfonamides, see: Barlow et al. (1937); Ohkura et al. (2003); Pernak et al. (2001). For related structures, see: Chanawanno et al. (2010); Kobkeatthawin et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis. The O—H···O hydrogen bonds and weak C—H···O interactions are drawn as dashed lines.
(E)-2-[4-(Dimethylamino)styryl]-1-methylpyridinium 4-methylbenzenesulfonate monohydrate top
Crystal data top
C16H19N2+·C7H7O3S·H2OZ = 2
Mr = 428.53F(000) = 456
Triclinic, P1Dx = 1.347 Mg m3
Hall symbol: -P 1Melting point = 468–469 K
a = 7.3469 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8860 (12) ÅCell parameters from 4122 reflections
c = 15.5541 (19) Åθ = 1.4–26.0°
α = 75.801 (3)°µ = 0.19 mm1
β = 79.438 (3)°T = 100 K
γ = 76.865 (2)°Needle, orange
V = 1056.8 (2) Å30.47 × 0.13 × 0.06 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4122 independent reflections
Radiation source: sealed tube3307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.919, Tmax = 0.989k = 1212
15705 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.069P)2 + 1.5338P]
where P = (Fo2 + 2Fc2)/3
4122 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C16H19N2+·C7H7O3S·H2Oγ = 76.865 (2)°
Mr = 428.53V = 1056.8 (2) Å3
Triclinic, P1Z = 2
a = 7.3469 (9) ÅMo Kα radiation
b = 9.8860 (12) ŵ = 0.19 mm1
c = 15.5541 (19) ÅT = 100 K
α = 75.801 (3)°0.47 × 0.13 × 0.06 mm
β = 79.438 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4122 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3307 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.989Rint = 0.045
15705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.51 e Å3
4122 reflectionsΔρmin = 0.56 e Å3
282 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.0171 (3)0.9737 (2)0.12371 (15)0.0145 (5)
N20.1299 (3)0.8266 (3)0.39380 (16)0.0215 (5)
C11.1969 (4)0.9572 (3)0.08076 (18)0.0176 (6)
H1A1.26831.02560.07660.021*
C21.2745 (4)0.8414 (3)0.04353 (19)0.0198 (6)
H2A1.39760.83090.01430.024*
C31.1662 (4)0.7399 (3)0.05011 (18)0.0189 (6)
H3A1.21610.66060.02520.023*
C40.9842 (4)0.7579 (3)0.09382 (18)0.0170 (6)
H4A0.91150.69050.09750.020*
C50.9067 (4)0.8750 (3)0.13271 (18)0.0152 (5)
C60.7180 (4)0.8965 (3)0.18253 (18)0.0166 (6)
H6A0.67100.98210.20070.020*
C70.6089 (4)0.7978 (3)0.20334 (18)0.0177 (6)
H7A0.65660.71560.18120.021*
C80.4235 (4)0.8062 (3)0.25704 (18)0.0166 (5)
C90.3246 (4)0.6955 (3)0.26819 (19)0.0182 (6)
H9A0.38160.61740.24310.022*
C100.1460 (4)0.6991 (3)0.31509 (18)0.0168 (6)
H10A0.08600.62300.32230.020*
C110.0532 (4)0.8173 (3)0.35233 (18)0.0163 (5)
C120.1546 (4)0.9257 (3)0.34420 (18)0.0176 (6)
H12A0.09921.00260.37070.021*
C130.3347 (4)0.9203 (3)0.29778 (18)0.0172 (6)
H13A0.39800.99370.29350.021*
C140.9449 (4)1.1036 (3)0.16027 (19)0.0186 (6)
H14A0.83401.15630.13450.028*
H14B1.03981.16120.14600.028*
H14C0.91421.07740.22410.028*
C150.2224 (4)0.7057 (3)0.4121 (2)0.0236 (6)
H15A0.22380.67870.35700.035*
H15B0.34960.73090.44000.035*
H15C0.15520.62750.45150.035*
C160.2284 (4)0.9532 (3)0.4263 (2)0.0248 (6)
H16A0.22411.03530.37840.037*
H16B0.16880.96260.47400.037*
H16C0.35740.94550.44810.037*
S10.39079 (9)0.30482 (7)0.18364 (5)0.01550 (19)
O10.3624 (3)0.2330 (2)0.11664 (13)0.0202 (4)
O20.4315 (3)0.4458 (2)0.14332 (13)0.0214 (5)
O30.5235 (3)0.2178 (2)0.24342 (14)0.0205 (4)
C170.1685 (3)0.3327 (3)0.25164 (18)0.0138 (5)
C180.0064 (4)0.3932 (3)0.21068 (18)0.0157 (5)
H18A0.01530.42390.14880.019*
C190.1682 (4)0.4069 (3)0.26349 (19)0.0170 (6)
H19A0.27670.44490.23640.020*
C200.1835 (4)0.3651 (3)0.35578 (19)0.0182 (6)
C210.0197 (4)0.3085 (3)0.39579 (19)0.0196 (6)
H21A0.02800.28190.45780.024*
C220.1561 (4)0.2916 (3)0.34368 (18)0.0166 (6)
H22A0.26470.25290.37070.020*
C230.3743 (4)0.3757 (3)0.4126 (2)0.0266 (7)
H23A0.35810.34180.47460.040*
H23B0.44720.31900.39630.040*
H23C0.43890.47300.40310.040*
O1W0.7344 (3)0.5643 (2)0.04598 (15)0.0251 (5)
H1W10.645 (7)0.524 (5)0.070 (3)0.056 (13)*
H2W10.699 (5)0.618 (4)0.009 (3)0.033 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0088 (10)0.0153 (11)0.0197 (11)0.0024 (9)0.0005 (9)0.0051 (9)
N20.0114 (12)0.0250 (13)0.0286 (13)0.0059 (10)0.0045 (10)0.0096 (10)
C10.0078 (12)0.0207 (14)0.0230 (14)0.0019 (10)0.0013 (10)0.0038 (11)
C20.0083 (13)0.0234 (14)0.0237 (14)0.0021 (11)0.0016 (11)0.0049 (11)
C30.0164 (14)0.0163 (13)0.0209 (14)0.0024 (11)0.0021 (11)0.0034 (11)
C40.0140 (13)0.0148 (13)0.0213 (14)0.0014 (10)0.0025 (11)0.0032 (11)
C50.0115 (13)0.0154 (13)0.0180 (13)0.0019 (10)0.0030 (10)0.0019 (10)
C60.0109 (13)0.0168 (13)0.0203 (14)0.0003 (10)0.0005 (10)0.0040 (11)
C70.0113 (13)0.0174 (13)0.0231 (14)0.0003 (10)0.0018 (11)0.0046 (11)
C80.0105 (13)0.0167 (13)0.0211 (14)0.0016 (10)0.0023 (10)0.0022 (10)
C90.0136 (14)0.0154 (13)0.0251 (14)0.0002 (11)0.0034 (11)0.0050 (11)
C100.0129 (13)0.0149 (13)0.0239 (14)0.0069 (10)0.0024 (11)0.0026 (11)
C110.0102 (13)0.0192 (13)0.0179 (13)0.0028 (10)0.0011 (10)0.0018 (10)
C120.0149 (13)0.0166 (13)0.0213 (14)0.0028 (11)0.0015 (11)0.0052 (11)
C130.0117 (13)0.0175 (13)0.0221 (14)0.0035 (10)0.0024 (11)0.0028 (11)
C140.0114 (13)0.0176 (13)0.0275 (15)0.0020 (10)0.0016 (11)0.0100 (11)
C150.0147 (14)0.0294 (16)0.0268 (15)0.0090 (12)0.0022 (12)0.0054 (12)
C160.0145 (14)0.0289 (16)0.0283 (16)0.0032 (12)0.0053 (12)0.0082 (13)
S10.0063 (3)0.0145 (3)0.0248 (4)0.0030 (2)0.0034 (2)0.0058 (3)
O10.0130 (10)0.0195 (10)0.0287 (11)0.0047 (8)0.0046 (8)0.0104 (8)
O20.0116 (10)0.0181 (10)0.0320 (11)0.0049 (8)0.0060 (8)0.0052 (8)
O30.0055 (9)0.0211 (10)0.0332 (11)0.0004 (7)0.0020 (8)0.0057 (8)
C170.0055 (12)0.0123 (12)0.0236 (14)0.0031 (9)0.0029 (10)0.0064 (10)
C180.0112 (13)0.0150 (13)0.0210 (14)0.0029 (10)0.0015 (10)0.0040 (10)
C190.0086 (12)0.0130 (13)0.0296 (15)0.0001 (10)0.0039 (11)0.0059 (11)
C200.0087 (13)0.0195 (13)0.0269 (15)0.0050 (10)0.0044 (11)0.0086 (11)
C210.0153 (14)0.0233 (14)0.0196 (14)0.0052 (11)0.0006 (11)0.0043 (11)
C220.0091 (13)0.0171 (13)0.0244 (14)0.0032 (10)0.0028 (10)0.0049 (11)
C230.0117 (14)0.0357 (17)0.0310 (16)0.0056 (12)0.0055 (12)0.0098 (13)
O1W0.0169 (11)0.0311 (12)0.0287 (12)0.0126 (9)0.0002 (9)0.0038 (10)
Geometric parameters (Å, º) top
N1—C11.360 (3)C14—H14A0.9600
N1—C51.372 (3)C14—H14B0.9600
N1—C141.480 (3)C14—H14C0.9600
N2—C111.374 (3)C15—H15A0.9600
N2—C151.450 (4)C15—H15B0.9600
N2—C161.454 (4)C15—H15C0.9600
C1—C21.371 (4)C16—H16A0.9600
C1—H1A0.9300C16—H16B0.9600
C2—C31.390 (4)C16—H16C0.9600
C2—H2A0.9300S1—O31.454 (2)
C3—C41.378 (4)S1—O21.4553 (19)
C3—H3A0.9300S1—O11.464 (2)
C4—C51.396 (4)S1—C171.780 (3)
C4—H4A0.9300C17—C221.381 (4)
C5—C61.456 (4)C17—C181.396 (4)
C6—C71.343 (4)C18—C191.389 (4)
C6—H6A0.9300C18—H18A0.9300
C7—C81.458 (4)C19—C201.384 (4)
C7—H7A0.9300C19—H19A0.9300
C8—C131.402 (4)C20—C211.395 (4)
C8—C91.406 (4)C20—C231.511 (4)
C9—C101.377 (4)C21—C221.392 (4)
C9—H9A0.9300C21—H21A0.9300
C10—C111.411 (4)C22—H22A0.9300
C10—H10A0.9300C23—H23A0.9600
C11—C121.407 (4)C23—H23B0.9600
C12—C131.383 (4)C23—H23C0.9600
C12—H12A0.9300O1W—H1W10.83 (5)
C13—H13A0.9300O1W—H2W10.94 (4)
C1—N1—C5121.8 (2)H14A—C14—H14B109.5
C1—N1—C14117.0 (2)N1—C14—H14C109.5
C5—N1—C14121.2 (2)H14A—C14—H14C109.5
C11—N2—C15120.3 (2)H14B—C14—H14C109.5
C11—N2—C16120.6 (2)N2—C15—H15A109.5
C15—N2—C16118.9 (2)N2—C15—H15B109.5
N1—C1—C2121.1 (2)H15A—C15—H15B109.5
N1—C1—H1A119.5N2—C15—H15C109.5
C2—C1—H1A119.5H15A—C15—H15C109.5
C1—C2—C3118.9 (2)H15B—C15—H15C109.5
C1—C2—H2A120.5N2—C16—H16A109.5
C3—C2—H2A120.5N2—C16—H16B109.5
C4—C3—C2119.4 (2)H16A—C16—H16B109.5
C4—C3—H3A120.3N2—C16—H16C109.5
C2—C3—H3A120.3H16A—C16—H16C109.5
C3—C4—C5121.5 (2)H16B—C16—H16C109.5
C3—C4—H4A119.3O3—S1—O2113.73 (11)
C5—C4—H4A119.3O3—S1—O1113.30 (12)
N1—C5—C4117.3 (2)O2—S1—O1111.86 (12)
N1—C5—C6118.9 (2)O3—S1—C17106.05 (12)
C4—C5—C6123.8 (2)O2—S1—C17105.69 (11)
C7—C6—C5122.8 (2)O1—S1—C17105.35 (11)
C7—C6—H6A118.6C22—C17—C18120.5 (2)
C5—C6—H6A118.6C22—C17—S1120.3 (2)
C6—C7—C8126.8 (3)C18—C17—S1119.2 (2)
C6—C7—H7A116.6C19—C18—C17119.1 (2)
C8—C7—H7A116.6C19—C18—H18A120.4
C13—C8—C9117.2 (2)C17—C18—H18A120.4
C13—C8—C7123.7 (2)C20—C19—C18121.2 (2)
C9—C8—C7119.0 (2)C20—C19—H19A119.4
C10—C9—C8122.1 (2)C18—C19—H19A119.4
C10—C9—H9A119.0C19—C20—C21118.9 (2)
C8—C9—H9A119.0C19—C20—C23120.9 (3)
C9—C10—C11120.6 (2)C21—C20—C23120.2 (3)
C9—C10—H10A119.7C22—C21—C20120.6 (3)
C11—C10—H10A119.7C22—C21—H21A119.7
N2—C11—C12121.5 (2)C20—C21—H21A119.7
N2—C11—C10121.1 (2)C17—C22—C21119.6 (2)
C12—C11—C10117.4 (2)C17—C22—H22A120.2
C13—C12—C11121.5 (2)C21—C22—H22A120.2
C13—C12—H12A119.3C20—C23—H23A109.5
C11—C12—H12A119.3C20—C23—H23B109.5
C12—C13—C8121.1 (2)H23A—C23—H23B109.5
C12—C13—H13A119.5C20—C23—H23C109.5
C8—C13—H13A119.5H23A—C23—H23C109.5
N1—C14—H14A109.5H23B—C23—H23C109.5
N1—C14—H14B109.5H1W1—O1W—H2W1105 (4)
C5—N1—C1—C20.8 (4)C9—C10—C11—N2175.4 (3)
C14—N1—C1—C2178.9 (3)C9—C10—C11—C123.8 (4)
N1—C1—C2—C30.1 (4)N2—C11—C12—C13176.0 (3)
C1—C2—C3—C40.1 (4)C10—C11—C12—C133.1 (4)
C2—C3—C4—C50.8 (4)C11—C12—C13—C80.1 (4)
C1—N1—C5—C41.7 (4)C9—C8—C13—C122.3 (4)
C14—N1—C5—C4178.1 (2)C7—C8—C13—C12176.7 (3)
C1—N1—C5—C6177.6 (2)O3—S1—C17—C228.8 (2)
C14—N1—C5—C62.6 (4)O2—S1—C17—C22112.3 (2)
C3—C4—C5—N11.7 (4)O1—S1—C17—C22129.2 (2)
C3—C4—C5—C6177.6 (3)O3—S1—C17—C18169.54 (19)
N1—C5—C6—C7172.2 (3)O2—S1—C17—C1869.4 (2)
C4—C5—C6—C77.1 (4)O1—S1—C17—C1849.1 (2)
C5—C6—C7—C8176.3 (3)C22—C17—C18—C192.3 (4)
C6—C7—C8—C132.3 (4)S1—C17—C18—C19176.08 (19)
C6—C7—C8—C9176.7 (3)C17—C18—C19—C201.6 (4)
C13—C8—C9—C101.6 (4)C18—C19—C20—C210.1 (4)
C7—C8—C9—C10177.4 (3)C18—C19—C20—C23177.9 (2)
C8—C9—C10—C111.5 (4)C19—C20—C21—C221.3 (4)
C15—N2—C11—C12171.6 (3)C23—C20—C21—C22176.7 (2)
C16—N2—C11—C123.5 (4)C18—C17—C22—C211.1 (4)
C15—N2—C11—C109.3 (4)S1—C17—C22—C21177.2 (2)
C16—N2—C11—C10175.6 (3)C20—C21—C22—C170.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.83 (5)1.96 (5)2.774 (3)170 (4)
O1W—H2W1···O1i0.94 (4)1.99 (4)2.906 (3)167 (3)
C1—H1A···O1ii0.932.553.424 (3)157
C2—H2A···O1iii0.932.543.382 (4)150
C4—H4A···O1W0.932.353.222 (4)157
C6—H6A···O3iv0.932.533.456 (4)176
C9—H9A···O20.932.493.376 (3)158
C13—H13A···O3iv0.932.493.390 (4)164
C14—H14B···O1ii0.962.563.479 (4)161
C22—H22A···O30.932.512.894 (3)105
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H19N2+·C7H7O3S·H2O
Mr428.53
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3469 (9), 9.8860 (12), 15.5541 (19)
α, β, γ (°)75.801 (3), 79.438 (3), 76.865 (2)
V3)1056.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.47 × 0.13 × 0.06
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.919, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
15705, 4122, 3307
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.156, 1.11
No. of reflections4122
No. of parameters282
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.83 (5)1.96 (5)2.774 (3)170 (4)
O1W—H2W1···O1i0.94 (4)1.99 (4)2.906 (3)167 (3)
C1—H1A···O1ii0.932.553.424 (3)157
C2—H2A···O1iii0.932.543.382 (4)150
C4—H4A···O1W0.932.353.222 (4)157
C6—H6A···O3iv0.932.533.456 (4)176
C9—H9A···O20.932.493.376 (3)158
C13—H13A···O3iv0.932.493.390 (4)164
C14—H14B···O1ii0.962.563.479 (4)161
C22—H22A···O30.932.512.894 (3)105
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x, y+1, z.
 

Footnotes

1This paper is dedicated to Her Royal Highness Princess Chulabhorn Walailak of Thailand on the occasion of her 53rd Birthday Anniversary which fell on July 4th, 2010.

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit and the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBarlow, O. W. (1937). Proc. Soc. Exp. Biol. Med. 37, 315.  CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. In the press. doi:10.1016/j.ejmech.2010.06.014.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKobkeatthawin, T., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o76–o77.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhkura, K., Sukeno, A., Yamamoto, K., Nagamune, H., Maeda, T. & Kourai, H. (2003). Bioorg. Med. Chem. 11, 5035–5043.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPernak, J., Kalewska, J., Ksycifiska, H. & &Cybulski, J. (2001). Eur. J. Med. Chem. 36, 899–907.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds